SIMULATION OF MICROPROCESSOR OPERATION
FOR PROGRAM DEVELOPMENT AND CHECKOUT

D.L. TRIMBLE and B.E. PETRASKQ
Electrical Engineering and
Communication Sciences Department
Florida Technological University

INTRODUCTION

This paper is part of work dene for the
National Science Foundation under Grant GK

42071 titled "Investigation of the application
of a hardware parsed recursive string process-

ing Tanguage to graphical systems." The aim
of this grant is to firmware parse a certain
class of input strings in the development of
an extensible string processing language sim-
ilar.to text reckoning and compiling (TRAC).1
During this grant, a full operating Tanguage
called TOSCL was developed to run on a Data
General NOVA 1220.2:3 The second phase was
Lo implement the parse on the Intel 3000 sys-
tem.

The primary aim of this paper is to de-
scribe the implementation of microprograms
using a sixteen bit minicomputer and fo show
same of the software developed to support
microcoding, assembling of microcode, Toading
the microcontrol store, and the debugging of
the microprograms.

The development of Intel's Schottky

Bipolar LSI microcomputer elements has brought

microprogramming to the field of microproces-
sors. These devices allow almost Infinite
variety of design applications, control word
size, and control word configuration. This
versatility makes the development of support
software a difficult if not impossible task.

The emphasis in design and construction
of the TOSCL microprogramming system was to
be able to microprogram with the least amount
of effort. Since the major programming
effort was to be the development of TOSCL,

-only a minimum of software was developed.

The minimum support required was (1) a Sym-
bolic editor, (2) a microcode assembler,

{3) a loader for microcontrol store, and

(4) microprogramming debugging aides. This
Paper shows how these programs combined with
hardware functions allowed simulation and
debugging of the Intel 3000 microprocessor

system,
THE MICROCONTROL WORD

The minicomputer supporting the TOSCL
system s a Data General NOVA 1220, and
since this is a sixteen bit machine, a
control store size of sixteen bits is
desirable. The 3000 system configuration
suggested by Intel uses an eighteen-plus
bit control word (see Figure 1a). To 1imple-
ment a sixteen bit control word, it was .
necessary to give up some flexibility in the
system. After looking into the application
which is string interpretation, the facil-
ities considered least critical are portions
of the flag control and branching (jumpcode)
facilities. - - R

o] 1] 2 3 14156 718 1 911051 pt2y13]4 |15 (16 117 118 |. . .
0PCODE OPERAND JUMPCODE & DISPLAGEMENT FLAG K-MASK
Ta
U R 31415186 718 9 110111 112133114115
(OPCODE OPERAND K F c JUMP & DISPLACEMENT
1b _
Figure 1. Microcontrol Yord

277

The resulting control word is sixteen bits
{see Figure 1b)}. It represents a loss of four
jump instructions and individual controi of
one flag bit, the Z-flag bit. The K-buss mask
can only be set to all one or all zero.

The most often used 3000 branch command
uses the PX inputs of the 3000 system to
force a jump in control store. 3Since this
major decision process is accomplished
through a hardware decode, the use of one
flag contrel bit is all that is necessary. A
reduction in the jump set could be accomplish-
ed with the Toss of the use of one of the flag
functions. Random logic has been added to
accommodate this change in the control word
format. The 3000 control word jump instruc-
tion set is hardware decoded to recover the
bits removed by the change in the control
word. The I/0 signals are also decoded from
. the NOP Instructions and its operand (func-
tion field) to accomplish the required tinput,
output, and memory control.

The resulting control word is sixteen
bits (see Figure ib). It represents a Toss
of four jump instructions and individual
control of the flags.

THE ASSEMBLER

The Intel 3000 system allows such a
variety of configurations that the resulting
generalized assembliers are often difficult
to use, hard to transfer between machines,
jmpossible to implement on small systems,
and require large amounts of computer time.

The concept developed was not to generate
a general assembler but to use an existing
assembler with macro capabilities to define
an instruction set which includes both Intel
instructions and instructions unique to this
task. This loss of portability due to the
omission of four jump instructions and the
control of the Z-flag was examined and found
to be not sufficient to warrant additional
efforts. This use of a macroassembler to
generate a cross-assembler through the defini-
tion of a set of instructions is an efficient
approach but resutts in a highly machine de-
pendent cross-assembler.

