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A BAYESIAN METHOD FOR EVALUATING
TRAINEE PROFICIENCY ’ —

Introduction

No -instructional .system is compiete
without a strong testing component. We
hope that our instruction has been well
enough designed so that any student who
begins an instructional program will be

able to achieve all of the abjectives that

the program was designed to teach. However,
some students may require remedial or other
supplementary instruction to master all of
the objectives, even though the program was
carefully developed. Furthermore, during
the development of the instruction, test
data from prospective students are reguired
to first revise and latér validate the
instruction. In. order to support the fn-
structional development activities and to
make decisions about the abilities of stu-
dents who have completed instruction, a
powerful testing program s necessary.

The final desired output of a test ..
for a given examinee.is information which
allows us to pinpoint his ability to do
whatever is required by an objective. That
is, we observe a test score and must then

~infer the ability of the examinee. This

paper ocutlines a "Bayesian" method for
drawing such inferences. In addition, the
adequacy of the methed as a function of the
number of test items. administered and the
effects of the tester's beliefs about the
examinee population on the inferences

drawn are discussed and illustrated.

Using the Bayesian method we were
also able to hypothesize varying numbers
of abiTlity aroups so that the classifica-
tion of examinees into these ability groups
is most useful to the overall instructional

system. For example, the simplest case is

“to classify examinees into two groups, the

first group containing those who have
mastered the objective, and the second con-

‘taining those who have not. -Alternatively,

one could hypothesize three groups, con-

-sisting of masters, nonmasters, and an

intermediate group containing people whose

skills are almost satisfactory and who

could be brought up to the mastery Tevel

. with relatively Tittle additional instruc-

tion. .The Bayesian model presented fn
this paper explores up to three levels of
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¢classifying masters and nonmasters) if
more than two ability levels have been
hypothesized, but are then collapsed %o
form just two groups, of masters and
nonmasters. B

Train'iﬁg to I"lastéry N _

Ideally, the educational decision-
maker wants to know if a person (student,
trainee}, can do a job at some pre-specified .
Tevel of acceptability. If a student's
score on a test is above the minimal passing
standard, he may be classified as a master;

-if his score is below the minimal passing

score, he would be termed. a nonmaster. But ..
since data always have some errgr vari-
ability, misclassifications are 1ikely to

QCCUY.

True
Competency State

Master| Non-

o master
Classification Master True False
Based on positive{positive

Test Score

False True
negative [negative

Nonméster

Idea11y, the probability of a True positive -
should be much greater than that for a

" False positive, and the probability for a

. the test items correct.

True negative should be much greater than
that for a False negative.

In order to avaluate how well our
testing program dchieves this goal, we want
to be able to infer as accurately as possi-
ble the conditional probability of the
mastery (or nonmastery) state, given the
test score data, p(MI|T), p(M2|T). Our
first problem is: What amount of data is
this prebabilistic inference based upon?
Suppose” that the passing standard was 80% of
If a student had 33
out of 40 items correct, he would pass, and
be classified as a master. Now suppose that
on another form of the test (or a test given
over the same material by another qnstruc- __

tor), another student gets 25 out of 30 test
items correct. This student would also havg .
met the 80% correct criterion, and be classified

mastery, although this number couid easily
be expanded. The model also explores the
effects on decision making (correctly

335



as a master. The model presented in this

paper will show that the p(MI1|T) varies. system-
atically with the number of test items, along
with the minimal % correct for passing.

We may also ask: How is the accuracy”
af inference about mastery affected by pos-
tulating more than two states (mastery and
nonmastery); and, can the data from various
states be combined without seriously affec-
ting the final p(MI|T) inference? For .
example, “suppose that there are intermediate
states of partial mastery. The following
decision mode! shows that p(M1{T)} can be .
more validiy estimated when the mastery )
states are processed independently, but that
the educational decision maker will not
sacrifice very much classification accuracy
if indeed he does dichotomize multichotomous
data., Recall that we suggested that defin-
ing an intermediate group which required

-minimal remediation might be useful for some
instructional systems. ~The model shows that
the probability of being in the mastery
group when fndeed the datum was a test score
obtained by a master will be increased if ~
the other data are processed independently.
The concept of “independent processing”
requires that all nonmastery groups main-
tain their integrity. rather than being
aggregated into one generalized nonmastery
group.

Bayes' Theorem

The statistical model which we have
applied for classifying students into mas- -
tery and nonmastery groups, given their test
score, is based upon a form of Bayes'

Theorem: :

p(M1|T) = p(T]M1)p(M1)

Te(TIMTIE UM} + p(T|M2)p (M2} ]

Here we assume that the 2 states of nature
(master and nonmaster) are mutually exclu-
sive and collectively exhaustive, and that
T 1s the test score which is observed. We
also assume that the test is dichotomously
scored, A correct response is denoted 17,
an incorrect response is denoted ."0" and the
total test score is simply the number of
correct responses. What we seek to find is
the term on the ieft, the probability that
a given student is a master, having been.
given his test score. In order to find it,
we need to have an estimate of the prior

: ?robability of mastery {p(M1}) in the popu-
ation of students from which this student
was drawn. The prior Erobability of mastery
can be thought of as the proportion of stu-
dents in the examinee population we think
are masters. For example, if our instruc- - -
tion were very good the prior probability of -
mastery would be high, and most of the stu-
dents who completed the instruction should
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- additions must be wade to the basic formula.

have mastered the objective. The actual
number specified for the prior probability
of mastery may be an informed guess based

on experience or it may be based on the
empirical results of tests given to previous

classes of simiTap_students.

