A FUNCTIONAL APPROACH TO STRUCTURED PROGRAMMING

DR. M. LEONARD B!RNS
. Senior Computer Scientist, Computer Sciences Corporation

1. INTRODUCTION

As the functional requirements of training devices -
have becorme more complex, as digital techniques have
become more sophisticated, and as the hardware re: -
quired to implement these techniques has become more
available, the digital computer has become increasingly
essential in the field of training simulators. Simulta-
neously, because of the increasing amount of software
required, as well as the changing ratio of hardware to
software costs, it has become necessary to emphasize
software development and software reliability? The
growing concern for software reliability has led to a
proliferation of techniques for software implementa-
tion, Of these, structured programming is presently
most popular.

Structured programming has attained such a level
of importance as a technique that it has become some-
" thing of a “buzz word’’ in the industry, being used to -
describe many techniques which imply some predeter-
mined structure, such as modularity, even if they do
not necessarily adhere to structured programming -
principles. |In addition, certain developmental tech-
niques, such as top-down development, have become
associated with structured programs — although there
is no necessary correspondence between the structure
of the program and the techniques by which it was
developed.

The objective of this paper is to present a defini-
tion for structured programming (in no way considered
to be original}, and a description of some structured
programming techniques. This description will lead to
a discussion of a limitation of the totally top-down,
structured approach to real-time software development,
this limitation being the freguent lack of a:functional
orientation. A technigque will be described which
allows this limitation to be overcome by superimposing
a funectional gritique on the control structure provided-
by struetured programming techniques, '

2. STRUCTURED PROGRAMMING

Structured programming is the implementation of
proper.programs. A proper.program is defined as a pro-
grarn which contains only one entrance and one exit.
Structured programming maintains that the large pro-
gramming systems in which we are interested can be
hroken into subsegments, each of which is itself a

. proper program and is comprised only of proper pro-
grams.

The concepts of structured programming are not
new. {E.W. Dijkstra, the ‘‘father of structured pro-
gramming,” admits that he has primarily made explicit

275

what competent programmers have already done for
years.} 2 Nevertheless, recently, as structured program-
ming techniques have become more refined, as appro-
priate tools have become more available and the bene-
fits of the techniques have become more visible, great
emphasis has been placed on these techniques, It is
important, however, to recognize the difference be-

“tween the techniques by which structured programs

can be developed and the concept of the structured
program ‘itself. Also, we should recognize that struc-
tured programming of itself is not the final panacea for
all program development problems, but only an addi-
tional tooi which can be used to solve some of these
problems. . ) - -

The primary technique used today to ensure struc-
tured. programming is “GOTO-less” programming. This
concept developed after it was proven that any proper

-program could be written using only three forms of

logic structure: ¥ -
s . Sequences of two or more operations,

e . Conditional performance of one of two
operations {IF a THEN b ELSE c}

# Repetition of an operation while a condition
exists. ’ -

Constraining programmers to the use of these three con-
. structs forces programs into a structured mold by elimi-

nating branches. 1t should be noted, however, that

- structured {proper) programs can be written without

eliminating GOTO from the programmer’s vocabuiary.

As an example, consider the foilowing structured cade,

written for the AN/UYK-7 computer using the CMS-2Y

compiler:

iF ENGINE (X) EQUAL "HOT’ THEN
BEGIN § o

ENGHOT INPUT X “SET ENGINE
PARAMS FOR HOT” §

MALDIS “S8ET UP MAL-
FUNCTION DISPLAY" §

END $
ELSE
BEGIN § .

ENGNRM INPUT X “SET ENGINE
PARAMS FOR NORMAL" $
NRMDIS “SET UP
NORMAL DISPLAY” $

| LEno s



The brackets describe the control structure of this pro-

gram, one major block and two nested blocks, each
having only one entry and .one exit, each procedure call
being considered as a singte entity.

The control code generated by the CMS-2Y com-
piler for this sequernce is:

LA A1, ENGINE, K3, B7, SO

c Atl, +1, KO, BQ, S0

JNE  GLO01132, BO, SO

5B B7, ENGCON, K4, B0, SO

LBJ BS6, ENGHOT, B0, S0

LB}  BG, MALDIS, BG, 50

J AD, GL001133, BO, SO
GL0O01132 SB.  B7, ENGCON, K4, BQ, S0

LBJ BB, ENGNRM, BO, SO

LBJ - NRMDIS, 50, SO
GLOOT133 —-

The effect of the generated -code is to maintain the
three blocks, but to implement the control mechanisms
using jumps. Obviously, the same effect could be pro-
vided with GOTO statements if the IF-THEN-ELSE
structure. were not available; i.e.,

IF ENGINE (X} NCT "HOT' GOTO
NORM $

ENGHOT INPUT X $
MALDIS §.

