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I. INTRODUCTION

The development and subsequent application of the Fast Fourier Transform

- (FFT) is a matter of such extensive record that it need scarcely be mentioned -
here. The FFT has revolutionized many aspects of computational mathematics, not
the least of which is the field of .digital signal processing. Indeed, progress

in this area has been of such magnitude as to diminish the significance of the

FFT as a computational tool in other areas; many users have, in fact, come to

- equate the term "FFT" with a time-to-frequency transform and "IFFT" (Inverse FFT)
with a frequenqy-to-? e transform. That this is only one of many potential uses
has been pointed out‘'/in the past; we will here discuss iwo which have relevance
to the Navy because of their possibie application to advanced ASW training -devices.

I1. DISCUSSION

It has often been shown 2,3 that the finite, discrete Fourier Transform
{DFT) given by
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can be treated in its own right as a valid orthogonal transformation which takes
the sequence X, jnto the sequence Aj. The properties of the DFT which may then
be derived, while paralleling those"of the Fourier Integral Transform, are never-
theless exact properties and not merely approximations to the properties of the
integral transform. It nonetheless can be quite convenient to regard the DFT as
an approximation to the Fourier Transform
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when the error involved in truncating the range of integration can be neglected.
A wide variety of important integrals in the fields of mathematics, physics, and
engineering may be put into the form of (2) or the inverse transform given. by
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and thus can be suited for evaluation via the BFT, and hence the FFT, which is
simply an efficient algorithm for the computation of (1).
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Within the field of ASW operations, and consequently ASW training devices,
there are two areas of primary importance whose theoretical treatment involves :
integrals of the form of (3); that is, underwater acoustic propagation and sonar ‘D :
transducer array analysis.: A realistic simulation of the effects due to diverse
phenomena in each of these areas is essential if the ASW trainers themselves are
‘to be realistic, yet it is precisely these effects for which it has been most
difficult to generate accurate real-time models. There are variéd reasons for
this as discussed in the Tfollowing paragraphs.

In the case of ocean modeling, one problem is that even the most advanced
theoretical formulations designed to execute on large computer systems involve
‘considerable simplification in the original Fformulation of the pro?l?m, the
mathematical solution of this problem, or both. Tolstoy and Ciay discuss
-this state of affairs in considerable detail; we may summarize generally by
'saying that, except in shaliow water and at short ranges, the most we can do
is to predict the general features of the acoustic field. Detailed knowledge
-of its fine structure as a function of a multitude of environmental parameters
is beyond us. If this is true of even the best work existing at this time, it
is even more so with models which must process within the real-time constraints
of a trainer. Such ocean models have typically taken the form of simplified
versions of some more advanced model, mass storage of the output of more complex
models which is then assessed on a table look-up and interpolation scheme, or
some combination of the above.

In the case of sonar transducer array analysis and beam forming, we have a
different problem. The theory, to a large degree, of such multiple arrays is well
understood. If computer time and storage permit, an excellent model of the array
beam-pattern may be generated via the DFT. For simulation purposes, though, the - - ‘I'
prohibitive computation times involved have necessarily resulted in complex,
expensive, and somewhat unreliable hardware methods* for simulating the effects
due to sonar transducer arrays.

The application of the FFT can change this situation. To see how this is so,
we will turn briefly to the theory. beginning with the case for underwater
acoustic propagation.

- With the assumption of a sound velocity profile that is a function of ocean
depth only, wltg plane, parallel boundaries at surface and bottom {see Figure 1},
we may write 7>

£ (1)
¥(r,z) =S 9(z. zg» &) Hy (&r)ede (4)
where -~ r = (x2 + yz)%‘ £ = horizontal component of i
= s d A = anf
z receiver depth k m

z.= source depth
*For example, a common hardware method uses tapped delay Tines and a commutator.
In some cases inverse beam formers are used whose output is what the compensators
after the hydrophones normally receive frem the hydrophones. The taps on the
delay Tines.are selected by an electromechanically driven commutator.. Hence, the
reliability problem with the mechanical contacts. .’ :
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FIGURE 1 COORDINATE SYSTEM, OCEAN GEOMETRY,
AND -TYPICAL OCEAN SOUND VELOCITY PROFILE

as the solution to the time-independent acoustic wave equation for a point source
at T,

v2u(¥) + K2(F) ¥(¥) = s(r-r,) - (8)
where >
r= (x,y,z)
6

Marsh and Elam ~ were the first to note that when the Hankel function of zero-th
order, first kind is approximated by the first term in its asymptotic expansion.