.  We must also estimate the conditional
probability of a certain test score given
that the student who got that score was a
master. For example, if only one item were

.administered, the conditional probability

of a score of one correct given that the
student was a master is simply the prob-
ability that a master responds correctly.
We may estimate this conditional prob-
ability empirically based on previcus stu-
dent groups, or we may provide a best guess

.as to how well masters perform, or this

conditional probability may reflect a minimal
standard of achievement. We shall show how

“the p(M}T) will vary as a funiction of the

Erior expectations of the fester, number of
est items, and conditional probabilities,
p(TiM), after an example to illustrate the
computations.

Suppose that a student chosen at ran-

‘dom from & trainee population was given a

criterion-referenced test, and that he
passed the test. Given the results of the
test, what is the probability that the. stu-
dent is_indeed a master of that particular
course of instruction? In order te calculate
the probability, we obtain the following

. information from the educational expert who

administered the CRT: The probability that
a master would obtain a passing_sgore
.90, (p(TfM1) = .90); the probability that a
nonmaster would obtain a passing score = .05,
(5(TIMZ) -= .08); ‘add the pricr probability of
randomly selecting g master from this .
trainee population is equal to .70¢; that is,

we believe that 70% of this and similar

previous. trainee populations may be assumed :

to- be composed of masters. Substituting - -
these values into the formula

pM]T) = .9 x .7
X 7 F 05 X .3

which equals .977. Hence, before the test

. score was available, the probability that
‘this student was a master was .70, but after

4 pagsing. score was observed, the probability

* that this person is a master has increased

to .977. (The probability of this stu- S
dent being a nonmaster, given the same . .
passing score, p(M2]T), would be equal to -
1-.977 or .023.}

- In order to generalize the Bayesian . L
approach to a wide variety of applications - -
in evaluating training effectiveness, two T

These additions are the number of trials or



items on-the test (N}, and the number of may of course by hypothesized, but the com-

hypothesized mastery states (3). The putations in the present and all other models
derivation of the general Bayesian formula of proficiency evaluation become extremely
for this purpose was originally presented . ‘complex. - (However, we are developing a

by Hershman (1971): - computer program which will handle up to

N five states of mastery.}
L p{Mi ,tj—) . .
J=3 - . The dependant variable of main interest .

p(MilT}= { - - 7 is the percent of items answered correctly.
S-1 S iy p(MiItj) The tester may decide that 70% is a passing
p(Mi) . j=1 o .score. But the 70% valué is not an absolute
= 5-1 © standard, since it is dependent upon the ..
p{Mi} number of test jtems, and the prior and con-
. . - ditional probability estimates. In the
I? th?s fn;mgg?!tp(M1‘tj) equais t?ﬁ cgng1— present simulation, three values of per cent
tional probability of a person in the it . correct observed scores were used: 60%,
mastery state getting the jth test item .- 70% and 80%. g :

correct; p(Mi) is the prior probability of
the representation of the ith mastery state
in the student population (the % of students
who are estimated to be in the ith mastery
state); and p{Mi{T} is the conditional

probability of a particular student being Changes in p{MlT)-Assumfng

classified as being in the ith mastery state Two Mastery States - _
given his total test score. A computational ) o )
example showing how the formula is applied The fundamental purpose of the present
for three mastery states is given in Appen- study was fto investigate how the probability
dix 1. of mastery classification changes as a

function of the simultaneous manipulation
of up to four parameters ({independent
variables). The scope of the study is not
exhgus?izg, ?ince oﬁ}yb?everaT values of
. . . each of the four variables were usad. How-
gig;:giegagjlégger95t in the _ : - ever, some general trends do seem to emerge
on - ==+ - - as can be seen in the following figures.

In the typical situation for evaluating
training proficiency, the tester has some
control over the number of items or trials
that he will include on a test. In a per-
formance-based test each trial may be rather -
expensive (such as tank gunnery or Tield
artillery, .where each shell costs over $100)},
and so the tester will be obliged to use a

= @y =1 o
GUL Corract mmsmm—— 70 COVEact — " BOR Correcx

minimum namber of trials to meet-his Ecriy = 0 ralay - .2 T
decisfon-making requivements. Consequently, s - 4 b+ :;;:J :ﬂ:::

we examined the effect on p(M|T) when N took
on values of 5, 10, 20, and 40 trials.

= G L}

o L

Lnar
The tester also has some control over oS 40
the values he assigns tc the prior probabil- o i 9
ities of mastery p{Mi}, and the p(tfMi) con- -
ditional probabilities. Values for both
sets of probabilities were systematically
varied in the present simulation.

0.4

The number of mastery states is a

variable which the trainer andfor tester may B
also set. In some measurements of trainee . . °=E
proficiency it may be most appropriate to - -
dichotomize on an all-or-none basis, whereas - . % :
other training evaluation contexts may e © TR R

suggest a "pass, give refresher training,
recycle fatlures through complete training"
_trichotomy. More than three mastery states - . Figure 1,
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Figure 2.

