THE EFFICIENCY OF FORTRAN IN SIMULATION COMPUTERS

FRANK A. SIGMUND

SimuTator System§ Engineering Department
Goodyear Aerospace Corporation
Akron, Ohio

INTRODUCTION

The task of initially selecting
and sizing computer systems for train-
ing simulators is becoming more diffi-
cuit. Current Air Force and Navy sim-
ulator specifications state that the
software shall be programmed in
FORTRAN to the maximum degree techni-
cally feasible., Although the use of
a higher level Tlanguage such as
FORTRAN 1is desirable in many respects
for both simulator user and contrac-
tor, it entails an extensive new ef-
fort for the contractor during com-
puter selection and sizing. Previous-
1y, software for simulators was pro-
grammed in assembly language. A
thorough understanding of the adverse
impact of FORTRAN on computer loading
is necessary to reduce the risk in-
valved with computer selection.

COMPUTER SELECTION CONSIDERATIONS

The various types of computers
and the size of their associated
operational programs for a number of
Air Force simulators are shown in
Table 1 which was extracted from
Reference 1. Twelve different types
of computers are used in the twenty-
one simulators identified. From gne to
four computers are used per simulator.
The size of these computer systems as
indicated by words of core in the table
varies from 30K to 194K (where K=1000).
In summary, there is a wide variation
in the type and size of computer sys-
tems used in simulators.

Selection of a computer system_.
must include an assessment of per-
formance as well as factors such as
cost, reliability, maintainability,
configuration control, data and avail-
abiiity of equipment. A discussion
of computer performance follows.

To select a computer system for
a simulator application, the process-
ing requirements must be determined
from the amount and fidelity of the
simulation required. All data trans-
fers must be analyzed to determine the
proper type and speed for each inter-
face, Simulator computers are

281

typicalily compute limited, not input/
output Timited.

In the past when simulator soft-
ware was programmed in assembly lan-
guage, a computer loading estimate was
developed using the instruction set of
the candidate computer. This estimate
determined the approximate number of
computer memory words required and was
subdivided into instructions and data.
From the estimated number of instruc-
tions and instruction execution times,
the time required to perform all com-
putations and input/output was esti-
mated. The computer system was then
sized as far as memory and central
processing units are concerned. For
present simulator procurements, this
method is no longer adequate because
it does not consider the effect of
FORTRAN on the computer Toading esti-
mate. This paper will discuss and
measure several aspects of that effect.

For a real-time application, it
is necessary to determine whether the
computer system being considered is

sufficiently fast to perform all com-

putations and input/output and whether
the resultant computer loading 1s with-
in the real-time constraint of the
system. For digital flight simulators,
the. real-time constraint is a strin-
gent one where solution rates of up to
60 times per second may be required.

Resolution and accuracy require-
ments also are considered before a
computer system is selected. These
requirements are analyzed for both
computations and input/output opera-
tions to determine if the word length
of the considered computer is ade-
quate. :

Optional features of the con-
sidered computer also must be evalu-
ated, such as additional hardware. in-
terrupts or other_processor options,
Throughout a computer system analy-
sis, the cost and cost effectiveness
of various components and features are
cansidered.

TABLE 1.

TRAINING DEYICE
C-1358B
C-141A
C-141A
F-4E
C-5A
F-111A
FB-111A (BOMB/NAY)
FB-111A
A-7D
HH-53C

CH-3
F-111D
F=T11F
F-15

T-37

T-38

B-52 (MOD)

SENT (SIMULATOR FOR
ELECTRONIC WARFARE)

ASUPT (ADVANCED
SIMULATOR FOR UNDER-
GRADUATE PILQT
TRAINING)

SAAC (SIMULATOR FOR
AIR-TO-AIR COMBAT)

UNTS (UNDERGRADUATE
MAVIGATION TRAINING
SIMULATOR)

