
Rapid Abiotic Dechlorination of Chlorinated Solvents by Remediation Emplacement of Zero Valent Iron (ZVI)

Introduction

- Site (Millcreek, Utah)
 - Drycleaner since 1987 (various drycleaning lessees)
 - Owned by a Trust looking to re-develop for new businesses.
- Contaminant of concern (COC)
 - Chlorinated solvents above US EPA Maximum Contaminant Level (MCL) in groundwater (GW)

- Remedial approach
 - Emplace Zero Valent Iron (ZVI)

Site Background


- Previous consultant had performed Phase I and II
 - Identified tetrachloroethene (PCE) impacts- concluded not significant

2018 Wasatch Environmental engaged

- Environmental Science and Engineering
- Phase I Environmental Assessment showed PCE was used as drycleaning solvent from 1987 through 2011
- Phase II Limited Subsurface Investigation in May 2019- Chlorinated solvents exceeding EPA MCL in GW
- Phase II GW data showed chlorinated solvent in groundwater under facility and migrating north.
 - Release reported to the Utah Division of Waste Management and Radiation Control (DWRMC), November 2019.

GEOTACTICAL

REMEDIATION

Site Geology and Contamination

- Geology
 - Gravely sand with high hydraulic conductivity, underlain by sands and silts with reduced hydraulic conductivity
- GW plume extent
 - Lateral treatment area 4,600 ft²
- COCs treat to [MCL]
 - Tetrachloroethene (PCE): [5 μg/L]
 - Trichloroethene (TCE): [5 μg/L]
 - cis 1,2-dichloroethene (DCE): [70 μg/L]

Site Options

Dig- expensive

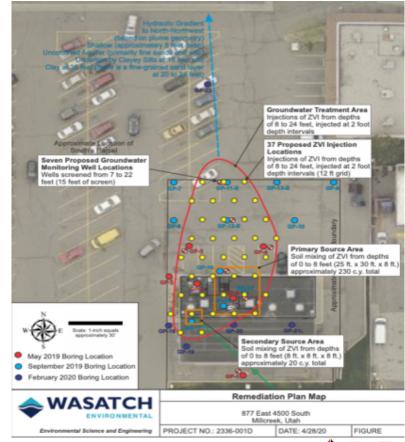
- Bioremediation (biotic)
 - Cost effective
 - Time intensive
 - Environmental condition sensitive

- ZVI (abiotic) <u>Selected</u>
 - Cost effective
 - Rapid and passive management

Site Approach

- GW and Soil plume fully delineated
 - Lateral treatment area 4,600 ft²
- Corrective Action Plan (CAP) submitted to DWRMC and approved March 2021
- Zero Valent Iron amendment- C.E.R.E.S Corporation
 - C.E.R.E.S provided dosing

- Engaged local soil mixing contractor and in situ injection services
 - Geo Tactical Remediation (fracture injection)



Remediation Design

- ZVI fracture injections
 - Source Area 1 and 2
 - Soil mixing and injections with ZVI
- GW Plume Treatment
 - Fracture injections
- Completed from Aug 2021- Jan 2022
 - 68,418 lbs. of CERES ZVI injected
 - 8,713 lbs. of CERES ZVI soil mixing

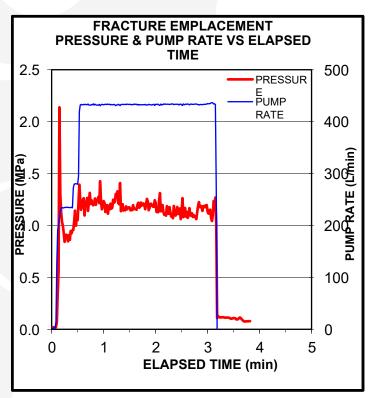
ZVI Treatment Emplacement

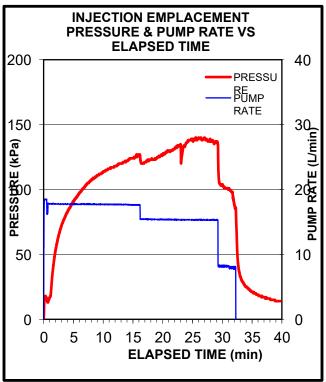
- Local Contractor
 - Soil mixing- shallow
 - Vadose zone 0-8 ft below ground surface (bgs)

- Geo Tactical Remediation Ltd. (this presentation)
 - Fracture injection emplacement- deep
 - Groundwater plume zone 8-24 ft bgs

Fracture Injection

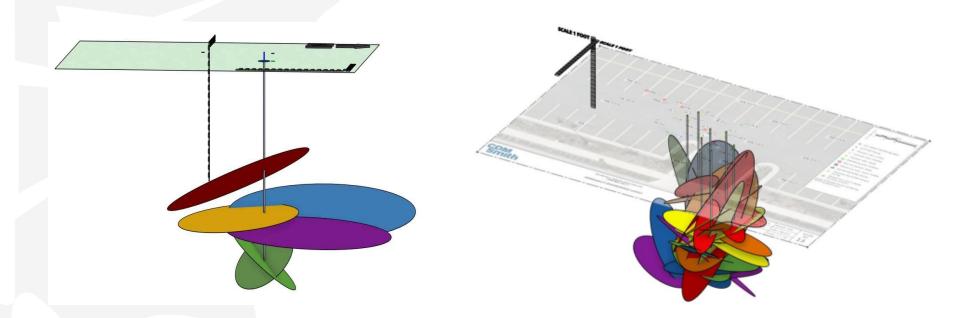
- Fracture- pressure induced tensile parting
- ZVI emplacement