Figures 1, 2, and 3 show the results
of applying the model to a situation in
which only two mastery groups {mastery and
nonmastery) have been hypothesized. The
data points represent the probability that
a trainee is a master, given (conditional
ypon) his total test score, P(MIT). The
curvature of each 1ine shows how the P(MIT)
changes as a function of variatiens in the
prior expectation of mastery, the % correct
{tems observed, the conditional probabilities
of both a master and a nonmaster responding
correctly to an {tem, and the number of
items comprising the test.

.. Figure 1 represenis & testing situ-
ation in which the training was of extremely

‘high quality, since the proportion of masters

in the trainee gopulation was assumed to
equal 0.9. That is, p(M1} = 0.9. Figure 1A
portrays the situation in which both masters
and nonmasters have attained a rather. high
degree of proficiency, since the probability
of a master responding correctly to any.
given ttem is 0.9, and the probability of a
nonmaster responding corrvectly is 0.6. If

a parson scored 80% on a five item test, the
probability that he is a master is approxi-
mately .91. This probability drops to

.65 if a 60% score on five items {3 out of

5 correct] were obtained. Note that when
the test length is increased to 40 items,

an 80% scare (32 correct) produces a .99

Figure 3.

probability of mastery. However, a score
of 60% (24 correct) yields an essentially
zero probability of mastery. The effect of
the test length variable on classification

accuracy is dramatic: if the p(M}T) had to
be at Teast 0.5 for a person to be called a

master, then scores of 60% on'a five-item
test.would Jead to mastery classification.
Birt. a. 60% score on a 40-1tem test would ‘Tead
to nommastery classification.

Figure. 1A also iTlustrates the effect
of "prior beliefs" on p(MijT). Intuitively,
one might suppose that the chances were
much higher that a person who obtained a
score of 60% (even from a 5-item test) came
from a ﬁopulation whose prebability of
correctly answering an item was 0.6 than
from a population whose probability of
answering an item correcily was 0.9. How-

‘ever, the relative proportions of the two

groups (gxgressed as prijor belief in mastery
and nonmastery, or p(Ml) = .9 and p(M2} = .1,
respectively] are such that the probability
of a person being in the mastery state is
apgroximately 0.65 for a score of 3 corvect
{60%) on a 5-item test. .0Only by increasing
the number of test.items can the strong
ggior'hias fn favor of the mastery decision

reversed. Figures 2A and 3A show what
happens when prior beliefs are not so

heayily.biased in favor of mastery. 1In

~ neither case is the probability of being in
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the mastery state above 0.5 for scores of
less than 80%. But Figure 1A suggests that
when prior beliefs heavily favor one group
over the other, longar length tests should
be used. Otherwise, the amount of data may
not be sufficient to force a change in the
originally held prior beliefs. : )

The effect of changing the prior
beliefs concerning the proportion of masters
and nonmasters in the examinee population
while holding all other parameters constant
can be seen by comparing corresponding
graphs A, B, €, and D in Figures 1, 2, and
3. As the prior beliefs approach equi-
probability {(where p(M1} = p{M2) = 0.5),
more Ttems are required to maintain a given
Tevel of confidence that a person is either
a master or nonmaster. The inability to
postulate strong prior beliefs must be com-
pensated for by increasing the test length.
in order to maintain a constant classifica-
tion accuracy.

The effect of changing the probability
of a correct response, p%iiMi), can be seen
by comparing graphs A, B, C, and b for
Figures 1, 2, and 3. For example, the only
difference between Figyre TA and Figure 1B is
that the p{1{M1} changes from 0.9 to 0.8,
all other parameters being held constant.
(This change might reflect a lower Tlevel of
required proficiency, and:hence less train-
ing, for Graph B than for A. Or perhaps
previous test results indicate that masters
of the instriction respond to items with a
probability of correct response equal to

0.8 rather than 0.9.) In any case, the
effect of this small change in the p(1jM1)
on the p(MiT) is readily apparent. For any
test length or cbséryed test score, ti.
probability of being in the mastery state is
greater in Graph B than in A. This sHifi

is most obvious for the 70% observed correct
cirve. MNotice that p(MIT) on Graph A for_ an
observed score of. 704 (28 out of 40 covrect],
is approximately 0.04. However, the value
for pMiT). in Graph B for 70% of a 40-item
test correct is 0.87.

The pain reason for this abrupt change
from Graph A to B (in Figurés 1, 2, and 3}
is the Towered requirement for mastery, from
0.9 to 0.8. The ?robabi1ity that "0.9
ersons” score only 70% correct on long tests
is relatively low. But when masters are
defined as those trainees who come from a
population with a probability of responding
correctly equal to 0.8, the probabitity of
their scoring 70% on a long test is high.
One of the most difficult jobs for an
instructional designer is to- describe the
Tevel of capabiiity requived of graduates
angd the level of capability actually . .
achieved. Comparison of these graphs indi-
. cates the magnitude of .the effect that

-—-and decision making.
.~ realistic, great savings in testing time
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these specifications can have on the classi-

fication of trainees.

