A TRAINING ANALYSIS EVALUATION OF ASW TRAINER ,
OCEAN MATH MODELS 7 .’

By: MR. M. H. ARONSON, SENIOR SYSTEMS ANALYST
The Singer Company, Simulation Products Division

I. INTRODUCTION

A fundamental purpose of the Anti-Submarine Warfare (ASW) training effort
is to train the crew of an ASW weapon system to efficiently perform its
mission ~- detect, classify, and when necessary, destroy enemy submarines.
Such training is being provided by sophisticated simulators which create
and present synthetic target information to trainees. The fidelity of this
information is a function of the continual sclution of an ocean math model
in a similation computer. Thus, the ocean math model has a major impact on
ASK training effectv¥veness by means of its fundamental contribution to the
fidelity of displayed data feom which detection and classification decisions
can be made; i.e., the cues for submarine detection and classification in
the simulated situation are the same as those for the real world.

Within the past several years, increased capability of ASW equipment has
necessitated the development of more sophisticated ASW trainers. In order
to effectively simuTate/stimulate the newer, more sensitive equipment, the
trainers have had tc correspondingly generate more accurate ocean:acoustic
phenomena. The demand for greater ocean acoustic fidelity in ASW trainers
has raised a familiar debate as to how much simulation Ffideility is needed
to produce effective training. This paper reports on the methods developed "
by The Singer Company's Simulation Products Division (and the progress to
date) to evaluate various ocean math models (in terms of ASW training
- effectiveness) by means of a unique computer simulatien approach.

The most common approach used to measure the effectiveness of competing
training systems is to experimentally design a controlled environment
where the results using the different training systems, in this case differ-
ent ocean math models, can be measured. This approach, as depicted on the
right side of Figure 1, requires the elements of classical experimental
design-~ experimental and control groups. If that approach were implement-
ed, the training experiment for evaluating candidate ocean math models
would be designed to divide the subjects into experimental and control.
groups, where the former would be trained using a non-standard ocean model,
and the latter a standard ASWEPS (Anti-Submarine Warfare Environmental Pre-
diction Service) ocean model. Both groups would exercise human decision
making processes while undergoing the same training effort. The ability of
the ASW team to efficiently perform the desired mission would be measured
by means of a performance evaluation. Based on experimental criteria, the
results of the performance evaluation would yield information as to the
effectiveness of the different ocean math models.

ATthough the above approach is the most common used, it is difficuit to
implement due to logistics problems and the high cost of personnel and
equipment needed. These problems precipitated the need for the unique
approach diagrammed on the left side of Figure 1. This approach, applying 1.
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a computer simulation model named OCEAC*, integrates the techniques of train-
ing analysis and operations research. .b

Using OCEAC, the personnel needed to conduct the common experimental
approach mentioned above are replaced by computer representations of both
experimental and control groups, and logistics problems (such as aircraft,
sonobucys, -etc.) are programmed in the computer simulation. Also, OCEAC
uses decision rules to mimic the human decision-making.process when detec-
tion and classification situations arise, and automatic statistical techni-
ques are used to measure performance svaluation. In the same manner as the
classical experimental approach, the results yield training effectiveness
information to be used in a selection/evaluation procedure for ASW trainers.

The next section presents the training analysis conducted for the design of
OCEAC. Section III discusses the quantification of the training analysis
design using operations research techniques.The fourth section discusses the
current state of development of OCEAC, and the last section describes re-
sults expected in the near future.

IT. THE TRAINING ANALYSIS

The design of OCEAC is based on a systematic, three-phase training analy-
sis to:

a) Investigate the role of the ocean math model in ASW training

b) Analyze the ASW training environment by means of interviews with .’
ASW instructors using a questionnaire developed during the inves-
tigation of the role of the ocean math model

c)'éntggrate the data collected from the interviews into the OCEAC
esign.

A discussion of the phases in the training analysis follows.

Phase I confirmed that, in its most common form, the role of the ASW

- trainer ocean math model is to perform a continuous solution of complex
algorithms of ocean acoustic phenomena as part of a real time simulation
program. The ocean math model accounts for ocean acoustic phenomena such as
~ propagation loss. Its output, after adaptations by the computer complex,

is presented both vismally and aurally to the trainee in the same manner

as in the real-world tactical environment. The student, acting as a human
decision maker, integrates the ocean math model outputs and other informa-
tion to make the decision as to whether or not an enemy submarine is present.
Thus, the displayed outputs from the ocean math model affect student ASW

operator decisions.

