STRUCTURED SCFTWARE DESIGN

W.L, WHITE
Honeywell
Marine Systems Divigion California Center
West Covina, California

INTRODUCTION

A relatively new software development congept is
emerging in industry that will lower production
cosis and increase software product usability.
The sbiective of this paper is to present this new
concept, to the Navy, so that achievement of an
improved, cost-effective software product,
availahle from a variety of procurement sources,
may be realized.

In the late 1960's a new term, 'structured pro-
gramming”, emerged in the programming {n-
dustry. ¥Formal papers discussing this subject
have been presented by theorveticians well-known
to the programming field. Notable among these

- are Parnag, for his design concepts, and

Dijkstra, for his programming language.

The term "structured programiming', from my
viewpoint, ig somewhat of a misnomer;
structured software design' seems rather
more appropriate., My opinion in this regard is
baszed on the fact that the word 'programming"
ia limiting in nature, being more often con-
gstrained to the equivalence of fiow ¢harting and

.coding, The concept presented in this paper

trangcends those boundaries. Also included is
the pregentation of a management soldtion of the
programming problem, in the form of a "‘chief
programmer team' concept.

Since programming is a relatively new field of
endeavour, it is naturally to be expected that
more rules concerning the development of soft-
ware products will evolve. Structured design,
consequently, is an evolutionary conecept rep-
resenting a positive step in advancing software
development toward eventually achieving the
status of a seience. -

Traditionally, the software development process
has involved a cascading series of interfaces,

- begimming with the creation of individual modules,

selecting two for interfacing (after debugsing),
and checking out the interface; with the first two
checked out and working, a third is interfaced
with them, and so on until the program is built.
This is usually described as the "bottom-up' ap-
proach, in which a cycling program is not
realized until the final module has been inter-
faced. 'Thus the total program has been cycling
for only a short period prior to hardware/ soft-
ware integration,

Although much is to be said for the use of
structured software design, it should be remem-
bered that it is not a panacea. It is, however, a

249

positive step in the direction of reduced pro- . -

' gramming cogts and increased understandability

of the product.

STRUCTURED SOFTWARE DESIGN

As it has emerged in indusiry today, structured
software design concerns itself with several
aspects of programming, constituting an
amalgam of several elements: (1) specification
development (2) a top-down design approach

(3) modularity (4) a degign langurage and (5) the
chief programmer team concept,

SPECIFICATION DEVELOPMENT

A computer program performance gpecification
is an essential first step required for the top-
down design approach. This document specifies
all of the things that the program is going to be
reguired to do, without specifying how they will
be done. Next,, 4 computer program design
specification 1g prepared, specifying how the
program will implement each of the computer
program performance specification require-

“roents. The degign of the program strives te

maintain a hierarchal strueture, using a top-
down implementation. It is very important that
the performance specification contain a confract
correlation matrix, permiiting the fracing of
contractual requirements into that specification.
It is necessary, furthermore, that each require-
ment be traceagble into the design specification.
The design specification matrix shows the ake
location of given requirements to a specific
module or modules.

TOP-DOWN DESIGN APPROACH

In the top-down design approach, the first
module to be prepared is the Executive. Then a
system of "dummy modules’; consisting of stubs
{or tabs) representing the existence and location
of the other program modules, is prepared.

Once the Executive is debugged, it, together with
the dummy modules, constitutes a cyeling
skeletal propgram.

As individual mc;dules are . prepared and debugged,

.. they replace their corresponding stubs in the

structure. This process provides a contimuously

. cyclmg program, yielding continuous program

development progress as more and more modules
enter the program. At the time that the last
module is inserted, the earlier modules will have
been cycling for a significant period in advance
of hardware/software integration, a factor that




works fo enhance credibility of the program
product.