~ Graphs C and D of Figures 1, 2, and 3
further illustrate the effect of variations
in the probability of correct responses.’

The only difference between Graphs B and C
is that.the probabiTity of a correct response
from a nonmaster decreases from 0.6 to 0.5,
The effect of this decrease in correct: _
response probability from a)nonmaster is to
Tower the Tikelihood of a nonmaster achiev- _
ing a test score of at least 70%, which also
increases. the probability that a person
achieving a high % score is in the mastery
state. Finally, Graph D portrays an extreme
., case in which neither masters nor nonmasters
. are responding at particularly high levels.
However, the Tevel of performance for non-
masters is so low (0.4), that even for
observed scores of 60% the probability of
being in the mastery state exceeds 0.8 for
all test lengths, except for 5 and 10 items
in Figure 2, and 5, 10, and 20 items in
Figure 3. ’

Further detailed analysis of these
figures is not included in this paper.
comparing the twelve graphs against each
other, note the magnitude of the changes in
p{MjT) when small changes have been made in
the prior.beliefs, in the correct response -
probabilities, and in the percent correct
observed responses. The implication s that
extreme care must be taken when specifying
parameters in a Bayesian approach to testing
If the parameters are

In

and expense, and increased confidence in.

~ decision making are possible (Novick & Lewis.
1974). However,-if the parameters are rnot
realistic, there s a very real danger of
misclassifying many examinees. The next
section of this paper deals with an elabor-
“ation of the model to three mastery states,
thus helping to quantify sources of classi-
fication error. ,

Elaboration to Three Mastery States

Figures 4, 5, 6, and 7 represent cases
for which. three mastery states have been
hypothesized. In figures 4 and 6 the
probability of a correct response for a
person assumed to be in mastery state Ml
equals 0.8, for mastery state M2 this proba-
bility is 0.6, and for mastery state M3
it is 0.5. These values could correspond
to the situation in which the nonmastery
-group was divided in half. That is, those
persons whose probability of getting any
given item correct is 0.5 (comprising mas-

" tery state M3) would need extensive retrain- -

ing; whereas those whose probability is 0.6
{comprising mastery state M2) would merety
need selective retraining. People in mastery



state M1 have a probability of 0.8 for
making a correct response, and may therefore
be considered as "masters" who have success-
fully passed .training.

For Figures 5 and 7 the corresponding
probabilities of a correct response -for
pecple in mastery states MI, M2 and M3 are
0.9, 0.8, and 0.6, respectively. These .
probabi1ities might describe a situation
in which the mastery group was dichotomized,
perhaps “in an attempt to identify those
students who had achieved an exceptionally
high level of proficiency, 1 2.,
p{1jM1) = 0.9,

roain
A

In Figures 4 and 5 the prior probabil-

roalsy
<

ity (or assumed propertion) of examiness
in each mastery state are: p{(Mi) = 0.5,
p{M2) = 0.3, and p{M3) = 0.2. 1In Figures

Figures 6 and 7 is towards the intermediate
level of mastery (50% of the examinees are
assumed to be type M2 masters).

6 and 7 the corresponding prior probabil-
ities are 0.25, 0.50, and 0.25, respectively.
The prior values in Figures 4 and 5 display
a bias towards higher levels of mastery

(50% of the examinees are assumed to be

type M1 misters), whereas the bias in

‘-‘5.‘,"’ L]
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Figure 7.

A detailed analysis of Figures 4 and 5
will provide the basis for an jnterpretation
of Figures 6 and 7, which is an exercise
left to the reader. The three graphs
labeled A, B, and C represent the prebahil-
ity that an individual is in mastery state
M1, M2, and M3, respectively. Graph D
represents the probability that a person is
in mastery state M1 after mastery states M2
and M3 have been combined inte one composite
state.

Graph A shows the probability that an
individual is in mastery state M1 given
observed scores of 60%, 70%, and 80% correct
on 5-, 10-, 20-, and 40-item tests. Thus, for
an observed score of 4 out of 5 correct,
the probability that this person is in
mastery state M1 is about 0.65. But if this
same person got a score of 32 out of 40 o
{still 80% correct), the probability that
he is an M1 master jumps to . 0.98. These
results are similar to those obtained when
two mastery groups were hypothesized, and
again illustrate the effect of increasing
test Tength on the level of confidence 1in
the mastery classification p(MI T}.

The probability of being in mastery
state M2 given cbserved scores is plotted
in Graph B. If a person got 4 out of 5 .
.correct, the probabitity of being in state
M2 is about 0.25, However, if he got 32.
out of 40 correct (stil11 80% correct}, this
probability plummets to 0.02. Finally, using
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independently.

~ these same test score values, Graph C shows

that the probability of being a type M3
master is 0.10 for 4 out of 5 correct, and
nearly zero for 32 out of 40 correct. This
resitlt makes intuitive sense, because there
is only 20% of type M3 (non)masters in the
examinee population, and the probability of

their getting any item correct is only 0.50,

which is a long way from 80% observed
correct. ) .