GOTO NEXT $
ENGNRM INPUT (X) $
NRMDIS $

NEXT -

NORM

The structure of the program has been maintained
although some of the readability has been lost because
of the use of GOTOs and the lack of indentation. The
increased.: readability is an advantage of GOTO-less pro-
gramming, in addition to the forced structure. In passing
ing, it should be noted that while there is widespread
acceptance of GOTO-less programming techniques, this
acceptance is not universal.?

v

A second development technigue frequently asso-
ciated with structured programming is top-down program-
ming. - This idea develops from the concept of the
proper subsegments which compose the structured pro-
gram. Because of the relationship among these subseg-
ments, the proper structure normally portrayed as shown
in Figure 1 can also be portrayed as shown in Figure 2,

276

|44 |z
By By
) I‘*s |d4 Ida Ids

dy d2

Figure 2, Chapin Chart P'ortra{rai -

called a Chapin chart, Tﬁis chart shows the top-down
structure or inclusiveniess of the program and the

decisions (represented by the letter “d™} which control]
the various paths.

It has been advanced that the appropriate way to
approach the development of this structure is to begin
with the highest level segments and continue to develop
the subsegments down 1o the lowest level, always com-
pleting an entire hierarchical level before proceeding to
the next.® This progression is advocated during design
and also during implementation. However, it is possible
to develop a structured program without applying top-
down techniques, and top-down techniques applied dur-
ing design need not necessarily also be applied during
implementation,

Investigation of the development of structured pro-
grams using the top-down approach reveals that, although
advantages are derived from these techniques, certain
artendant disadvantages exist.

The first disadvantage relates to the idea of a strict
top-down program development. Although design can
proceed from a top-down direction, impiementation from
the point of view of schedule and cost is frequently
more efficient when lower level routines are imple-
mented first. A simple example of this involves the
many library routines from which a iarge system is built.
The design of the averall system may possibly require a



considerable amount of time; but it is frequently known
quite early which library routines will be required. In
addition, the design and implementation of mathemati-
cal routines such as sine, cosine, or randomization -
routines may be sufficiently well known to allow begin-.
ning their implementation and test even before the total
systemy design is finished, thus permitting a paraileling
of efforts and a reduced schedule.

An additional argument regarding top-down imple-
mentation is that, although the system is theoretically
integrated at each step of the development process, in
practice.it turns out that actual functional operation is
not verified until the lower level routines are imple-
mented, Thus, it is-possible to find oneself toward the
end of a large project with the surprise that the theoret-
ically integrated system has fallen apart functionally.

s

3. THE USE CF THREADS

Obviously, software which is to be produced for
the tight schedule, fixed-price environment typical of
. trainer procurements cannot alfow for last-minute sur-
prises such as the one described in-the previous section,.
It has been found that these surprises are principally
based on two factors, both functionally oriented,

The first factor is that one cannot truly test a
functional capability untif all contributions to the
functional capability have been implemented, Fre-
quently, the components of a function which provide
details of great concern to a user are implemented on a
" low level. As a result, these details are not verified until
very late in the implementation process, if the imple.
mentation is performed totally top-down.

The second factor is a tack of correspondence
between the top-down control| flow {which is an advan-
tage in the program design} and the overall data flow,
caused by program operation. This data flow does not
necessarily correspond to the flow of control, The pro-
gram design is specified in terms of top-down structured
flowcharts or pseudo-code which deseribes the contrat
relationship among the software subsegments. However,
these charts do not describe the input/output transier
function which the software i3 actually to provide. This
problem is depicted in Figure 3, which superimposes the
flow of data corresponding to an input/output require-
ment on the control structure previously shown. The
input stimulus is fielded by an executive level routire
and uses a top-down path to the data base. Sometime
later, the executive activates a chain of routinas which
channel data back to an executive level [/O routine that
provides the actual response. This data path does not
correspond 10 the control path.

The discrepancies between the portrayal of control
and data flow can be resolved by assaciating with the
structured approach an additional tool called Threads.®
The Threads technigue provides a design and imple-
mentation tool, as well as a management tool for con-
© Threads is a copyright of CSC, ’

e77

STIMULUS ¢ o RESPONSE

)

\

V. ..
DATA TO
DATA BASE

) Figure 3. _Relaﬁonship of Control
' Structure and Data Flow

trolling the overall program develapment by auto-
mating the reporting processes required,

A thread is the path {sequence of events) that a
functional requirement traces through the compon-
ents of a system. (In fact, the heavy line portion of
Figure 3 represents a single thread.) Consequently,
g thread comprises all the specific tasks necessary to
futfill the functional requirements. These tasks can
be logically categorized into several levels, as shown