The cross-assembler developed to assemble
programs for the TOSCL system is run on Data
General's macroassembler and has the follow-
ing format:

(LABLE:) OPCODE(H) (1)
DISPLACEMENT

OPERAND JUMPCODE

The portion shown in parenthesis is op-
tional. The ¥ appended to the opcode con-
trols the hold of the carry flag. The 1 is
used to set the flag output {FO? which is
used as the carry input (CI). The label and

278

comment fields are afides for the pro-
grammer to use in documentation.

The operand field specifies the range
of the opcode and the K-buss information.
The aperands are broken down into three
register groups: (1) register operations,
(2) wemory operations, and (3} input opera-
tions.

The jumpcode and displacement are en-
tirely independent of the opcode and op-
erand. Therefore, the programming tech-
niques for this system are based on estab-

_ Tished microprogramming techniques.

The output from the macroassembier 1is
in a special binary format. This format
can be reduced to a core image file using
the relocatable Ipader. This software along
with the symbolic editor is part of the
standard system and reguires no modifica-
tion. The resulting core image file can
either be executed from the host systems
memory or can be loaded into the control
store {high-speed random access memory
(RAM)) that appears to the 3000 system as
a read only memory {ROM).

TOSCL SYSTEM HARDWARE

The current design of the Intel 3000
system used in the TOSCL System is shown
in Figure 2. This system uses Intel's
suggested system architecture.5:8 The
RAM for the 3000 system is the host system
memory and js accessed using direct memory
access (DMA). This memory is addressed
using the A-outputs of the CPE array, while
the D-outputs are used for the write data,
and the M-inputs are used to read memory.
The DMA operation is automatically initi-
ated by decoding certain 3000 commands
(LMM, LMI, LMMH, and LMMIH). 1If a previous
DMA request has not been completed, the
instruction will be deferred by halting
the clock until the operation is complete.
Also to be sure that the microprogram will
not try to use DMA results prematurely, the
system has a wafit-for-memory command, (WAIT}).
The system allows for computation that does
not effect significant registers to be
performed while the DMA operations are
being compieted. This may take from 1500
to 3500 microseconds.

The clock circuit can be run in two
basic modes, free running and single step.
The free running mode once enabled will run
until it is halted. The halt can be gen-
erated by one of two commands. Done sets
the done flag of the host system, and INTR
generates a software interrupt to the host
system. The clock is also temporarily
halted by the second DMA request until the
first has been completed. The second mode

of the clock is single step. This allows for~
the execution of one microinstruction at a
time and is used for tracing and debugging
programs. The system, when in single step
mode, uses the main memory as the source for
the microinsiructions. For normal operation,
the control store memory (256 x 16 bits) is
used as the source of microinstructions.

This memory can be loaded directly from a
core image file which was generated by the
cross-assembler and the relocatable loader.

The contents of the control store memory
can be examined, modified, or verified
under program control.

The local memory (16 x 16 bits RAM) is
used to jam finstructions into the 3000 sys-
tem. Through the jamming of the proper
instructions, all of the registers may be
examined. Also the control store address

may be examined, along with the contents of

control store.

DATA GENERAL 1/0 BUSS

Fd {
J A A A A ’
4168 4168 4~ 16B 9B 4168 168 168 4168
h 4
M REG
LOCAL - 168
v 48 1 “MEM
4] A -
ADDR
T e o A OUT D oUT
168 '
I SN ¥ - 168
CONTROL STORE 168
MEMORY QUT f >5— 78 CPE
3106 * | FO-7 ARRAY M IN jt—
3002
] ALL K
A DDR 5
A
LI CI CO RO
w4
A-9B
MAO-8 78 . 168
ACO-6 / 7
“ ! JuMP
Fe0.3 38 DECODE
MCU -3 7
3001
FO
FI 5"
*
SX0-PX7
" ¥
48
/ JPX
*TRI-STATE ENCODE

Figure 2. TOSCL System Diagram

279

MEM QUT 10 11 12 13 14 15 MA 6 5 4 3 2 1 0
Jcc 0 0 D3 Dz D1 DO 0 0 0 D3 D2 D1 DG
JCR 0 1 D3 P2 D1 DO 0 1 1 p3 bz DI DO
JCF T 0 0 D2 D1 DO 1 0 1 o D2 DT DO
JFL T 0 1 Dz D1 DO 1 0 0 0 D2 D1 DO
JZR 1 1 0 D2 DI BO o 1 0 0 Dz Bl DO
JRL i 1 1 1 D1 DO T 1 1 1 1 bl BO
JPX 1 1 1 0 D1 DO 1T 1T 1 1 0 DY BO
Figure 3. Jump Set and Decode

The jump decode operation is shown in
Figure 3, above. The resulting jump set, as
has been discussed, is reduced from the orig-
inal Intel jump set, but was found to accom-
plish the desired operations with no dif-
ficulty.