(1) g
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the preceding acoustic field integral, Equation {4), may be put into the form of
the Inverse.Fourier Integral Transform (3} and hence may be evaluated via the

Fast gogrseF Transform. F. R. DiNapoli of NLONLAB NUSC, has greatly extended their
work 7»5:9210 and the result is a mathematical treatment of underwater acoustic
propagation phenomena which is as fundamentally rigorous as any model available,
yet which offers the potential of extremely efficient machine usage due to the
speed of the FFT.

The application of the FFT to sonar array ??a]ﬁsis and beamforming simulation
is more straightforward, as it is well known ''*'% that under conditions where

the source is sufficiently far from the receiving array (see Figure 2) to assume
Fraunho ffer conditions, the received amplitude at the array will vary with angle

field point

array point-

FIGURE 2 PROBLEM GEQOMETRY

591



as

oo .
p(s} = g q(u)e 1SV 4y (7) - - .’ r
- where
s = sin © qu) = Af(x")
u=x"'/x f(x') = source distribution function

x'= source coordinate

This is, of course, the one-dimensional case. Usage of this form is accept-
able for either one-dimensional arrays or in cases where the geometry of the
. array is such that the source distribution function may be represented by a form
such as

Fix',y') = f(x*) gly')

which is equivalent to saying that we may separate variables. More recalcitrant
cases may be handled via multidimensional transforms, though these are quite

unwieldy. Equation (7) has the inverse
L

a(u) j p(s)e-8misu g4 (8}

which allows us to specify the amplitude and phase of the received signal, knowing
the radiation pattern. It is immediately apparent that (7) and (8) are simply a .’
Fourier transfoanBair and are susceptible to FFT evaluation. In fact, as

C. M. Rader notes'?, one of the earliest and clearest FFT applications was in the

field of radar antenna array signal evaluation (i.e., beamforming), on exactly

equivalent problems. Extensive work has been done in the area of beamforming,

i.e., processing the received signal. The innovation here is in the application

of the FFT to the array pattern, with the purpose of synthesizing the output at

the array transducers.

It would be incorrect to say that this work is all directly applicable to
trainer use. As with many other desirable mathematical formulations, extensive
work is required to render the models both small enough and rapid enough for
computer processing in real time. For example, the NUSC ccean model which we have
been discussing, the Fast Field Program (FFP), uses 100,000 words of memory cn a
- large machine, in FORTRAN, An FFP based on the original NUSC work has been de-
veloped by Singer-Simulation Products Division R&D investigators which will process
the same cases using less than 16,000 words of memory on a typical 16-bit mini- -
computer, in FORTRAN. This was achieved in the course of an internal research
~ and development program during which a new method of computing certain key portions
of the FFP program was found. That is, the input to the FFT in this program is
obtained from a sequence of points which may be computed through the use of Bessel
functions of varying order and fixed argument. In some cases 4 these functions
can be unstable when calculated on a computer; complicated expansions are needed
in such cases to ?Etain'vaiid'resﬂ1ts. During our work with the FFP, a method due
to John G. Wills 'Y .was discovered which avoided this problem. A modification of
Wills' method enabled. us to completely rewrite the program so as to obtain more . . .’ :
efficient execution.
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Although the two programs regquire roughly the same execution time on a given
machine, about 90 seconds on a CDC-6600, it is estimated that when. programmed in
‘assembly language for a 16-bit minicomputer with floating-point arithmetic hard-
ware, execution times on the order of 30-4%5 seconds can be achieved. Future
mathematical simplifications, optimization and restructuring, or use of the Singer-
FFP with an efficient off-1ine storage system promise to yield a fundamentally
valid model capable of meeting the timing constraints of a real time training
device.

- The development of a software array simulation model requires care in the -
application of the DFT (Equation 1) to Equations 7 and 8. Considen for example,

the generation of the pattern from the transducer array, in this case a one-
dimensional array. We have

Y 2risu . - - - S .
p(s) -5 qlude du

To evaluate this integral via the DFT, tet u and s be approximated by
Sg = 5, * s

u_ = u_ + miu

m 0
and
AsAu =‘%
then
- - 2ni(Soly + s AU + u nas + mnAuAs)
p (s) —%;é q, (u)e g o 0
and
_ N-1
. : S .
b (s) = e.gwwO n E Gm(u) a2nimn/N
n
m=0
where
__Pris mAu
G =e 0 g (u)

Thus, pn(é) is given by the DFT of Gm’ and as such is suitable for application of
the FFT.