Netice that for any given test length
and percent correct, the sum of the proba-
bilities of being in states M1, M2, and M3
equals 1.0. Comparison of Graphs A, B, and
C shows that when either 70% or 80% of “the
items for any test Tength are correctly _
answered, the probability of being in state
M1 1s greater than the probability of being
n either state M2 or M3. That is, both
the 70% and 80% curves are higher in Graph
A than in either Graph B or C. For af

. observed score of 60% the probability of
“being in state M2 is greater than for M

or M3. The probability of being in state
¥3 is rather low for all values of test
Tength and percent correct observed in this
particular example.

Graph D depicts the probability that

a person is in mastery state M1, as opposed
to a new nonmastery state composed of both
M2 and M3. [t can be seen that when states
M2 and M3 have been thus combined, the = _
probability of being in state M1 is greater
than when all three states were analyzed
For observed scores of 70%
or B0% correct there is slight difference
in the decisions that would be made under

"the "independence" vs "composite" conditjons.

However, if a score of_60% were observed,
the possibility of distinguishing between

. M2 and M3 would be Tost when those states

were combined. This Tass of information
may be very important if there is a large

“ difference in cost between the selective

training required for people n the M2 state
and the extensive retraining needed for
those in M3. This example also ilTustrates
the potential significance of maintaining
the integrity of the various nonmastery i
states. "If the instructional decision maker

- knew the p(M1} with great accuracy; and also
- knew that there were two nonmastery states,
but decided to combine the two states of

nonmastery into just one state, he would he
throwing away potentially valuable



information. We shall return to this point
in the discussion of Figure 5.

In Figure 5 the interrelationship
between test length and three hypothesized
mastery states becomes even more apparent.
‘For example, Graph A shows that the proba-
bility of being in state M1 for 80% correct
on a 5 item test is about 0.48. The
probability of being in state M2 (shown in
Graph B) for 80% correct an a five item test
is about 0.36. There is thus a greater
chance that a person whose score is 4 out of
5 is in M1 (p(MI|T) = 0.48), instead of
M2 (p(M2]iT) = 0.36) or M3 (p(M3JT} = 0.16).
However, if a score of 80% correct were

observed on a 40-item test, the graphs indi-

cate that a much different decision would
be appropriate. In this case, p(MI|T)
equals 0.21, p(M2{T)} = .78, and p{M3|T) -

= 0.01. Hence, people scoring 32 out of 40
correct should be classified as type M2
masters. Also note that a score of 60% for
any test length implies that these people
shouid be placed in the M3 state. ’

For the data used in Figure 5, the
probability of finding Ml iype masters is
overall quite low. Instead, for the levels
of achievement demonstrated by obtained,
scores of 60%, 70%, or 80%, it is more
Tikely that such scores were produced by
people in mastery states M2 (p(1jM2 = 0.8)
and M3 (p(1{M3) = G.6).

Graph D in this figure also repraesents
the probability that a person is in mastery
state M1 as opposed to the new (non)mastery.
state formed by combining states M2 and M3.
In this example, all of the probabilities
in Graph D are lower thﬂﬂ_iﬂ'@f@gh.ﬁ. A
glance back at Figtre 4, Graphs A and D
reveals that the combination of states M2
and M3 increased the probability of classify-
ing a qerson with a given test score as a
type Ml master. Inspection of the frends
in Graphs' A and D of Figwes 4, 5, 6, and 7
suggests that the effect of combining mas-
tery states is to enhance the trend of the
uncombined state. That is, if the proba-
bility of being in state M1 is high when
the three states are treated independently,
the p(MIIT) will increase after M2 and M3
are combined. Conversely, if p(M]T) is
low when the three states maintain their
integrity, then combining states M2 and M3
will tend to increase the p(MUT].
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Number of
Mastery States?

Specify p(Ml}, p(M2),

p(1iM1), p{1[M2), test

Tengths, and values
for percent correct.

C —tisa
[ Bavesian process ing. J

D

p(MIT) assuming two
mastery states.

£

Prepare curves :
(Figures 1, 2, 3}.

F

| Specify p(M1), p(M2], p(M3), p(1]M1),
p(1IM2), p(1IM3), test Tengths, and
L values for perce

nt correct,

Are
Three States
To Be
Analyzed?.

NO

ngggglggfgrgceiiingJ Combine two mastery
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Flow-Chart Analysis of how the
Bavesian Model was Developed

. The impact of adding a third mastery
state to the development of the model can be
iTlustrated by tracing the Togic that is
required in:formulating a description of

the examinee population. -(Refer to accom-
panying flow chart for a schematic summary

of this discussion.) The first question

the decision maker must ask {and which we
considered) is: Are there two or three
states of mastery inherent in the examinee
population {Step A)? If two states are
posited, parameter estimates for p(Ml},
p(M2), p(1iM1}, and p(1IM2) are specified,
along with plausible test tengths and vaiues
for the percent correct (Step 8). The out-

put of the Bayesian processing is the proba-

bility that a particular person is in the
mastery state, p{MIfT} (Step D}. A unique

-graph for each of Figures 1, 2, and 3 was

obtained by holding the prior and conditional
probabilities constant while simultaneously
varying the test lengths and percent correct
that would plausibly be observed (Step F).
If three states are hypothesized, parameter
estimates. for p(M1), p(M2), p(M3), p{1IM1),
p{1IM2), and p(1IM3) need to be specified,

along with values for test Tengths and per-

cent correct (Step F).