COMPUTER SIMULATOR'
MARK I 1
coc 321 2
SEL 840A 1
GP4B (SINGER) 1
SEL 840A/840MP 2
GP4 1
SIGMA 5 2
SIGMA 5 3
DC 6024/1 1
DC 6024/3 1
DC 6024/3 1
GP4B 2
GP4B 2
DC 6024/4 2
DC 6024/4 3/4 COCKPITS
DC 6024/4 3/4 COCKPITS
DC 6024/5 1
SEL 86 1
SEL 86 3
SIGMA § a

HONEYWELL H 71

8

COMPUTATION SYSTEMS COMPENDIUM=

LENGTH OF THE OPERATIONAL
COMPUTER PROGRAM SYSTEM
(WORDS OF CORE)

NOT AVAILABLE
38K
34K
92K
63K
92K
88K

180K
40K
30K
30K
194K
175K
103K
42K

49K N

30K
50K
FLIGHT 83K

VISUAL 32K
(FORTRAN)

80-100K
(FORTRAN)

41/52 STATIONS COMPLEX 51K 13 EA

RADAR CONTROL
9K (1 TIME)

*THE DATA IN THIS TABLE WAS EXTRACTED FROM AIR FORCE MASTER PLAN

SIMULATORS FOR AIRCREW TRAINING.

282

FINAL REPORT, DECEMEER 1975

Since a real-time system often
must be changed to meet additional re-
quirements, system expansion capabili-
ties are analyzed. The system should
be capable of expanding in a modular
manner with virtuaily no disturbance
to current operations.

SIGNIFICANT COMPUTER PERFORMANC
CHARACTERISTICS _

For simulators currently being
specified, performance characteris-
tics of greatest significance are:

Speed

FORTRAN efficiency
Multiprocessor capability
Increased addressing capability

Speed, in terms of IPS {instructions
per second), has always been and con-
tinues to be of primary importance in
simuiator computer selection.’ FORTRAN
efficiency, which is the subject of
this paper, has become a critical

jtem because of the requirement to use
FORTRAN as the primary programming
language. Multiprocessor capability
and direct addressing of increasingly
iarger blocks of wemory have become
significant items because of increas-
ing simulation requirements and com-
puter spare time and memory require-
ments of up to 40%.

FORTRAN V¥S. ASSEMBLY LANGUAGE
EFFICIENCY

A study was formulated in order
to evaluate the various coding types
that exist in a simuiator and deter-
mine which types could be efficiently
programmed in FORTRAN. Simulation
programs written in Harris SLASH 4
assembly language from the F-15 Fiight
Simulator developed by Goodyear Aero-
space were used as the input for this
study.

A computer program was developed
to read Harris assembly language
source code, classify the code into

.various types and print the code type
distribution data.

This data was examined to deter-
mine which coding types should be
studied in detajl. The criteria for
selection included a significant
amount of use in several programs and
a type which could be isolated for
study. The selected coding types were
then evaluated for the effects of the
FORTRAN compiler on the size and

running time of the code. The areas
selected for study were bit manipula-
tions, logical operations, floating
point arithmetic and basic instruc-
tions. These types of processing were
studied by comparing abbreviated
FORTRAN and assembly versions of F-15
simulator programs.

The Harris FORTRAN compiler had
as an optional feature an optimizer
which processed the FORTRAN output and
produced more efficient code in sever-
al areas. Quantitative results of op~
timized FORTRAN vs assembly language
efficiency for the various processing
types are shown in Table 2. A discus-
?ion of each type of processing fol-

OwWS .

BIT OPERATIONS

Bit operations are defined as
those which manjpulate a single bit
either via a register or directly in
memory. It was theorized that these
would provide severe difficulty for
FORTRAN to handle efficiently because
there is no direct reference to indi-
vidual bits in FORTRAN. The HUD con-
trol (HUDCTL} program was selected
for the test. Portions of HUDCTL were
extracted and coded in FORTRAN and
assembly language. These portions
were considered to be representative
of simulator bit processing. There
were two FORTRAN versions generated.
One version used a larger data matrix
with one word representing each pos-
sible discrete signal.