*0OGEAC 15 an acronym for the Ocean Accuracy Computer Simulation Model de- _
veloped by The Singer Company's Simulation Products Division. ‘D
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During Phase II of the training analysis, a detailed analysis of the ASW

- training environment was structured to gather design inputs te OCEAC. Based
on the previous conclusion that the display outputs from the ocean model
affects student ASW operator decisions, the analysis began by investigating
how the ASW operator uses the display outputs. This analysis of ASW crew
tasks led to the investigation of how ASW training is currently being con-
ducted. In order to structure the ASW training environment for OCEAC de-
velopment, it was necessary to study that environment in detail. .The method
to carry out the study took the form of the questionnaire presented in

Table 1. These questions were developed from data gathered during Phase 1
and the subsequent crew task analysis. The questions were structured in a

- logical order. That is, the first several questions concern the ASW mission
itself, followed by questions to .determine how the ocean model display data
is used in the human decision-making process to accomplish a mission. Then
information as to the functions of the instructor were asked, followed by
questions concerning instructor actions such. as performance evaluation.

This questicnnaire was used in fixed-format interviews with ASW acoustic
instructors at the FASOTRAGRULANT and VP~30 detachments, Patuxent River Naval
Air Station, Patuxent River, Maryland. By interviewing instructors, detail-
ed data was obtained that only experienced personnel could provide. The
instructors were given a briefing on the purpose of developing an ASW ocean
model evaluation technique, the necessity for the interview, and the ultimate
utilization of the interviews.

Phase III, the integration of data collected from the interviews into the
OCEAC design, commenced upon completion of the interviews. The method used
was to qualitatively combine answers for each question from the ASW instruc-
tor interviews. - Next, the answers were grouped intc appropriate units
such as instructor and student behavior and outcomes from the exhibited be-
havior. These units were then regrouped into modules.

The problem then arose as to how to Tink the modules together into a com-
puter simulation model to evaluate ASW training ocean math models. The
solution forms the basic design of OCEAC and simulates the ASW environment.
- The students are taught ASW skills; and, upon completion of training, trans-
fer these skills to the real-world tactical environment. Thus, the modules
were grouped into two major areas, training and tactics. OCEAC is designed
to evaluate ocean math models by:

a) Measuring the skills learned in training

b} Quantitatively defining the transfer of learned skills to the
tactical environment

¢) Measuring the performance Tevel in the tactical environment.

. The performance results in the tactical environment provide the data
necessary to evaluate the-level of ocean model fidelity necessary to pro-
duce the desired performance in the operational (tactical) environment.

The method of measuring the skills and performance for ocean model evalua-
tion necessitated quantification of the modules in the training and tactics
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1)
2)

3)
4)

5)
6)

7)
8)
9)
10)
1)
12)

13}

14)

- 15}
16)

TABLE 1. QUESTIONNAIRE USED AS BAS}S OF INTERVIEWS
How does the SENSO interpret the SOSUS data? .’

After the B/T buoy is dropped, how does the SENSO/TACCO modify the
ASWEPS curve based on a different B/T velocity profile?

How is the sonobuoy spacing range determined from the ASWEPS curves?

After the spacing is determined, how is the decision made as to what
particular buoy pattern is to be dropped?

Can the human decisions that lead to the buoy spacing and buoy drop
pattern be readily quantified?

How does the equipment (gram/aural) input the receiver intensity. level
and how does it display that intensity?

Which mode of detection, gram or aural, is used more often. is. more
reliable, and can these feelings be expressed in a probability dis-
tribution to be used in a Monte Carlo simulation?

Given a change in intensity in either gram or aural, what is the
probability distribution that the student should detect this change?

Based on the information level of the student (e.g., SOSUS intelli-

gence, knowledge of ocean acoustics, and gram/aural sensory cues) how

does the student (or operator) make the decision as to whether or not .D
there is a detection?

Does the feedback from the instructor in the form of grading have any
effect upon the student's decision process, and if so,can this effect
be quantified?

‘Is there a discernable weighting factor:in the data that the: student

uses in order to make a detection? For example, does the student
"weigh" the gram more important than aural cues in the detection

‘decision process?

Exactly what information does the instructor have in the training
environment?

How does the instructor use this information to make the decision as
to whether or not the student should have made a detection?

‘What thought mechanisms are involved in the instructor's decision as

when to give feedback to the student; whether or not to rerun the same
training situation; whether to start on a new problem?

What factors are involved in the training performance evaluation?
How is this performance evaluation used in the training exercise? _
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area. The operations research techniques used in the quantification are
presented next.

