A SYSTEM ORIENTED BENCHMARK FOR TRAINING SIMULATORS

P. S. BABEL and DR. M. L. BIRNS
Agronautical Systems Division
Wright-Patterson Air Force Base

1. INTRODUCTION

An important task in the development of
training simulators is determining the com-—
puting system which is adequate for the
computationai task required. The definition
of the simulator computational system as well
as ensuring its adequacy has been rendered
more difficult by the increasing complexity
of available computer systems, the ever
changing computer systems market and the
growing sophistication of the training simu-
Tator computation requirement.

Several selection tools have been pre-
viously available, but are generally CPU
rather than system oriented. Since these
computer selection tools do not address
simuTation processing parameters, they are
of Timited utility in selecting computer sys-
tems for this application. - Hence, the
Air Force is.striving to develop a computa-
tional system selection technique which is
based on training simulator requirements
and s flexible enough to be used in the
various types of computational systems
presently found in training simulators.
teol required is a system benchmark which
will measure the total capability of the
computational systems.

The

2. BACKGROUND

The digital computation systems origi-
nally provided for training simulators were
single CPU computer systems. These com-—
puters were programmed in assembly language
and required relatively slow responses. By
relatively slow, we refer to a comparison
with the modern training simulator and the
necessity to drive an advanced visual system.

The design for these computational
systems was initially based on deriving,
from the functional requirements of the
system, the high-level flow chart for the
program and estimating the numbers and types
of instructions required. Calculation of a
data base was then added to determine the
memory requirements of the system, the
speed being defined and verified by the
estimated calculational requirements.

As design became somewhat more advanced,
some scientific mixes of instructions were
defined for the typical calculational pro-
gram, such as the classical gibson mix, and
the adequacy of the computational power was
determined by measuring the capability of a

25

CPU to handle the assumedly representative
instructions repertoire.

Historically, hardware has been evalu-
ated. Williamsl, as well as Stimler and
BrunsZ, gives examples of techniques for
calculating computer performance and selec-
ting an appropriate machine.

Lucas3 1ists and describes the various
techniques used for performance evaluation:

Timings

Mixes

Kernels

Models

Benchmarks
Synthetic Programs
Simulation

He concludes that simulation is the
optimum technique, but recognizes disadvan-
tages, including cost. Boyse and Warn, as
well as many others, have described computer
modeTing for performance prediction. They
make the comment, which may be self-evident,
but is important, “Modeling can be useful,
but any model can easily produce invalid
results if its input data or assumptions are
incorrect.”

Progress was made as more experience was

gained by being able to use analogy from one

system to another. Based on previous
experience, it was possible to get a gross
estimate of the numbers of instructions and
data required for various simulator function
by using approximations from one simulatar
system to the next. Similarly some bench-
marks were derived hased on the actual soft-
ware of previous simulators. The benchmarks
presently available give some indication of
comparative machine power, but they are
necessarily 1imited in the amount of func-
tions they can replicate and are in general
1imited to single CPU investigations.

With the passage of time, the aircraft
for which the Air Force must train its
pilots have become increasingly complex and
the training simulator has followed them in
sophistication. This increased sophistica-
tion is hrought about not only by the
increased complexity of the aircraft, e.g.,
mr1tiple on-board computers, but has also

been brought about by the desire to provide

more sophisticated training capabilitv.

The expanded use of software to achieve
these Tevels of simulation together with a
significant increase in computer performance
capabilities nas facilitated use of FORTRAN
and commercial software. Use of these
software tools enhances software support-
ability. Simultaneocusiy, the increased
compliexity of the simulation job has
brought about the need for multiple CPU
computational systems which utilize shared
memory, inter-computer channels and sophisti-
cated input/output devices for their record-
ing as well as occasional overlays.