Four runs were made through dif-
ferent paths of the program logic.
This was done to ensure that several
code variations were exercised for a
larger data sample. The results in
Table 2 were based on the average exe-
cutjon time for these four runs. It
was concluded that, for the Harris
SLASH 4, FORTRAN cannot efficiently
handle bit manipulations. This com=-
puter is designed to efficiently ma-
nipulate single bits and is more effi-

cient than some other computers in
this respect. However, the FORTRAN
compiler is not designed for bit manip-
ulation and, therefore, does not take
advantage of the machine capability.
Nor does the optimizer significantly
improve the results for this type of
processing. . The use of one word per
signal instead of a packed format im-
proved the program time and core effi-
ciency but required a much larger core
area for the data. In this example,
it was assumed that the 20 data words
were fully packed with 24 discretes

TABLE 2. OPTIMIZED FORTRAN VS ASSEMBLY LANGUAGE EFFICIENCY,
HARRIS FORTRAN

SIZE OF ASSEMBLY % SIZE EXPANSION % TIME EXPANSION
TYPE OF PROCESSING SAMPLE (WORDS) VER ASSEMBLY | ANGUAGE QVER ASSEMBLY LANGUAGE
BIT (PACKED DATA) a7 ' 186 C - 185
BIT (UNPACKED DATA) 51 41 33
BASIC (TRANSFER, 178 11 10

ADD, SUBTRACT., COM-
PARE, BRANCH)

FLOATING POINT 445 : 12 14
LOGICAL 106 5 7

AVERAGE OF ABOVE
{EXCLUSIVE OF BIT,
PACKED DATA) - 17 ' 16

284

in each. The word version, therefore,
required 480 words for data instead of
20. This method, though much better
than the packed format method, is
sti11 not efficient enough for a bit
manipulating program. An alternative
to the use of FORTRAN would be to code
programs with a large amount of bit
manipulation instructions in assembly
language or to use in-Tine assembly
language code for this type of pro-
cessing. If this is not possible, and
timing is a critical factor, the use
of one signal per word is another pos-
sible alternative if sufficient core
is available,

No FORTRAN compilers of the can-
didate computers for simulators have
the capability to handle individual
bits efficiently. Some of these com-
puters also lack the capability to
handle bits efficiently even in assem-
bly language because of different ma-
chine architecture. For these com-
puters, the difference between assem-
bly language and FORTRAN may not be as
great.)

LOGICAL OPERATIONS

Logical operations are defined as
the AND, OR and XOR functions. It was
theorized that the Harris SLASH 4
FORTRAN could efficiently handle a
program of this type which masks and
manipulates several bits at one time.
The Built-In-Test {BIT)} program was
selected as representative of signi-~
ficant use of this kind of code. Se-
lected portions of BIT were coded both
in FORTRAN and assembly language.

3ix runs were made to exercise
various program paths and ensure that
coding was identical in both the as-
semhly and FORTRAN versions. The re-
sults indicate that with optimization,
FORTRAN is almost as efficient as as-
sembly language. This indicates that
programs with logical operations could
be coded in FORTRAN for the Harris
SLASH 4 computer. Some other computer
systems, however, do not have the ARD,
OR, and XOR operators available for
masking operations except as jntrinsic
functions. If these compilers are
used, and generate function calls in-
stead of simple instructions, the ef-
ficjency will be greatly reduced. For
these systems, their standard FORTRAN
may be adequate for logic functions.
if these compilers generate direct
code as efficiently as the Harris com-
piler instead of function calls, they
would be adequate.

285

“efficiency.

FLOATING POINT

Floating point arithmetic opera-

‘tions comprise a major portion of sim-

ulator programs and, thus, it is impor-
tant that FORTRAN efficiently compile
it. The Forces and Moments (FCMOM)
program has many floating point equa-
tions and had previously been compiled
by the Harris optimizing compiler.

The generated code was studied for its
It was found to be very
.efficient, as expected. There is no

- problem in using FORTRAN for floating

point equations. Since FCMOM is 90%
floating point operations, it is a i
good benchmark for assessing FORTRAN
floating point efficiency. The FCMOM
program will be discussed in more de-
tail in the benchmark section of this
paper.