III. OPERATIONS RESEARCH QUANTIFICATION TECHNIQUES

The operations research techniques used to quantify the OCEAC design in-
clude a computer simulation model, containing both stochastic and ‘deter-
ministic components; a utility function based on utility theory; and human
behavior analysis in the form of structured decision rules.

- The first quantification problem confronted was the method to:

a; Measure skills Tearned
b) Transfer skills
c) Measure performance levels.

Figure 2 depicts the block diagram solution. Skilis to be taught are
inputs to the training area. The skills learned are measured in a utility

- function*, which serves as the vehicle transferring skills to the real-world

TACTICAL OPERATIONS
L .

3
3
|

J

|
UTTILITY |TACTICAL
FUNCTION QPERATIONS
» (transfer of | VALUE
training) FUﬁETION

Figure 2. Quantification Solution.

* The utility function developad in this study is Based on utility theory--
a theory of decision making under risk. In this writer's opinion, one of

. the major applications of utility theory is its ability to quantify human

decisions under the conditions of uncertainty. For purposes of this study,
the utility function developed represents the transfer of training from the
training area to the tactical operations area in Figure 2. In this context,
utility means the level of performance confidence that the student transfers
from training to tactics. The trainee's performance confidence level is
based upon such factors as the number of correct and incorrect decisions,
instructor feedback, etc. -
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tactical area. The performance levels are measured Iin a tactical operaticns
value function.

Further quantification was accomplished as showm in Figures 3 and 4
which detail the modules in the training and tactics areas. The modules
in Figure 3 are the Student, Outcomes, Grading, and Utility; in Figure 4
the ASW Team and the Qutcomes. The algorithms in both figures form the
computations in the OCEAC model. ' -

The first algorithm (Al) in the training area (see Figure 3) represents
the behavior of the SENSO/TACCO in computing the sonobuoy spacing distance
for a mission to detect an enemy submarine. This algorithm is a deeision
rule developed from analysis of human behavior extracted from the inter-
views questionnaire results presented in Section II, and is

FOM = SL - AMBNOS - BD (1)
where

FOM ~ = TFigure of merilt

SL = Spurce level

AMBNOS = Ambient noise

BD = BRecognition differential
and SPACE = 1.5 R (2)
where

SPACE = Computed sonobuoy spacing distance to be
used in the drop pattern

R = FOM range value from the appropriate
ASWEPS curve.

After executing the sonobuoy drop pattern with the computed spacing distance,
- the student mglkes detection decisions. Algorithms A2, A3, and A4 represent
thegse decisions. A2, a deterministic component which simulates the display

to the student from ocean model computation outputs, is comprised of the ex—
perimental ocean acoustic model. defined as:

a) A propagation loss table (PL) for R, where R is the range between the
source and receiver

b) The target represented by a source level (SL)
¢) Environmental factors represented by ambient noise (AMBNOS).
The A2 formulas are:

RECINT SL - PL (3

]
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where

RECINT = Acoustic intensity at the receiver
and SE = RECINT - AMBNOS (4)
where
SE = Signal excess for a particular display mode.

Following A2, A3 computes the information/cues used by the student's
detection decision by quantifying the human factor present in the detection
mode chosen. (As of this writing, the visual mode only has been quantified.)
A4, the actual decision, represents stochastic processes such as the prob-

- ability of a human eye detecting a certain intensity of Tightness or darkness

on a display unit.

The A3 computation is:

IPX A coded number that quantifies the SE  (g)

shading intensity on the visual display.
The A4 equations are

A PERCEPTION

RANF < CUMDIS + Yfactor . (6)

- whare the student's perception of a shading is computed by generating a
- random number and comparing it to a cumulative perception probability dis-

tribution for the shading plus a psychological factor such as experience
YES/NO = f (TIME, perception ratio) A7)

where the detection function is a decision rule representing the student's
behavior. To make a detection; the student must have experienced a required
ratio of perception over a specified period of time. -

The detection decision by the student is the outcome module in Figure 3.
Next, algorithms A5 and A6 measure the skills Tearned in the form of grading
by the instructor. These algorithms are quantified as input tables to OCEAC,
and simulate the instructor's design of the training problem presented to the gtu-
dent. A5 and A6 grade the student's detection decision based on the de-
téction sonobuoy., signal excess, and the time of detection.