" in Figure’ 4, Figure 5 shows the paths of threads

through a system and the graphical portrayal of the
various thread tevels,

At the top level, threads relate 1o system ele-
ments and functions; at the intermediate level, they
refieet subsystem elements and subfunctions. Sub-
system elements are the major components of each
systermn element. In the example presented in Fig-
ure 5{c}, the system element entitled “"“Command and
Control” is divided into_subsystem elements. Each of
the remaining system elements has its respective sub-
system ejements. _

Subsystemn functions at the intermediate level
correspond to functions at the top fevel, Subsystem
functions consist of the detailed requirements for
each function. In the example, the command ang
control requirement rmight be to ‘'notify the com-
mand and control officer.” The corresponding sub-

system function might be to “receive the message
from the tracking system element (Tracking Interface .~

program), perform tracking processing (Tracking pro-
gram}, execute alert proecedures {Alert Mainternance
program), transfer and display messages {Data Trans- -
fer program), and transmit data 1o weapons control

-system elements (Weapons Control Interface pro-

gram).” -When these subfunctipns are traced through
the subsystem elements, subsystem level threads are



EYSTEM S¥STEM SYSTEM SYSTEM SYSTEM SYSTEM

ELEMENT ELEMENT ELEMENT ELEMENT ELEMENT ELEMENT
SYSTEM
LEVEL

SURSYSTEM SUBSYSTEM SUASYSTEM SUBSYSTEM SUBSYSTEM ~
/ELEMENT ELEMENT ELEMENT ELEMENT ELEMERT ELEMENT )

SURSYSTEM \

——r—— — M — - — ] o ———
LEVEL

PRCGRAM
uIT

PROGRAR PROGRAM PROGRAM
UNIT Ukt uniT

PROGRAM
UNIT ™,

TASK

LEVEL

Figure 4. Relationship of Thread Leveis

produced.. As in the case of a system level thread,

a subsystem level thread may be depicted in a series
of graphics, with each unit representing a subsystem
element. Similarly, subsystem level threads can be
drawn for each of the other system elements involved
in the system level thread.

At the lowest level of threads, program Units and
tasks are related to the subsystermn elernents and sub-
functions of the intermediate level. Program units are
the major divisions of a subsystem element. In com-
puter programs they are software subroutines; inh manuai
operations, they are assignable work units. The Data
Display program subsystem elements were selected as
the subfunctions for the example given in Figure 5(e).

Each of the other subsystem elements would have
its own set 'of program units. Tasks at the lower level
correspond to the subfunctions at the intermediate
level: they are the detailed requirements for each sub-
function. For example, "“data display” would be a
task. When these tasks are traced through the program
units, task levei threads are produced,

The thread methodology represents hierarchical
structure in a manner enabling the efficient control of
program developments and implementation. Further-
more, the threads provide a functional review which
must be superimposed upon the software design in
order to ensure that all system reguirements have been
matched. The superposition of the thread on the top-
down software design ensures that the functional

requirements have been met by associating each:task in ’

the functional requirement with a software block in the
design structure.

4. IMPLEMENTATION

Having completed the design, with controi speci-

~ fied by the top-down software structure and with

278

functional requirement verified via the specification of
functional threads, the next question 1o be dealt with

is the technique for implementation. In order to ensure
software reliability, the implementation technique must
be based on enhancing-the capability for software veri-
fication.” Such verification should be performed on a
functional Jevel, Although it is important o ensure
that a software system as developed provides the struc-
ture and control provided by the structured design, the
user {and therefore, the programmer) must be primarily
interested in whether the system performs the functions
required of it (i.e., is the input/output transfer function’
specified by the totality of threads satisfied by the
implemented software). Since the goals are functional
and the design has been verified functionally (using
Threads) the implementation should proceed along the
same functional lines. As the implementation proceeds,

- functions ¢an be tested as small, manageable subsets of

the overall requirement. This is the crux of the “build-
alittle, test-a-littie” implementation philosophy, which '
has proven successful on many system development
projects.

The entire development process can be described

. as follows: First, the overall design is developed in

terms of a top-down structured software system, but
one which functionally satisfies the requirements
expressed by the set of functional threads. Imple-

~mentation is then performed using the structured con-

structs if they are available in the:language being used
or using a structured discipline associated with the

SuBSYSTEM ' e




A T

EXECUTIVE

> NN
SR ARYAR
FUNGTION TRACKING COMMAND WEAPDNS

[ANG CONTROL| CONTROL

8(a). Paths of Functions Through System- Elements

cormann WEMONS
ExecuTIvE PRACKING EXEILTI ANGEONIAGY, - EmiCuTrv - COATRGL

FTINGLUE L_ | - Attrowse

5{b). Graphic Representation of System Level Threads

COMMAND AND CONTROL SUBSYSTEM

[ | MODULE WORULE
TRACKN 3
INTERFA’:GE NOT USED gD
At WTHREAD [ INTHAEAG
EXANPLE EXAMPLE
; WEAPONS
ALERY
f 'macxmtx CONTROL
MAINTENA
SUBFUNCTION PROGRAM :nnn:E;n A:CE INTERFACE
B SROGRAM
<
’;“";D‘:'SLE% i nxm\" DISPLAY
e TRANSFER INTERFACE
ERAMELE PROGRAM PROGRAM