BASIC INSTRUCTIONS

The category of basic instruc-
tjons includes integer arithmetic,
transfers, compares, branches. A
benchmark containing these instruc-
tion types was generated from the
Tactics Data Save (TACSAV) program.
It was anticipated the FORTRAN opti-

mizing compiler would handie these .
.types of instructions very efficiently.

The benchmark results, presented in
Table 2 indicate this is true. Pro-
grams composed primarily of these
basic instructions could, therefore,
be efficiently programmeéd in FORTRAN.

OTHER INSTRUCTION TYPES

Shift instructions were found to
be a small percentage of F-15 simula-
tor instructions and, therefore, con-
sidered to be insignificant. The
Harris compiler has special instruc-
tions (SHIFT and ROTAT)} which enable
efficient shift operations. Other

. compilers rely on the optimizer to

transiate a power of 2 into a shift
operation. This also provides effi-
cient coding except in the case when
end around shifting is desired. This

_operation, though not handled direct-

1y by many compilers, is not critical
to simulator programs. Thus, there
appears to be no problem with most
.shift instructions being handied by
FORTRAN.

Byte instructions were also found
to be a small percentage of F-15 sim-
ulator instructions. Since these in-
structions really are designed to han-
dle the lower 8 bhits of a word in the
accumulator, it appears that there

will be no significant change in effi-
ciency in using FORTRAN for programs
which contain these instructions.

Input/output and interrupt han-
dling functions are very 111-suited
to FORTRAN,
that routines with these instructions
be written in assembly language or in
FORTRAN with some in-1ine assembly
code in special areas. FORTRAN, un-
1ike assembly language, does not pro-
vide a direct input/output capability.
The calling of general-purpose I/0
subroutines by FORTRAN in lieu of dir-
ect input/output is unacceptable be-
cause of their inherent inefficiency.
There is no capability in FORTRAN to
save registers as 1s required for an
interrupt routine. Therefore, simula-
tor programs which contain I/0 func-
tions or which are interrupt initiated
cannot be coded in FORTRAN.

EQRTRAN ¥S, ASSEMBLY LANGUAGE
EFFICIENCY - CONCLUSIONS

The operations of programs were
divided into coding types, and these
types were evaluated for their use in
FORTRAN. The following types were
found to be inadequate for FORTRAN:
single bit manipulation, input/output,
and interrupt processing. The pro-
cessing types which are amenable to
FORTRAN are floating point arithmetic,
Togical functions, and basic instruc-
tions which include transfers, inte-
ger arithmetic, branches, compares,
shifts and byte operations.

OPTIMIZATION CONSIDERATIONS

As mentioned eariier, the Harris
FORTRAN compiler features an optimizer
* which processes the FORTRAN output and
produces more efficient object code 1in
several areas. This optimization is
all Tocal; that is, each statement 1is
optimized independently of other state-
ments. The result of this optimiza-
tion is a2 reduction in module storage
and execution time requirements. The
actual reductions are dependent upon
the amount of code in those areas that
the optimizer operates on. According
to Reference 2, for a typical module
the number of memory words required to
store the program exclusive of data
words is reduced by 10 to 50%. The
computation time exclusive of input/
output time is reduced by 10 to 30%.
This is corroborated by the actual re-
sults for the types of processing
discussed above. These results in
terms of percent expansion before and

It is, therefore, necessary

"after optimization, are shown in Table

3. The average core savings exclusive
of data for all five processing types
in the Table was 43%. The average
execution time savings was 29%. These
savings are significant enough to dem-
onstrate the importance of using an
optimizing FORTRAN compiler in real-
time training simulators.

Therefore, any computer selected
for use in a training simulator which
will be programmed in FORTRAN should
have an optimizing compiler. The
Harris optimizer is efficient enough
to make the use of FORTRAN possibie in
simulators. The optimizer does not
enable the efficient use of bit manip-
ulation, I/0 and interrupts. These
instruction types would have to be
coded in assembly language to maintain
high program efficiency. Other com-
puters which could be selected for
simulation must have a FORTRAN opti-
mizer at least as efficient as the
Harris optimizer. Some of these sys-
tems have global optimizers, which
optimize code across more than one
statement at a time, thus providing
increased efficiency.