Finally, when the training problem is completed, the skills learned by
the student and transferred to the tactical area are computed in algorithm
A7 as follows:

UF = Ratio of correct perceptions to total (8)
perceptions (if correct detection made),or
0 (if correction detection not made)
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where
UF = Utility factor . ‘)

The tactical area (see Figure 4) receives the same inputs as the training
area with the addition of the utility factor (UF) from training. The per-
formance confidence levels (i.e., UF) operators receive from training affect
tactical decisions made. Algorithm Al, a decision rule, computes the sono-
buoy spacing distance in the same manner as Al in the training area, thus

FOM = SL - AN -~ RD (see EQ.1) (9)
and CONFC1y
SPACE = CONFCZZ% R (10)
CONFC3
where
SPACE - = Computed sonobuoy spacing distance to be

used in the drop pattern

CONFC1, CONFC2, CONFC3 Input constants reflecting the following

UF's:
If 0 < UF < 0.33, use CONFCI

If 0.34 £ UF < 0.67, use CONFC2 ‘D

If 0.68 SUF< 1.0 use CONFC3
- CONFC1<CONFC2 £ CONFC3

R = FOM range value from the appropriate ASKEPS
curve.

A high UF results in a larger multiplier in Equation 10, yielding SPACE.
Increasing SPACE decreases the probability of detection. Thus, more confi-~
dence from training (i.e., a higher UF) reduces the necessary probability of
detection, resulting in a larger sonobuoy spacing distance. Conversely,

a Tow UF results in a smaller multiplier, effecting a decrease in SPACE
which, in turn, increases the probability of detection.

The ASW team executing the sonobuoy drop pattern with the computed spacing
distance makes detection decisions. Algorithms A2, A3, and A4 represent
these decisions in a manner similar to the corresponding algorithms in the
training area. "Algorithm A2's formula, Equations 11 and 12, are the same -
as Equations 3 and 4 with one exception: experimental ocean math model
- propagation loss table value PL is replaced with PLX, the real world pro-
pagation loss value. L

@
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RECINT = SL - PLX (11)
SE = RECINT - AMBNOS (12)

The A3 formula is the same as is training (see Equation 5). The perception
and detection formulas {A4) are modified by the UF in a manner similar to

' Equation 10. The operatoﬂb perception formula, Equation 13, reflects the UF

as follows:

A PERCEPYION = RANF > CUMDIS + Modified i factor (13)

- where a perception, RANF, and CUMDIS are the same as in Equation 6, and

the modified ¥/ factor reflects performance confidence by increasing the
ability to make perceptions with a high confidence and decreasing the ability
with a lower confidence.

The detection decision rule, YES/NOQ, also reflects the UF as follows:
YES/NO = £ (time, perception ratio) {14)

where the YES/NO function is same as Equation 7 with one exception:
the required ratio of perception over a specified period of time is altered
by the UF as follows:

if 0<: UF < 0.33, the required ratio is raised since the
confidence 1s low

if 0.34< UF < 0.67, the required ratio is the same
since the confidence is medium

if 0. 68<( oF <: 1.0, the required ratio is lowered since
the confidence is high.

The detection decision by the team is the outcome module In Figure 4.
Next, Algorithm AS represents realistically whether a valid detection has
occurred in the real world tactical situvation. A5 is similar to Algorithm
A6 in training with respect to its input table structure.

Upon completion of the mission, the tactical operation value fumction,
Algorithm A6, is cowputed as follows:

0 (if no correct detection made)

100 - PENFAC (if 0 < TIME < T1) _ . (15

90 ~ PENFAC (if T1 < TRME < T2) (If correct
Tactical detection
operations = 80 ~ PENFAC (if T2 < TIME < T3) nade)

value
70 = PENFAC (if T3< TIME__<_ T4)

PENFAC (if T4<< TIME < T5)

—-——

60
0 (if TIME > T5)
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- where

TIME = Time that the correct detection was 8cquired "
T1 thru T5 = Input parameters representing realistic
judgements
- PENFAC = Ratio of incorrect perceptions tottotal

perceptions.

This Tactical Operations Value is the perfbrmance measurement for the
experimental ocean math model for a particular mission. The interpretation
of this value and the development of OCEAC to date are discussed in the next
section.

IV, THE OCEAC MODEL

The Singer Ocean Accuracy Model (OCEAC) is a computer simulation model
featuring convenient parameter inputs and an easily interpretable printout
of results for decision making by both management and scientists. The
capabilities to date are as follows:

a) Up to five training ocean math models can be evaluated against f1ve
different missions in one computer run. ‘

b} The training ocean math models can be evaluated in an overall fash1on,
i.e., the best ocean model for several missions. A1ternat1ve1y, the
ocean models can be evaluated as to which training model is the best - ‘.
for a particular mission. )

¢) The simulation model has the potential to include many types of ASW
tactical missions, where a mission can be specified in the following:
five parts:
1) Combat Condition (peace, war, or cold war)
2) Operations Area (ocean location)
3} Target Information:
Expected acoustic frequency spectrum
Type of target