Now if three states are postulated,
a second decision must be made (Step &),
It would seem to be usually desirable to
determine the-probabilities of a person's
being in each of the three states (Step I).
Having obtained these probabilities for
selected values of prior and conditional
probabilities and over a range of test
lerigths and percent ¢orrect scores; gfaphs
A, B, ¢ can be drawn such as those shown
in Figures 4, 5, 6, and 7 (Step J).

However, in some instances. it may be
more convenient to combine the information
known about two of the three mastery states.
For example, even though one mastery state
and two nonmastery states are hypothesized,
the decision making process may require that
people be divided into only two groups, of
"mastery” and "nonmastery." In the present
example, states M2 and M3 were combined
(Step K). The result of Bayesian processing
on these combined data is the probability
that a person is in the new mastery state
(Step M). Iteration of this procedure for
various test Tengths and percent correct
scores over the same prior and conditional
prebabilities yields Graph D curves, such
as those of Figures 4, 5, 6, and 7 (Step N).

The differences that result from
following each of the three paths in the
flow chart can.be seen by comparing Figures

-3A, BA, and 5D. 1In each case the prior

probability of being in mastery states M1 _
was set equal to 0.50, and the conditional
probability that an M1 type master would
make a correct response to an item was set
equal to 0.90. Figure 3A correspends to
path A,B,C,D,E in the flow chart, Figure 53
corresponds to path A,F,G,H,I,J; and Figure
5D corresponds to path A,F,G,K,L.M,N,

in Figure 3A, p{1lM2) = 0.6, that is,
a nonmaster has a 60% chance of correctly
responding to an item. However, in Figure
50 the nonmastery state is the combination
of states M2 and M3, with probabilities of
responding correctly to an item of 0.8 and
0.5, respectively. The effect of combining
Mz and M3 is to create a new (non)mastery
state, where the probability of a correct
response is a weighted average of the values
for the uncombined groups. By defining a _
relatively high ability intermediate state
and then combining it with a relatively Tow
state, the probability of being in the
highest mastery state is Tower than if that
intermediate state remained undefined. In
fact, 1f the Figure 5 values of the prior
and conditional probabilities are valid
representations of the. "real™ states of
mastery, but the values of Figure 3 (which

" are a simplification of the Figure 5 values)
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are used for decisfon making. then people
achieving scores of 80% will be falsely
classified as type M1 masters.

The differential trend between Graphs
A and D of Figure 5 is noteworthy, although
the absclute magnitude of the trend is
rather small. For different parameter

“estimates (of prior and conditional proba-

bilities), the effect of combining groups
may be much'more extensive. Note also-
that the information provided in Graph D
refers only to the probability of a per-
son's being in the mastery state, and does
not directiy show the loss of information
about the two discrete nonmastery states
that have been combined. Furthermore,
when two mastery states are combined and
contrasted to a third nonmastery state,
the changes in the probability of being in
the newly defined mastery state will often
be quite different than the probability of

being in one of the uncombined statés.

It must be emphasized that unrealistic
descriptions of the examinee population
(in terms of number of mastery groups} can
cause severe distortions in classification
accuracy. For example, had the decision
maker hypothesized only two states when,
in fact, training had produced three fairly
distinct states of proficiency, the results
of his analysis could be highly misleading.
Thus, note that the 80% line of Figure 3A
ascends as more items are added (i.e.,
p(M1|T) increases), whereas the 80% line of



Figure 5D descends {i.e., p(MIiT) decreases)
as more items are added.

Caution must alsa be observed in the
opposite case, where one might be tempted
to specify more states of mastery than are
actually present, in an effort to extract
more information than is justified by the
test data.

The present Bayesian model is not
Timited to three mastery states. Explora-
tory analyses have been conducted with up
to five mastery states, and it is also hoped
that the model can be generalized to deal
with continuous distributions.

Test Length and Misclassification Errod

One of the most important questions
that must be answered in designing a train-
ing evaluation program is: What is the

probability of falsely classifying a person '
. on the basis of a ngen observed score?

It is also possible to turn the question

around and ask:

How long must a test be,

MGtz My =Ll
ML) = .9, HINRY = b
4 Tom fastm == w30 Ttwm Tanh i

‘not be greater than 0.10.

and what score is required for classifica-
tion decisions to be made with some

specified lower limit of migc]assificatﬁon?

Figures 8 and 9 demonstrate how the

-Bayesian model can be used to answer the

above questions, Assuming that the prior
and conditional probabilities are realistic
and fixed, the important variables are then
test ]ength and cutting. score Suppose
that p{M1) = 0.9, p{M2) = (1|M1)

0.9, and p{iiM2) = 0.6 as 1n F1gure 8. 1In
this example, the prior belief that an
untested trainee is a master is very high,
p(M1} = A reasonable question might
therefore be: What score must be observed
such that a nonmastery decision can be -
made with at Teast §ﬁ% confidence? In
other words, what data are required to
force a reversal-in the prior belief?

- To be 90% confident of a nonmastery
decision, p(M2lT) must be equal to at
Teast 0;90. Since the sum of p{MI{T) and
p(M2{T} equals 1.0, p{MI|T) must therefore
Referring to

Figure 8, a horizontal Tine crossing the

Figure 8.