5{c}l. Paths of Subfunctions Through Subsystem Elements

WEAPONS
TRACKING T T TTaLERT DAYa DISPLAY CONTRDL -
INTERFAGE TRACKING MAINTENANCE TRANSFER INTERF ACE INTERFACE
PROGAAM PROGAAM PROGRAM PROGRAM PROGRAM PROGRAM
STIMLLUS RESPONSE

5{d}. Graphic Representation of Subsystem Level Threads

DATA DISPLAY PROGRAM

coiia £aizo - CDiX)
———
TASK j cCl40 CoIS0 CDIBD
[ ————
<DITD colso Colpo

5{e}. Paths of Tasks Through Program Units

DATA DISPLAY PROGRAM

coiio

coizn CoIS0 coign

STIMULUS

RESPONSE

B(f). Graphic Representation.of Task Level Threads

Figure 5. Levels of Threads Analysis

279




- language constructs available, The implementation is
generally a combination of top-down and bottom-up
development, in that the highest level of the system,
the executive level, is developed: as-a communication
and test tool, but the problem-oriented portions of the
system are developed from the |lower [evels using the

- “builds™ technique.

A build is a combination of various threads which
together pérform a useful, demonstrable system func-
tion, The development of a build is under the control
of a build leader similar to the chief programmer con-
ceptavhich has been described in other literature.®
The buiid leader is responsible for the coding and unit
testing of the threads associated with his build, and for
integration of these threads into the build. When the
build itself has been functionally tested, it is then inte-
grated with previously developed builds to provide a’

- new software package which can perform the function
specified by the summation of the build it includes.
Thus, at each step of the way, as builds are added to
develop the entire package, the program can be tested
functionally on the basis of its input/output transform
requirements.. This technique of development by builds
is shown in Figure 6. Five builds, some developed in

BUILD #1

INTEGRATION
TO BUILD #3

BUILD #2

£ __ INTEGRATION
TO BUILD #5

BUILD #4

L

\ LOWER

LEVEL
THREAD
DEVELOPMENT

Figure 6, Build Development

280

parallel, are depicted in a development process, with
functional tests and demonstrations shown at each
level. By demonstrating actual functional capability at
each deveIOpment phase, the integration surprises which
sometlmes accompany a total top-tiown development -
effort are ellmmated and a more easily tested product
can be delivered.

REFERENCES

1. Mashman, A.E., Software Development Management -
The Key To Quality Software Products, IEEE
Electronic and Aerospace Systems Conference, 1974,

2. E.W. Dijkstra, ""A Constructive Approach to the
_Problem of Program Correctives,” BIT 8, 1968.

3. C. Bohm and G. Jacopini, “Flow Diagrams,
Turing Machines and Machines and Languages
with only Two Formation Rules,” Comm.

- ACM 9 (1966).

4. W, A, Wulf, “Programming Without the GOTO,"”
information Processing 71, North Hoiiand
Publishing Company, 1972,

" 5, © H. Milis, “Top-Down Programming in Large

Systems,” Debugging Techniques in Large Systemss,
Ed. Randall Rustin, Prentiss-Hall, Englewood
Cliffs, N.J., 1871.

8. F.T. Baker, “Chief Programmer Teamn Manage-
ment of Production Programming,” |BM Systems
Journal, Vol. 11, Number 1 (1972},



ABOUT THE AUTHOR

DR. M. LEONARD BIRNS L8 a4 Senion Computer Scientist at Compufer Sciences Coxpora-
Lion {CSC), Tefense Systems Center, Moorestown, New Jersey. Dr. Bims recedived
a B.E.E. degree faom the City Colfege, New York; an M.S. degree in Physics, Magna
Cum Laude,- from Fairfeigh Dickinson University and o Ph.D. An Operations Research
from New Vork Univensity. He joined (SC .in 1973, specializing in advanced tech-
nigues in neal-time programming.. Previously, he was wifh RCA for 2 years where,
as a principal memben 0f the engineering sfaff, he participated in several pro-
feats, fncluding those invofuing Zhe design of neal-time operating sysfems for
radar control and the development of special putpose display sofiware. At Dect-
sdon Systems, Tnc., where he was Deputy Director of Proghramming, he was responsi-
bZe fon mathematical modefing and systems analysis for The LEM simulaton, and -
was responsible for the development of COMPOSE, a sdmulation display preparation

- Language and contrnol processor for a Coast Guard helicopten simulator.

28]