Mode of operation
Expacted tactics:

--Depth
-~Heading
--Speed Rate

4} Mission Objectives:
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8 Track target only
@ Search and destroy target

5) Mission Tactics:

¢ Directed procedure
@ Optional procedure
o Sonobuoy decisions (type, life, depth setting)

d} Individuval differences for both students and instructors can be
represented in the model. Such factors as experience, confidence,
and anxiety have an effect on the decisions made.

e) The ocean math model data is input in a convenient format. The
specific mission, submarine(s) target information (and location), and
environmental conditions are input to the ocean math model which then
(through its acoustic mathematical equations) produce the propagation
Toss curve for the particular given conditions. Then the curves are

. input to the simulatijon model. The output of the ocean models {pro-
pagation loss curves) are input in tables.

In its computer form, OCEAC is a FORTRAN program designed in a modular
fashion and consisting of the following 11 modules or routines:

ROUTINE NAME FUNCTIONAL DESCRIPTION

1. OCEAC Main routine, controls the OCEAC model
2. SIMTRN Controls the training area

3. SIMTAC Controls the tactical area

4. FOMCMP Computes FOM

5. ﬁSPACE Computes sonobuoy spacing distance
6. MISSON Defines the mission

7. DETECT Decision rules for detection

8. GRADE Grades - detection decision

9. TIMCHK Checks instructor tables for GRADE
10. STATXX Computes statistics

11. PRNOUT Prints out results.

OCEAC evaluates ASW training ocean math models using the following method-
clogy. The main routine, controiling OCEAC, first simulates the training
area by releasing control to SIMTIRN which reads in the user input parameters
and sets up the training problem. Next, FOMCMP computes the basic FOM,
recognizing multiple modes of sensor operation, adjusting for different
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equipment recognition differential levels, and allowing for -ambient noise.
Then the TACCO's decision making process in détermining the buoy spacing is
computed by a decision rule in RSPACE. SIMTRN gives control to MISSON
which updates the simulation clock, maneuvers target submarines, and "flys"
the aircraft (dropping sonobuoys to specified depths, with specified Tife
time, and in a given barrier pattern). MISSON then executes DETECT, GRADE,
and TIMCHK until either a correct detection is made, or the simulation time
Timit is violated. Upon completion of the mission, STATXX calculates the
utility factor, UF, described in the previous section.

OCEAC then simulates the training area for the remaining ASW training
math models. An array 1is set up to hold the UF values for training ocean
math models for each mission.

. Then OCEAC simulates .the tactical area by relinquishing control to SIMTAC

which executes FOMCMP and RSPACE. The FOM value and spacing distance are
computed using the performance confidence training utility factor value (the
UF value for the ocean math model and mission under SIMTAC control} as de-
scribed in Section II. Then MISSON drives DETECT, GRADE, and TIMCHK (also
using the UF) in the same manner as it did for the training area. Upon
completion of the mission, STATXX calculates an intermediate training
-mission value, TRNMSN, hoiding it in an array in the same manner as the UF
array was formed. _

The TRNMSN array then forms the tactical operations value by computing the
average training value for each ocean math model. The results of OCEAC--
i.e., the average training values {from 0 to 100) for the candidate ocean
math models--are then subject to evaluation. As a general rule, the higher
the training value the better the ocean math model is for ASW training

purposes.

V. EXPECTED RESULTS

As of the writing of this paper, the Singer simulation model to evaluate
ASW training ocean math models 1is being validated. The ocean math models to
be evaluated are high, Tow, and constant propagation loss ocean models which
are most suitable for validating OCEAC. In the near future, it is expected
that sophisticated ocean modeis such as ray tracing, normal mode, and the
. fast field program (FFP) will be evaluated under several different mission
conditions. At this time, the only mission incorporated in OCEAC is the
detection of an enemy submarine. In conjunction with evaluating more realis-
tic and complex ASW training ocean math models, more missions will be de-
veloped to reflect a meaningful airborne ASW weapon system environment.

- Upon completion of the above plans, preparation will commence to validate
the Singer approach by conducting an experimental training mission with both
Tive subjects and the method proposed in this paper. A high correlation
between results obtained with the OCEAC model in comparison with using live
subjects to evaluate ASW trainer ocean math models would support the usage
of the training analysis and operations. research techniques presented in
this paper.
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In conclusion, upon completion of validation, this simuTation model will
provide management with a cost-effective and convenient method to evaluate
the best ASW training ocean math model for their needs.
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