Med=u3  Mgr-Jg
HUAY = 7, KUY -
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Figure 9.



ordinate at 0.10 can be drawn. This line
crosses the curve for a five-item test at

a point corresponding to 26% correct. The
next lowest possible test score is one
correct (20%), so the decision rule js that
all persons scomng one correct or less
should be considered nonmasters.
on the ordinate corresponding to 20%
correct on the five-item test is about 0.05,
Hence, the final decision rule states that
nonmastery decisions based on an observed
score of one correct out of five can be
made with 95% confidence (1.00 - 0.05 =
For observed scores lower than the cutoff
score the confidence in making a correct
decision must increase. Continuing with

tha present example, the p(MI}T) if zero
correct are observed is virtually equal to
zero. Hence,, those persons who get no items
right may be classified as M2 type nonmasters
with nearly T100% confidence.

A similar analysis applied to the 40-
item test curve indicates that the cutting
score should be about 73% correct. The
next lowest possible score fo 73% is 70%,

. which yields exactly 28 correct out of 40
items. The probability of mastery given

an observed score of 28 correct is about
0.04. At such a low value of p(MUT) the
chances for misclassification using a five-
item test and a 40~item test are almost the
same. However, the observed percent correct
at which the nonmastery decision is made for
the two tests is 20% on the five-item test
and 70% on the 40-Tfem test.
two Tests of different Tengths would seem
to produce the same decision outcome, and
that Tonger tests may not really be neces-
sary for reducing classification error.

In order to appreciate the Benefits
gained by using Tonger length tests, the
entire curve must be examined. lote that
at 80% correct the five-item test ylelds
p(MIjT) to equal 0.92. This resuli suggests
that, on the average, B% of the mastery
decisions will be in error. For the 40-
item test, the probability of mastery given
80% correct is about 0.99. That s, there
is only about a 1% chance of misclassifi-
cation error. A test that distinguishes _
sharply between masters and nonmasters is
one in which the probability of mastery is
close to either 0.0 or 1.00 for most
obtained scores. On such tests there is
only a small region in which classification
- error is large. For example, in Figure 8
for the 40 item test, the region where

Superf1c1a11y,:

The po1nt-

0.95}.

.p{MIT} is greater than 0.1 and less than

0.9 extends from 71% to 77% correct, This
means that the probability of misclassify-

“ing a person will excéed 0.10 only when

observed scores.range from 71% to 77%
correct. In contrast, the reg1on of the
five item test curve for which p(MIIT) is
greater than 0.10 ard less than 0.9 extends
from about 26% to about 79%. Hence, there
is a much larger region of the curve for
which the probability of misclassification
exceeds 0.10, Qbviously, if classification
accuracy is to be maximized over the entire —
range of possible test scores, then longer
tests are required. Ideally, a very long
test would produce a step function, for

.which alT values of possible scores approach

either 0.0 or 1.0. . ; %_

Figure S can be analyzed in a manner
similar to that for Figure 8. However,
Figure 9 has one outstanding characteristic
that merits special attention.. If nommastery
decisions must ba made with 90% confidence,
and a horizontal 1ine at p(MiT) = 0.1 is

.drawn, the Tine does not intersect the curve

for the five-item test. This means that it
is not possible to classify a _nonmaster with
90% confidence if a five-item test is used,
diven the parameters used in Figure 9. If

© resource or Lime constraints are such that

© - performance

-to 0.21.

no more than five items may be given, and

if the parameter values used in Figure 9 =
are realistic, and if 90% confidence for

mastery decisions are required, then there i
is no reason to test. Testing iS5 irrelevant
because nho matter what score is observed, T
including zero correct, the decision ruTe .
compels a mastery decisfon to be made. " In
fact, for the present values, the probabil- .

ity of mastery given zero correct, is equal

This simply means that if persons
obtaining.a score of zero are classified’

as nonmasters, 21% of them will be mis-
c]ass1f1ed on the average.

The 1mE11cat10n of these resu]ts for

esting {s cbyious. Since per-
formance tests are often rather short, it
is essential that the magnitude of mis- .

‘classification error that can be incurred
-with such tests be recognized.

:Designing
tests that have clear and dlrect relation
to.actual.performance s certainly a worth- - =
while and much needed effort. However,

reasonable levels of confidence in classify-

ing trainees must not be sacrificed merely

for the sake of using conveniently short

tests.