 EF 9300 skid mounted mixing and pumping unit



Pressure – Time Response

Site Operations


- Time
 - 6 days
- Emplaced
 - 68,418 lbs of ZVI by fracture injection
- 27 Emplacement Boreholes (EB)
 - 110 discrete emplacement intervals (EI)
 - Create overlap and interconnectivity for GW plume treatment
- ZVI emplacement
 - EF 9300 injection unit (see first slide)
 - Slurry system

3D Tiltmeter Mapping

(E.g., from a different site)

Abiotic Dechlorination of Chlorinated Solvents

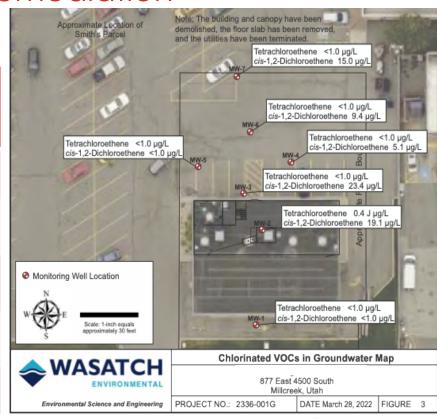
- ZVI acts as catalyst
 - PCE adsorbs to surface of ZVI (Fe⁰)
 - Reduction of PCE (C₂Cl₄) to TCE (C₂HCl₃) (ZVI electron (e⁻) transfer to PCE)
 - $C_2Cl_4 + Fe^0 + H^+ \rightarrow C_2HCl_3 + Fe^{2+} + Cl^-$
 - Rinse and repeat all the way to Ethene
 - PCE $\stackrel{e^-}{\to}$ TCE $\stackrel{e^-}{\to}$ DCE $\stackrel{e^-}{\to}$ Vinyl Chloride (VC) $\stackrel{e^-}{\to}$ Ethene (C2H4)
 - Overall reaction: $C_2Cl_4 + 4Fe^0 + 4H^+ + 4e^- \rightarrow C_2H_4 + 4Fe^{2+} + 4Cl^-$

Abiotic – Excess Amendment (Reagent)

- High mass loading important to ensure reaction proceeds to completion
 - Too many unknowns in subsurface to assume stoichiometric balance
 - Lab never quite captures the field;)
- Too little could stall (concern with biotic process as well)
 - E.g., TCE→ cis-1,2-DCE (stall)- Not good
 - E.g., cis or trans-1,2- DCE → VC (stall)- Really not good
- Effective to emplace a high mass loading
 - Drive to completion in one event and get passive ongoing treatment
 - Persistent and passive
 - Treat COC rebound from ongoing sources

Biotic Dechlorination Process

- Bacterial degradation of chlorinated solvents
 - Dehalococcoides (anaerobic dehalogenation)
- Biotic processes require:
 - Carbon feedstock source e.g., emulsified vegetable oil (EVO)
 - pH, temperature, nutrients...
 - Lack of competing microbes
- ZVI is often used with EVO or other carbon source
- If anaerobic condition are not maintained; VC stall can occur
- If short on time, this can be difficult
 - With time a viable alternative



Performance Results March 2022 6 months post remediation

100% Reduction all COCs < US EPA MCL

coc	MW-3	US EPA MCL
PCE	<1.0 µg/L	5 µg/L
TCE	Non-detect	5 μg/L
cis-1,2-DCE	23.4 µg/L	70 μg/L
trans-1,2-DCE	Non-detect	100 μg/L
VC	Non-detect	2 μg/L

Site results

- Work completed March 2022
 - Site Corrective Action Plan approved March 2021
 - Work began August 2021
- Time to reach goal: 6 months
- COCs results: 100% reduction of all COCs below US EPA MCL
 - TCE, trans-1,2 DCE and VC non-detect all sampling locations
 - cis-1,2 DCE detected in one monitoring well- below U.S EPA MCL
 - PCE detected in one well-below U.S EPA MCL

Conclusion and Takeaways

- Abiotic process is effective for dechlorination
 - Appropriate approach based on site objectives is important! (Time)
- In Situ injection effective when applied appropriately
 - High mass loading of ZVI to GW plume
 - Fracture injection to create overlapping network for GW treatment
 - Can be very rapid e.g., 6 months in this case
- Site meets unrestricted use criteria
 - Below U.S EPA MCL or detection limit
 - Client decision to speed up closure process
 - Regulatory closure with Corrective Action Plan with Controls status

Service backed by Science

THANK YOU!

Michael Cronin mc@wasatch-environmental.com

Lowell Kessel lowell@ceresrp.com

Gord Guest- Principal gquest@geotactical.ca

Danny Procter dprocter@geotactical.ca

403.265.5533 geotactical.ca