Computer systems design and verification,
once performed by manual computations aug-
mented by heavy doses of intuition, can ne
longer be handled satisfactorily without an
automated tool which provides the ability to
Jjudge system capability objectively. Note,
we talk about systems capability, not com-
puter or CPU capability, since much more
than the capability of the CPU is involved.
The computational system must be judged on
its practical capability, throughput capa-
bility, configurational capability, as well
as the important software tools such as the
operating system, compiler and utilities
which fome an important part of the tatal
computational systems.

Lucas emphasizes the importance of the
programming system_ stating, "Eecause the
programming system s an integral part of
modern computers, the evaluation process
must now consider software as well as hard-
ware in assessing performance."

Thus, i1t s no Tonger sufficient to
attempt to estimate the capacity of a data
processing system in terms of a number of
average instructions or operations. It has
become essential o have a tool which
measures all the critical system parameters.
and which is flexible enough to put appropri-
ate emphasis on those which are most impor-
tant for a specific training simulator. This
Teads to the idea of a system oriented
training simulator benchmark.

Sa called "natural" benchmarks also
pose some problems. Keller and Denhamb
comment on the difficulty of running a
benchmark on all systems, exactly as con-
figured in proposals. This, howaver, 9%
required if valid results are to be obtained.

An implication of the "system benchmark®
concept is provided in Joslin,& who also
defines an Application Benchmark (Problem)
to be "a routine to be run on several dif-
ferent computer configurations to obtain
comparalive throughput performance figures
regarding the abilities of the various con-
figurations to handle the specific applica-
tion." This implies that the specific

26

routine to be executed is an integral part of
the benchmark problem.

As we are interested in allowing varying
approaches to a specific functional require- S
ment, we feel that it is more appropriate to
start from the functional definition of the
set of tasks to he performed. The specific
processing design is assumed to be dependent
upen the computational system configuration
t0 he used. :

The advantages of using totally synthetic
programs rather than natural praograms are
discussed in Oliver, et al.7 Primary advan-
tages care portability and limitation of
processing time. A disadvantage is the time
and cost required to prepare programs.

We intend to circumvent these difficul-
ties by providing synthetic, but representa-

- tive, operational designs, implemented pri-

marily by consistent blocks of FORTRAN code.
The constraint of FORTRAN is imposed because
of the de facto standardization of FORTRAN as
a training simulator language as previously
discussed by Babel.®

3. MEASUREMENT

The system benchmark must measure both
system parameters and machine parameters and
must weight these parameters such that the
results indicate the capability of the system
to do the entire job. System parameters are
those system features which impact the entire
computational system, not specifically the
computational capability of CPU. The system
parameters include:

Operating System Capability

Operating System Efficiency

Fortran Efficiency (compiled object
code)

1/0 Capability

Multiprocessing Capability

Systems ExtendabiTity

Naturally, the most important part of the
benchmark is to measure the actual computa-
tional power of the system. This must be :
measured acress more than one CPU if a multi-
CPU system is envisioned. For example, a
distributed CPU system may indeed have more
computational power than that provided by a
single, larger CPU. However, the power of
the distributed system does not increase
linearly and the benchmark must measure not
only the power of the single CPU, but the
extent to which processing power is jrcreased
by additional CPUs.

- Thus, the bhenchmark must examine such
traditional parameters as handling of specif-
ic data types, arithmetic capabilities
(particularly floating point), general

functional capabiiities and logical func-
ional capabilities. It must also be capable

of examining such nonclassical capabilities
as the interference between CPUs operating

on a shared memory, the possibility for
distributing computational power, the effect
of inter-computer communication, both on
computational power and I/0 capacity.
Finally, the benchmark must be able to assess
the capability of the system to perform all
these functions in the FORTRAN environment,
with respect to the effect on both process-
ing time, memory requirements, and code-
ability with proposed extensions.

Since many of the parameters which are
being measured are intimate features of the
specific systems being investigated, it may
not be possible to code a particuiar bench-
mark program and execute it on ali machines.
FORTRAN extensions for different systems are
different, operating systems have different
requivrements, and machine-machine communica-
tion requirements are different.