A comparison of two optimizing
compilers that are designed for exe-
cution on the same computer, the
Interdata 8/32, is shown in Table 4.
FORTRAN VI, which is a superset of the
ANSI Standard (X3.9-1966)}, performs
optimizations which include subscript
evaluation by Tinearization, common
index elimination, register alloca-
tion and transfer logic. FORTRAN VII
which is being implemented according
to one of the Tatest ANSI Standards
(¥333/56), performs more extensive
optimizations including both machine
independent and machine dependent op-
timizations. Table 4 shows results
for the combined totals of the FCMOM
and ELECT benchmark programs which are
discussed in the following section of
this paper. The FORTRAN YII compiler
was not available for an actual bench-
mark run because the compiler was
undergoing final acceptance test.
However, projected results were ob-
tained by hand-optimizing the code
generated by the FORTRAN VI compiler
according to the design specification
of the FORTRAN VII compiler. From the
table, it can be seen that a 32%
savings in memory and a 23% savings in
time are achieved with the compiler
with more extensive optimization.

TABLE 3, BEFQRE AND AFTER OPTIMIZATION, HARRIS FORTRAN

% SIZE EXPANSION % TIME EXPANSION
TYPE OF PROCESSING OVER ASSEMBLY LANGUAGE OVER ASSEMBLY LANGUAGE
BEFORE AFTER _ BEFORE AFTER
BIT {PACKED DATA) 208 186 189 185
BIT (UNPACKED DATA) 90 41 48 33
LOGICAL N 5 24 7
FLOATING POINT 22 12 25 14
BASIC 93 mn 62 10
AVERAGE CORE SAVINGS AVERAGE TIME SAVINGS
(OPTIMIZED VS NON- {OPTIMIZED VS NON-
OPTIMIZED) OPTIMIZED)
43% 29%

TABLE 4. A COMPARISON OF TWO OPTIMIZING COMPILERS

COMBINED TOTALS OF INTERDATA 8/32

FCMOM AND ELECT

BENCHMARKS . FORTRAN VI FORTRAN VIT*
MEMORY TOTAL (WORDS) 1277 867

% MEMORY SAVINGS - 32
TIME TOTAL (MSEC) _ 1620 1250

% TIME SAVINGS - 23

*PROJECTED RESULTS

287

BENCHMARK PROGRAMS

Two FORTRAN benchmark programs

were used to measure the relative per-

formance capabilities of potential
simulation computers and their FORTRAN
compilers. The benchmark programs
were run on each computer,
grams are representative samples of
the kinds of programs that are used in
flight simulators. Two performance
criteria were considered: (1) com-
pilTed program size and (2) program
execution time. The characteristics
of the tested programs. on the detailed
test results are presented below.

The two programs which were used
are FORTRAN versijons of assembly lan-
guage programs selected from the F-15
flight simulator. One program, which

is part of the aerodynamics simulation

subsystem, evaluates total aircraft
forces and moments. The other program
simulates one of the aircraft systems,
the electrical system.

The Forces and Moments Program
(FCMOM) consists almost entirely of
arithmetic-type expressions. The num-
ber of executable source statements in
the FORTRAN program is 83 as compared

These pro-

with 372 in the F-15 assembly Tanguage ~

program. Both of these numbers are
program size only and as such do not
include storage of external variables.
The test case that was selected cor-
responded to an airborne F-15 in a
typical flight configuration.

The Electrical Program (ELECT)
consists almost entirely of logical
expressions. There are 277 execlt-
able source statements in the FORTRAN
program as compared with 324 in the
F~15 assembly language program. Four
test cases were selected which corres-
pond to typical operational conditions
of the electrical system. An assump-
tion that was made prior to coding the
ELECT program was that each discrete
input and output resided in a Full
word. This would have to be done by
special I/0 hardware or by software
which would unpack and pack the dis-
crete inputs and outputs, respectively.