MODULARITY

Since a module with o single function will be
more easily understood by programmers, the
unifunctional module is preferred to the multi-
functional. The unifunctional module iz more
easily debugged, and, in general, will provide

a computer program that is intellectually manage-
able. Using single function modules will help to
provide low module interdependence, with a
minimim of interconnections required. This ap-
proach will result in programs economical to
produce, more reliable, i.e,, fewer latent de—
fects, and definitely more manageable,

DESIGN LANGUAGE

Structured software design proposes that flow
charts are no longer required. Observation of
program design activities over a number of years
indicates that, in spite of instructions to the
contrary, programmers will commence coding
of a program prior to flow chart completion. In-
vestigation of this phenomenon reveals that the
coding language provides the programmes with a
significanily more powerful design tool than that
provided by the flow diagram. Consequently, a
design language is proposed in lieu of flow -
charting. The design language is a high order
language, and may be provided with or without
an associated compiler. Programmers, working
as individuals or in groups, can define the
language to be used on a given project., Once the
program has been designed in the selected

- language, translation to the assembly or com-
pller language must be made. In the case where
a compiler already exists to bridge this gap, the
programmer's task is complete; otherwise he
must make 2 roamial tranglation,

An example of the use of a program language Is
presented in Attachment 1.

Additional Approackes to Design

© Some additional approaches, "chunking'', "ab-
- straction’, and "information hiding", are in- -
volved in the design area to support the pro-
gram's intellectual manageability.

Chunking

It has been determined scientifically that the
human mind gathers information and retains it

development of a computer program so that the
tagks that the program ig to perform are chunked
in a logical manner and thus provide a more

- manageable design.

-and to ignore the differences between them.

Abstraction

The concept of abstraction as defined by C.A.R.
Hoare, is somewhat different, in that it involves
the decision to eoncentrate on properties ghared
by many objects or situations in the real world,

For

" example, when you vigit a housing tract you

in chunks. For example, consider your telephone

number, consisting normally of 10 digits. To
remember the number your mind breaks it into
three identifiable chunks: a three-digit area
code, three leading digits, and four terminal
digits. This concept can be applied to the

250

" knows the format of the output table.

usually think of the elements as houses, without
digtinguishing in your mind the differences be- -
tween each and every house. In this way, you
are able to consider in the word "house' any
element of that set, each of which in reality is
different.  For a programming example, con-
sider an array of 24 hits packed into one word,
and an array of 8-bit items packediwo entries
per computer word. The sbstraction array ap-
plies to each of these, but the detailed repre-
sentation is clearly different. In designing a
computer program, the use of 2 hierarchal

“structure, containing different levels of zbstrac-

tion, igs recommended, The recommended
structure will provide that information processing
occurs from top to bottom. The design will as~
sure that a module at one level will be totally
ignorant of the exdistence of modules at higher
levels. Any given module will know only about
modules at lower Ievels. For example, a high
level module may be designated to process
miotion. The abstraction of motion will be broken
down (chunked} into that required for targets,
weapons, ete. Each chunk then will be relegated
to. lower level modules.

Information Hiding

D.L. Parnas has an interesting concept which he
calle "information hiding". This concept says
that a module would know, exclusively, a given
segment of design information. For example,

in most fraining device applicationg, the real-
time program has an output table which 1s de-
livered to the interface at some regular frequency.
Various computational modules place information
inio the output table. Changing the format of the
output table may require changes in some or all
of the computational modules. Use of informa-
tion hiding will permit a change in the format of
the output table with no change required to any
computational module. This will be accomplished
by having each computational module communicate
to an output module wWhere only the output module
This is a
valuable concept in that when a change is made

to one area of a program, it frequently tends to -

- produce a ripple effect; information hiding can

reduce or virtually eliminate the ripple effect.



| T .