It is proposed, therefore, to develop
certain blocks of code from representative
simulator systems. These blocks of code will
be FORTRAN coded and will represent typical
simutation tdsks. In addition, the functions
to be performed by the system will be speci~-
fied by means of high-level leqic descrip-
tions.

An example of the type of functional
benchmark design under consideration is
shown in block form in figure 1. Program A
operates on inputp to produce datap; program
B operates on inputg to produce datag. Pro-
gram C operates on dataA and datapg to produce
outputcs programp operates on datag to pro-
duce outputp. As a further constraint, the
Targer of output C or D will be used for the
next c¢omputation.

Depending on the time frame in which
outputy and outputp are required, as well
as the available computational speed, the
sequence shown in figure 2 might be suffi-
cient. This, obviously, i5 a single CPU
solution. However, in a compressed time
frame, one might execute programs & and C in
one machine, while executing programs B and
g in another. This would yield an executing
configuration very similar to figure 1
itself. -

A good benchmark should be able to
determine whether either propesed configura-
tion can handle the assumed processing load
in the context of operational programs .,
FORTRAN coding, commercial system software
and a superimposed environment {interrupts,
I/0, etc.). Therefore, it is important to
avoid specifying a configurational solution
in the specification or the probiam.

27

"~ inputs.

In order to avoid specifying the sequen~
tial or. parallel performance of various
functions, standard flow charts, with their
inherently sequential flavor, will not be
used to define benchmark requirements. The
type of documentation under consideration
would be similar to directed flowgraphs.
This will allow the potential parallelism of
the problem to be presented.

A directed flowgraph for the process
previously described is presented in figure
3. The functional parallelism is evident
and the association with a single machine/
multiple machine implementation has been
removed, thus divorcing the functional
requivement from the implementation design.

A brief definition of the symbols used
in this description follows. The description
is taken from Rubey,? which provides more
detailed information.

A directed flowgraph represents a com-
puting machine in which the operations are
represented by the nodes of the graph, and
the transmission and storage of data and
control information is represented by con-
necting links. Control Tinks are represented
by Tines with open arrow heads; data Tinks
have solid arrow heads.

Several classes of nodes are used, two
of which are shown in figure 4. Operator
nodes represent a function of one or more
Data operators have output connect-
ors, all of which are data. For example,
task nodes perform some operation on the
data conveyed by the input data Tinks and
make the result available on output data
Tinks. Task nodes may also have input con-
trol links which affect the execution of the
node, but do not affect the value produced
if the execution proceeds.

A specific operator node which is used
in the example of figure 3 is the identity
node, labeled "I." This is a data node
which transmits its input data value to all
data output 1inks with no change. Iis
utility comes from its use with control
1inks.

The selector node is the means by which
alternate sequences of operations may be
executed, based on the value or status of
some data. Selector nodes have at least one
data input Tink, and always have two control
output 1inks. The selector has associated
with it a predicate B, which is applied to
the data on the data input links. If the
resulting value is TRUE, then the "{" con-
trol output is ENABLED and the "-" control
output is DISABLED. If the result is FALSE,
then the converse link status results.

INPUT A

|

PROGRAM
A

PROGRAM
C

OUTPUT
C

Figure 1.

28

INPUT B [NPUTA INPUT B
l INPUT
PROCESS
PROGRAM
B
PROGRAM
A
> DATA A
DATA
A PROGRAM p| DATA . |
DATA ; fee—d B Jq_l_
e
| INPUT B
I PROGRAM
C
PROGRAM
D
d PROGRAM |¢
D
N 0 Y
N 0 Y
QUTPUT
d
OUTPUT QUTPUT
C d
Required Data Flow Figure 2. Sequential Data Flow

Figure 3.