The JPX encode is used to detect and
encode privileged characters. The input to
tha JPX encode is the M register which is the
Memory Buffer Register of the TOSCL system.
The word in the M register is then encoded
and used to force a jump Tn control store
based on the character in the M register. The
M register also can be used to force the
first address in control store through the
use of the LOAD input of the memory control
unit.

The system has inputs to and from the
host computer which are used for the simula-
tion of the final system. The final system
would also use its own memory thus speeding
overall system aperation.

SUMMARY AND COMMENTS

The development of microprocessing system
simulators has been typically based on a
cross-assembler and simulator package design-
ed to run on a large computer system. The
program developed on the simulator is then
Toaded into a separate microprocessor based
system which is used to support the hardware
design phase.

The effort at Florida Technological Uni-
versity has resulted in an integrated soft-
ware and hardware support system. It uses
standard minicomputer software (macroassem-
bler, loader, editor, etc.) and interfacing
facilities to provide not only a powerful
development phase tool but also a base for
evaluation and training.

Evaluation can be accomplished by
adding hardware to gather run time statis-
tics which can then be processed by the

280

minicomputer system, Training can be
accomplished using a combination of computer-
aided instruction and real-time operation.
Both of these "side effects" are presently
being investigated.

. One final comment on the technique
used for microprocessor system simulation;
very often a great deal of cost and/or
effort is spent on obtaining design and

“development tools which are essentially a

one-time effort. If a minicomputer fis
available, it can be used as a hase for
software development aimed at & general
system that can be used with the micro-
processor that is best suited for the in-
dividual application. It appears that this
approach is the straightforward and cost-
effective means of system design.

REFERENCES

1. Mooers, C. N, and Deutsch, L.P., "TRAC

a Text-Handling Language,“ Proc. ACM 20TH
National Conference, 1965, pp. 220-246.

2. Petrasko, B. E., “"TOSCL - A Function
Generator lLanguage for CAI System Imple-
mentation," Doctoral Dissertation, Elec-
trical Engineering Department, The Uni-
versity of Detroit, 1973.

3. Petrasko, B. E., "Hardware String Pro-
cessing Using Schottky Bipolar LSI
Microprocessing," Proc. of 1976 IEEE
Southeastern Conference and Exhibit,
PP. 185-189.

4. Rattne, J., Cornet, 4., and Hoff, M.E.,
"Bipolar LSI Computing Elements Usher
In a New Era of Digital Design," Elec-
tronics, September 5, 1974.

5. "3001 Microprogramming Control Unit,"
Intel Corp., 1974.

6. “3002 Central Processing Element," Intel
Corp., 1974.

ABOUT THE AUTHORS

ME. DAVID L. TRIMBLE s a graduate student in the Department of Electrical Engineering
and Communication Seience at Florida Technological Untversity. Hig responsibilities
are in the areas of animation and eontrol systems. He has extensive experience in
minicomputer and microcomputer systems and is employed ot AACTS im Oriemdo. He holds
a B.5. degree in engineering and is a member of the Institute of Electrical and Elec-
trovie Engineers.

DR. BRIAN E. PEIRASKC is an Assigtant Professor of Engineering Scilence in the Depart-
ment of Electrical Engineering and Communication Seience at Florida Technologieal
University. He has been affiiiated with I.B.M, s G.E., Ford, Edutronics, Martin-
Morietia, and the Naval Training Equipment Center. He has worked and published in the
areqs of computer assisted instruction, computer aided design, computer arehitecture,
and microprocessor design end applications. He holds the B.E.E., M.E., and Doctor

of Beience degrees from the University of Detwoit. Ee ie a member of the Institute
of Electrical and Electronic Engineers and the Association for Computing Machinery.

281/282