The henchmark programs were run
on the following computers:

Harris SLASH 4
Harris SLASH 7
Interdata 8/32
SEL 32/55
MODCOMP IV/25
DEC KL~10
NORSK NOQRD 50

288

The results of the test runs on each
computer are shown in Table 5.

The size of the FORTRAN Memory

Totals in the table is a measure of:

(1) compiler efficiency and (2) in-
struction set power. The first of
these- two factors is more predominant.
The size of the FORTRAN Time Totals 1in
the table provides a measure of com-
puter hardware execution speeds as
well as the factors mentioned above,

A11 of the FORTRAN memory and run
time data shown in the tables repre-
sent actual benchmark runs except for
those marked with an asterisk {*) %o
designate "projected results."

The SEL 32/55 FCMOM results were
generated by substituting specified
instruction execution times of the
floating point hardware for the times
of the firmware instructions actually
executed in the benchmark run. The
NORD 50 benchmark results were updated
from the actual results by factoring
in the effect of a pending compiler
modification which enables direct,
rather than indirect, addressing of
FORTRAN common variables. And, as
mentioned earlier, the Interdata 8/32
FORTRAN VII results were obtained by
hand-optimizing the code generated by
the existing FORTRAN Y¥I compiler ac- .
cording to the design specification of
the FORTRAN VII. compiler. -

DISCUSSION OF BENCHMARK RESULTS

The objective of this portion of
the paper is not to compare architec-
tures of the seven computers shown in
Table 5. However, it is appropriate
to classify the computers intoe three
groups: Tlarge scale, "midicomputer,”
and minicomputer. According to :
Theis®, a "midicomputer" is a high-
performance machine with a mid-length
word size and a less than midsize
pricetag. Classifying the computers
then, the DEC KL-10 with its 36-bit
word size is definitely a large-scale
computer, the MODCOMP IV¥/25 with its
T16-bit word size is a minicomputer,
and the remaining five computers with
their 24-and 32-bit word sizes are
midicomputers.

As might be expected, the DEC KL-
10 provided the best memory/time effi-
ciency using 1% less memory and 40%
less execution time than the baseline
Harris SLASH 4 assembly language
benchmarks. However, associated with

TABLE 5. BENCHMARK RESULTS
RSSEMBLY FORIRAN
COMBINED TOTALS OF INTERDATA NORSK
FCMOM & ELECT HARRIS I|DEC |HARRIS | HARRIS 8/32 SELl NORD |MODCOMP
BENCHMARKS SLASH 4| KL-10|SLASH 4| SLASH 7|FORTRAN VIIB2/58 50 | IV/25
* * *
MEMORY TOTAL (WORDS) 790 | 786 | 940 | 948 867 1816 | 964 a97
% MEMORY CHANGE '
(FORTRAN VS HARRIS
SLASH 4 ASSEMBLY
LANGUAGE) -1 19 20 10 3| 220 26
TIME TOTAL (MSEC) 1511 907 | 1754 |1448 1250 1147 | 1460 2898
4 TIME CHANGE
(FORTRAN VS HARRIS
SLASH 4 ASSEMBLY
LANGUAGE) -40 16 -4 -17 -23 | -3| o2

*PROJECTED RESULTS

289

the high performance of this large
scale computer is a large scale price
tag. The memory efficiency of the
five midicomputers ranged from 22%
more memory than baseline for the NORD
50 to only 3% more memory than base-
line for the SEL 32/55. The execution
time efficiency of theseé computers
ranged from 16% more time than base-
1ine for the Harris SLASH 4 to 24%
less time than baseline for the SEL
32/55. The MODCOMP 1IV/25 provided the
least efficient results (26% more mem-
ory and 92% more time} mainly because
it is basically a 16-bit machine with
a limited 32-bit capability added on.
This results in two 16-bit memory ac-
cesses for each 32-bit word and an
accompanying increase in execution
time.

A11 of the computers in the table
made use of optimizing compilers in
the benchmark runs.