OUTPUT

Flowgraph for Task Processing

29

DATA

Y CONTROL

X

DATA

a) IDENTITY OPERATOR NODE

b} SELECTOR NODE

Figure 4. Sample Flowgraph Nodes

Considering figure 3, we see that the
functions delineated by the left and right
hand processing chains now appear independent
from a processing point of view. They can
be implemented in whatever fashion is most
appropriate for the particular proposed con-
Tiguration. The code used for the actual
operations' A, B, C, and D can be prepared in
FORTRAN and compiled and executed regardless
of the configuration.

4. SUMMARY

Because of the complex requirements of
training simulators, as well as the range of
technigques by which these requirements can
be met, a semi-automated tool is required to
aid in system selection. This tool must
evaluate total computational system capa-
biTity: software as well as hardware.

This requirement is being met by the
design of a simulation system benchmark
based on natural code blocks configured into
a set of synthetic, functional problems. The
expression of the problem will be structured
so as to avoid any implication regarding the
implementation of the solution.

REFERENCES
1. Williams, 0., "A Methodalogy for Calcu-

lating and Optimizing Real-time System Per-
formance," Comm. ACM, July 1968.

2. Stimler, S. and Bruns, K. A., "A Hethod-
olegy for Computer Selection Studies,"
Computers and Automation, May 1963.

3. Lucas, H. C., "Performance Evaluation and
Monitoring,” ACM Computing Survey, Sept 1971.

4. Boyse, J. W. and Warn, B. R., "A,
Straightforward Model for Computer Predic-
tion,"” ACM Computing Surveys, June 1975.

5. Keller, R. F. and Denham, C. R., "Com-
puter Selection Procedures,” Proceedings 23rd
National Conference ACM, 1968. ’

6. doslin, E. 0., "Application Benchmarks:
The Key to Meaningful Computer Applications,”
Proc. FJCC, 1972.

7. QOfiver, P., et al, "An Experiment in the

Use of Synthetic Programs for System Bench- =

marking," Proc. FJCC, 1974.

8. Babel, P. S., "Considerations in High
Order Language Compiler vs. Assembler for
Programming Real-time Training Simulators,"
ASD/ENCT Technical Memorandum 75-2,

7 February 1975.

9. Rubey, R., "Directed Flowgraphs: An
Overview,"” Softech TP041, 25 February 1976.

ABQUT THE AUTHORS

MR. PHILIP §. BABEL is aq Computer Group Leader in the Simuilator Division, Direc-
torate of Bquipment Engineering, Aevonmautical Systems Division, Wright-Patterson
Air Force Base, Ohio. He has been with the Aderonautical Systems Division since
1866, being responsible for computer systems hardvare and software engineering

in erew training simulators. He has participated as vorking growp chairman in
several Air Force all-command projects to develop approaches and policy for acqui-
sition and support of computer systems embedded in defense systems. Formerly, he
worked jor the Federal Aviation Agency and RCA as a conputer systems engineer en-
gaged in developing automated air traffie cowtrol systems. He received e B.S5.E.E.
degree from the University of Detroit and an M.S. degree in computer and informa-

tion science from Ohio State University.

LR. M. LEOFARD BIRNS is a Technical Advisor in the Directorate of Equipment Engi-

neering, Aeronawtical Systems Division,
Previously, he was with Computer Seience

techmiques in real-time programming.

Wright-Patterson Air Foree Base, Ohio.

s Corporation, speciaqlizming in advanced
bt He was with RCA for two years where, as a
principal member of the engineering staff,

he partieipated in several projects,

ineluding those involving the design of real-time operating systems for radar con—
trol and the development of special purpose display software. At Decision Systems,
Ine., where he wae Deputy Divector of Programming, he was responsible for mathemat-
Zeal modeling and systems analysis for the Li stmulator, and was responsible for

development of COMPOSE, a simulation display preparation lemguage and control pro-
cessor for a Coast Guard helicopter simulator. Dr. Birms veceived @ B.E.E. degree

from the City College, New York; an M.S.

degree in physies, Magna Cwn Laude, From

Fairletgh Dickinson University; ond a Ph.D. in operations vesearch From New York

University.