- VaTlid application of the discrete transform is highly .dependent on the deter- -
mination of suitable sampiing criteria. Too large a transform will render the
method unwieldly, while too small a transform will result in aliasing within the
FFT. Further, the sampling intervals in the two domains are not independent and
trade-offs are necessary to obtain certain required angular resoclutions while
sti17 correctly sampling the transducer array. To illustrate, suppose we consider
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an eleven element Tine array with inter-element spacing of 1/2. The total range
to be sampled in the dimensionltess u-domain is, therefore, 5 units. Maximizing
the use of a given number of sample points would require

bu = §

which wouyld, in turn, result in
1
5

and thus between 00 and 900 only five points would be obtained; a clearly unaccept-
able result. Further, this result is independent of the number of points used in
the transform. Picking an angular resoluticn on the order needed merely makes Au
so large that most elements are missad completely. The only alternative is to
allow the size of the sampled u-domain to be arbitrarys that is

A§ =

x! = k3
max
xl
' = max =
u max N k
and therefore
k
Au = N
1
A =%

necessarily. Then As is chosen as desired, say (1/128) for acceptab]e resolution
in the 0 - 90" range. Then it is required that

k = 128
and, in general
= 1/As

The specific case we have been discussing, the T1-element Tine array, occupies a
total distance of 5x, while

] -
X' ax = 128

Thus, in the dimensionless u-domain, the line:array consists of only about 4% of
the sampled region, clearly a waste of computer time and space. This whole prob-
lem of trade-offs in the required transform size versus desired resolution in the
output is the exact analogue of the more usual problem in spectral analysis of
choosing a transform size and time window so as to obtain both correct sampliing
in the time domain and adequate resolution in the frequency domain.

Work with large transducer arrays or two-and three-dimensional arrays has
not as yet been attempted. It must be noted that, since multidimensional trans-
forms require extensive amounts of computer time, it will probably be true that
to correctly simulate an array it will be necessary that the array and its
pattern possess sufficient symmetry that a one-dimensional transform is suit-
-able for modeling it. For example, a planar array can, using the separation of
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variables technique in Cartesian coordinates, be handled with a one-dimensional
transform. Similarly, a spherical array in polar coordinates can be so handled.

The preceeding summarizes our work in attempting to develop more advanced
simulation models for ocean acoustic propagation and sonar beamforming. Dis-
coursing for a moment on a more advanced plane it becomes interesting to note
that a possibility exists for relating these two models; that is, tying the
beamforming simulation directly into the ocean modei. This can be seen by re-
turning to Equation (4)

Va (1)
’i’(T,Z) = S g(Z, ZO, £) HO (E,Y‘)EdE

-

where it has been noted that £ is the horizontal compoment of the wave number in
the separated-space form of the wave equation. That is, when

&(r) = c(z)

Equation (5) may be separated into two equations, one giving the horizontal
dependence of the wave on position and the second,

2
daz 2 - g2 = -
i E( (z) g] Z=8(zz) (9)
- giving the wave function Z{z) in the vertical direction. Here

k(z) = <& = 2rf

c(z) c¢(z)

and
£ = k(¥) sin 8

in Figure 3.

" FIGURE 3° SAMPLE RAY WITH COORDINATE SYSTEM

Here, to use an analogy from ray theory, the separation constant obviously
corresponds to the horizontal component of the wave number vector k{r) at some
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point on a given ray. The inkegration in (4) corresponds to summing the contrib-
utions to the field over all possible £ and thus over all:possible angles at
which contributory rays may exist. If, them, it may be determined that a given
array should boost the received field at some angle, then the value of the in-
tegral which is applied as input to the FFT can be boosted at the appropriate
angle. We mast hastern ta note at this point that the actual case is not quite
this simple. The problem is that wave and ray optics do not correspond as

exactly as we have been indicating here, and the acoustic field integral is a 16

wave optics formulation. MWork is currently being conducted at NUSC in this area-

It remains at this point sufficient to say that the possibilities are interesting.

Along these same lines, another: possibility for further research also exists
in the beamforming area. ~ Advanced sonar signal processing systems are showing
that it is much easier to process signals in beam space. These advanced tech-
niques require closed Toop analysis in space and time for optimum beamforming.

In beam space the beams are orthogonal and hence the equations become decoupled.
This considerably decreases the number of calculations necessary. For these
systems the beam will be optimized for the target with associated background
noise and interference. Therefore, the simuTlation will just have to enter degra-
dation from the ideal to account for errors in the simulated system. The entire
beamforming :could: then be tied directly to the ocean model, so that the input
would be to the ocean model and the output would be the result after beamforming.

III. CONCLUSIONS

The FFT has been discussed in terms of its potential uses in two fields of
importance in ASW simulation and training; e.g., the direct evaluation of the
acoustic field integral for underwater propagation and the determination of the
output of a sonar hydrophone array from its beam pattern.  The problems en-
countered in adapting work in these fields to the requirements of simulation are
discussed as well as some of the solutions which have been obtained.  Possible
- directions for advanced work have been indicated.
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