SUMMARY

A summary of the results of the
Timited analysis of FORTRAN efficiency
performed for this paper are presented
below:

e An average memory penalty of 17%
and time penalty of 16% was in-
curred for four types of process- .
ing {Table 2} in a Harris FORTRAN
vs assembly language efficiency
comparison. This was further con-
firmed by the combined benchmark
totals for the Harris SLASH 4
(Table 5) where the memory penalty
was 19% and the time penalty was
16%. According to Trainor and
BurTlakoff4, these results are con-
sistent with published results for
other comparable HOLS that have in-
dicated a 10% to 20% penalty.

® An average memory savings of 43%
and time savings of 29% {Table 3)
was achieved in an optimizing vs.
non-optimizing FORTRAN compiler
comparison.

e A memory savings of 32% and time
savings of 23% was achieved in a
comparison of two optimizing com-
pilers.

® Benchmark results for seven can-
didate simulation computers were
presented exhibiting a wide range
of memory and execution time effi-
ciencies.

290

CONCLUSIONS

FORTRAN efficiency is an jmpor-
tant factor in evaluating the perform-
ance of computers for training simula-
tors. From the results of the analy-
sis of FORTRAN efficiency summarized
above, the conclusions are as follows:

® Minimal execution time and memory
penalties are incurred for most
types of processing which are per-
formed in training simulators.

® An optimizing compiler is essential.

& An optimizing compiler that per-
forms extensive optimization is
highiy desirable.

® A comparison of benchmark results
must be performed to assess rela-
tive efficiencies of candidate
computers.

REFERENCES

1. Air Force Master Plan Simulatoirs —
for Aircrew Trainin Final Report,
ASD/XR-TR75-25, Deputy for Develop-
ment Planning, Aeronautical Systems

Division, Wright-Patterson Air Force’
Base, pecember 1975.)

2. DC 6024 FORTRAN Compiler General
Specification, Datacraft Cerporation,
September, 1973. ' T

3. Theis, D.J., "The Midicomputer,"
Datamation, February, 1977, VYol. 23,
No. 2, pages 73-82.

4. Trainor, W.L. and Burlakoff, M.,
"JOVIAL - 73 Versus Assembly Language
- An Efficiency Comparison," NAECON'77
Record. o i]) .
5. Sigmund, F.A., Final Report,
Simulator Software Develgopment IR&D
Project No. 0509-76D11, GER-T16416,
Goodyear Aerospace Corporation,
February 3, 1977.

6. Babel, P.S. and Birns, M.L.,

"A System Oriented Benchmark For

Training Simulators,” Ninth NTEC/
Industry Conference Proceedings,

Novembeyr 9-11, T1976.

7. Allen, F.E., and Cocke, J., "A
Catalogue of Optimizing Transforma-
tions," Design and Optimization of

Compilers, New Jersey: Prentice-
Hatl, 1972.

||| e

ABOUT THE AUTHOR

MR, FRANK SIGMUND .is Special Proghams Group Leader in the

Simulaton Systems Engineering Department at Geodyear Aervspace .in
Akron, Ohio. He is nesponsible for proposal support, Tnternational
Reseatah and Pevelopment {IR § D) profect execution, ard suppori

of other programming ghoups. He has been principal investigaton

on several IR € D profects, the most necent of which lnvestigated
the use of FORTRAN and structured proghamming in sdmulaton

software development. He has been Lead softuware engineeh on 4
number of Navy and Ain Foree §Light fraining simulatons. ‘
Prior o his wokk at Goodyear Aerocspace, Mr. Sigmund was with _
General Efectric at ifs Computern Depattment in Phoenix and Cleveland.
While thene, he programmed an assembler for a muliiproghamming

disc system and provided fechnical support for distriet

marketing., In Syracuse, New Yonk, also with General Efectric, he
proghammed The 412L air weapons control system. Me. Sigmund

serwved as a second Lieutenant din the U.S. Aumy Transporlaiion

Conps at Fi. Eustis, He has a B.S. degree in physics grom John
Cannoll Univensify in Cleveland,

291/282