Appendix I: A Computational Example for (3.9 x 1074

Three Mastery States (.5)9 [f3.9 x 10~%)}+ (6.8 x 10-6)+(9.6 x 10~83
The following example illustrates the (.5% (.3)9 (.2)
computations necessary for processing data = 972 :
with the Bayesian madel. The values chosen © simifaF calculations yield p(M2[T) = .473
for this example correspond to Figure 4. and p(MSlT) = PB4,
Assume that there are three states of mas- L S .
tery, and unequal prior probabilities for ' "7 IR order to combine mastery states MZ
these three states. The educational deci- and M3 into a single mastery state (which
sion-maker must provide estimates for the could represent combining the two degrees of
prior probabilities of master, p(Mi). For nonmastery, Figure 4, Graph D), the following
this example let us assume the values to be: calculations are required. The values for
p(M1} = .5; p(M2} = .3; and p(M3) = .2, He . N
must also provide estimates for the condi- -~ p(M1) and = p(M1]tj) remain the same, .5 .
tional probability of getting any given test _ 5= ) ) .
item right, given each mastery state. The and 3.9 x 10-%4 respectively. The new nonmas-
following values will be used as the condi- - - -tery state (M2') occurs as a result of
tional probabitity of getting an item right : combining the previous states M2 and M3.
given a mastery state: p{1IMi) = .8; : : Hence, p(M2') = p(M2) + p(M3) = .3 + .2 = .5,
p(1iM2) = .63 p(1IM3) = .5, The conditional p(2:[t5 = correct) = p(M2{t] = correct) +
probabilities of getting an item wrong : p(M3ltj = correct} = .265 + .747 = .412, and
given a mastery state are: p{olM1) = .2 p{M2 t] = wrong) = p{M2jtj = wrong) +
p(olM2) = .4; and p(0fM3) = .5. , p(M3/tj = wrong} = .375 + .3125 = .6875.
i ;
First we need to calculate the proba- Calculation of = p(M2' ti) yields
biTity that an item is answered correctly. o ) 1=1
For the overall population, p(tj = correct) 1.09 x 10-3,
S
=z p{Mi)p(ti = correct]Mi) = (.5)(.8) + Entering these new values into the general
i=1 . . Bayesian Formula, the following values of.
(.3)(.6} + (-2)(é5) = .68. Likewise, p(M1‘JT) and p(M2'[T)} are obtained:
tj = wrong) = £ p(Mi)p(tj = wrongIMi = p(M1*{T) = 3.9 x 10-4
p(t g) 1_ﬂp( Jp(t] g ,(.5)9[(3.9 x 1078 L (1.09 x 10—37]
(.5)(.2) + (.3)(.4) + (.2)(.5) = .32, ' R (.5)% {.5)7
We alsc need to obtain the set of conditional = .264, 3
probabilities for the different mastery states (MZ']T) - 1.09 x 10~ -
given than an individual item was responded = S P T TE9r(3.9 x 10-8) . (1.09 x 10-3)]
to either correctly or wrongly. The general . = = I SR A=
eauation is: ‘ - (.5)7 - (5)?
quation isi o
p(Mifti) = p(idpleilmi). o =36 _
STES . - S ) __
; ] : Some interesting properties of the
Subs T?UEJHQ the abﬂve yalues ¥ields:. \ - model emerge when an g]%ergative procedure for -
pgﬂ;jiq - gg::gg:g - E.g§€.g% - '23,; 'ggg: .combining mastery groups. is used. MNotice
v Males TV oV E) 2 68 = that in order to combine two mastery states
and p(M3ltj = correct) = (.2)(.5) = .68 = .147. wnat
. {Note that the sum equals 1.0.) Finally, it is not qecessary ;ozg?1Cﬁ1ate new_iaiues
p(M1/tj = wrong) = (.5){.2) # .32 = .3125 for ?(TTH? ) and p(0jM2’). However, it is 7
s o _ . - ) possible to show that these values are
p(M21tj = wrong) = (.3){.4) = .32 = .375 and K f p(1fM2) and (TTMs) d
p(M3}t7 = wrong) = (.2)(.5) = .32 = .3125 . weighted averages of p and p » an

p(0fM2) and p(0JM3) respectively where the
weights are the relative proportions of the
new state accounted for by each of the
previous states. The calculations follow.

If 6 items were answered correctly on a 10~
item-criterion~referenced test, the following

N N
p(Milti) values result:

m

3=1 - _ Since p(M2) = .3 and p(M3) = .2; state
MI = 3.9 x 10_3; M2 = 6.8 x 1076 M2 accounts for 60% and M3 accounts for 40%
M3 = 9.6 x 10 - . of the new state M2'. Hence, the value of
Finally, the general Bayesian formula yields _ . o(1[M2") = (.6 (11M2) + (.a)p(1M3) =

the conditional probability for each mastery ? 6)( 6} (g ? 5) =. .56 and plojM2ry =
state given the total test score. For ' ’ g (olM2) + (.4 01@3) = (.6)(.4) +
example, p(Mi[T) = (.6)p(ojm2) + (.4)p( = (.6){.

ple, p 4)(.5) = .44.
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Using these new values, p(tj = correct) = In choosing to combine groups, the decision

p(MI)p{1IM1'Y + p(M2)p(rtM2’) = ) . maker must consider whether a two state
{.5)(.8) + (.5)(.56) = .68 and p(tj = wrong) description of the population with
= p(M1')p{O{M1') + p(M2")pfolM2")= (.5) parameter estimates such as those above
(.2) + (.5)(.44) = .32. is a better representation than the
original three state descriptions with

Finally, p(M211) and p{M2'{0) may be calcu- - parameter estimates
lated - :

o p{M) = .5, p(M2) = .3, p[M3) = .2,
p(M2'11) =p(®2') p(1IM2") = (.5)(.56) . 415, p(1M1) = .8, p(TIM2} = .6, p(U M3} - .5.

p(1) .68 _ _ .
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