CHIEF PROGRAMMER TEAM

As mentioned earlier, the chief programmer team --

concept is an important cornerstone of this ap- - - -
proach. This concept requires that for a given
programming project there is a chief programmer
who is responsible for the basic architecture of
the system together with a fully gualified backup
programmer. In addition, there ig a pro- -
gramming secretary. The secretary's duties
include keeping 21l project records, all test

data and results, and up-to-date documenta- - . - -

tion for the project. The secretary is able to -

free the programmers go they may concentrate

on the design and implementation. The team
concept also employs "egoless” prograrmming.
Egoless programming is discugsed by We,mberg .
Use of egoless programming provides a more’
unified team approeach, reduced time in checkout,

-and better software designs, Egoless program

has evolved from the consideration that normally
a programmer does not care to have another pro-
grammer examine hig design or coding until he
has it checked cut. He does not care to share
flaws or errors he produced. Egoless pro-
gramming requires that each programmer pass
his design around to other members of the team,
This will permit evaluation by others and the
discovery of design fiaws in advance of imple-
mentation. It is normally cheaper’tc correct a
flaw during design than during checkout. Each
programmer should have a backup programmer
who ig as familiar with the module being de-
veloped as the originator. The programming
group secretary will maintain test data results
as a matter 'of public record. As'one pro- .
grammer's test data beging to grow by the foot

L

SIMPLE OPERATION

where another's appears to grow by the inch, it
duickly becomes obvicus who is the weak member
of the team., From this it becomes apparent that
team members will weed out the weaker mem-
bers by comparison. Timme will not be wasted

in an effort to correct and support flaws of weaker
individuals.

In the classic definition of structured program-— - - -

ming, the implementer is constrained to use only
three basic operations. These are the simple

-Pprocess operations, the do-while-if loop, and

the decision loop (see Figure 1). It is believed
that any computer program may be produced
using these three, and only these three opera-
tions. It should be noted that this eliminates the
use of the unconditional go-to-statement. The
merits of this limitation will not be discussed
here, since it is a subject unto itself.. It should
be pointed out, however, that I believe a program
without the use of ineonditional branches would
be a "better!' program; however, I believe that
there are circumstances under which one should
allow the use of such instructions. In addition, I
believe that one should aliow a fourth operation,
subordination. There will be many cases where
the memory constraint will require the use of
unconditional branches and subroutines.,

In conclusion, structured software desipgn is
intended to reduce software produciion costs,
increase the intellectual manageability of the
end product, and provide higher reliability.

The approach requires specification of require-
ments, design from top down, team organiza-
tion, and use of a design language.

N
DO-WHILE- IF . DECISICN

S

SUBORDINATION

Figure 1. Three Basic Process Operations

Wein‘berg, Gerald M.  The Psychology of Computer Programming, New York, VanNostrand Reinhold

(1971)



ATTACHMENT 1 ) . : ; .
DESIGN LANGUAGE EXAMPLE

For this example, consider the prcblem to re- : Ctherwige,

cuire solving for the hypotenuse of a right s g 2

triangle, (a, b, ¢}, or extracting the cube root . e =a +h

of the sum of the squares of the same triangle.

The cube root function will be executed if the End

value of Z.= %,
The above nmust now be put into a source langnage

Use of a design Ianpuage would yield the following: which can be translated into 2 machine language.
In the example, a manual franslation is required.

HZ=1, then If ALGOL hag been used, an automatic compila- -

tion eovld have been used.

(az + 13;2 + cz} 3 ;
The flow chart design approach, Figare -1, could
End . yield: ‘ _

Figure 1-1. Flow Chart Design Approach

252



_ ABOUT THE AUTHOR

MR. W, L. WHITE necedved his B.A. degree in Mathematics from ithe Univensiiy of
California at Los Angeles in 1962, Fox the past 13 years, Mr, Whife has been
aﬁMcaze.d with Honeywell's Marine Sysitems Pivision Ca,&cﬁmnm Center where

he is Progham Profect Supervisor. His experience fncludes 2 yents as Group Leader
of Reaf-T.ime Programs, activitiés in such hey projects as fhe Navy's 0P-963

Progham. which involues program development fon Undemwvater Fire Control Sysitem MK 116
and Ain Force Adn Sysitems Diviséon/Adn Thaining Command Undergraduate Nevigator =
Tmnwg System (UNTS). Tu this profect, his group developed simufation prwg.'mma
gor’ a 5Z-station, ghound-based simutatorn fo train Adr Foree Nawvigatons.



PAPERS PUBLISHED,: BUT NOT PRESENTED

255





