SOFTWARE MANAGEMENT OF A COMPLEX WEAPON SYSTEM SIMULATOR

ALBERT S. GOLDSTEIN AND WENDELL J. NEWELL
The Boeing Company
Wichita Division

INTRODUCTION
This paper presents the history and lessons flexible instructional system. The contract
learned jn the development and implementa- for the development of a production proto-
tion of the computer programs for a large type unit began in mid-1977., The develop-
complex Weapon System Trainer (WST)}. The ment team consisted of the Boeing Company,
WST is a 'high fidelity simulator of the B-52 Wichita as integrator and several subcon-
and KC-135 crew stations {Figure 1}. The WST tractors responsible for the variocus stations
includes visual, motion, sound, and a highly and systems as indicated in Figure 2.
Electronlo
Complex ctors
KC-135 B-52 Instru
Instructors — Station
Statio
.‘> v
i
Alr Force :] f
Briefing TR 7
Roo o o .
e R H PR T
' {
*§ o -
Electronic — g
Maint ‘
aintenance ‘ >
Room A 1/
’ I MRS |
_ I 1,
- ; | > - >
l -~
i .
p . I \ . B-52 Offensive
. Stati
KC-135 KC-135 B-52 Detensive B-52 Flight aiten
Navigators Flight Station Station

Station Station

FIGURE 1T B-52/KC-135 WST TEST COMPLEX

21

WET
COMPUTER
SYSTEM
BOEING
52 \
KG-138 WET B-!
SIMULATOR COMMON SIMULATOR
BOEING " | aceing AOEING
| | J. i [|
PLIGHT INSTRUCTOR FUGHT DEFENSIVE
STATION STATION SENSOR COMPUTER STATION STATION
REDIFON LOGICON GENERAL SEL AGOIFON ANTEKNA
ELECTRIC BOEMG
OFFENSIVE INGTRUGTOR
NTATIOR COMMON ETATION STATION
BOEING BUEING BOENG LOGICOM

FIGURE 2 WST COMPUTATIONAL SYSTEM

COMPUTER PROGRAM SYSTEM

The WST computer program system is composed
of over 600 Real-Time Operating Programs
{RTOPS} and support software. Standards were
established to ensure moduiarity so that most
RTOPS are hetween 100 and 400 lines of codes.
For each 4 to 5 1ines of code, there are 3
lines of comments. In addition, there are
several large programs of one to two thousand
lines of codes. When support programs are
included, the total lines of code exceed one
miilion. A structured Fortran preprocessor
was selected and assembly Tanguage programning
was allowed only in rare special cases. This
S-Fortran processor allowed direct implementa-
tion of structured design and was easy to read
and maintain; it incredsed programming
efficiency and increased program reliability.

The applications software can be characterized
as having the elements of a large real-time
command and control system {with significant
man/machine interfaces) along with the real-
time response required of high fidelity simu-
Tators. The computer hardware consists of
Systems 32/55 minicomputers and associated
peripherals. The WST crew stations are
designed to operate in independent, mixed and
integrated modes (Figure 3). A key interface
design for both the simulator operations and
software development was the implementation
of a shared memory datapool arrangement. This
shared memory scheme (Figure 4) makes it
possible to change the software design and
revise simulator operations with minimum
design impact. This datapool design also
made it possible to design, code, and fest
the software so that programmers need use
only mnemonic names for all variables without

knowing the locations and detailed character-

istics of each variable.

22

MANAGEMENT CONTROLS AND TECHNIQUES

It was recognized at the beginning of the
WST Program that the complexity and amount of
code, and the division of design responsi-
bilities among team members, required estab-
Tishment of sofitware standards, measurements,
and tracking techniques. Both budget and
schedule Timitations were severe. Although
the team assembled represented some of the
most qualified and experienced in terms of
design, data, and operations, the software
design teams were characterized by young and
inexperienced personnel. (Now a seasoned
software development group.} This turned out
to have a significant advantage, in that the
proper management standards, procedures, and
tracking techniques could be applied with a
minimum of the typical software design syn-
dromes encountered in large complex computer
program development projects. Figure 5 shows
the similarities between hardware and soft-
ware design processes used. We were able to
resist pressures to shortcut the software
development process from both designers and
higher management through the reporting and
tracking mechanism. We avoided the 90% com-
plete, Tet me program and forget about design
documentation, I'11 worry about interfaces
later, don't constrain'me with programming
standards, and that's the way we did it ten
years ago syndromes. Computer program
technical integrity was maintained through
technical walkthroughs on a module basis,
frequent design reviews, module tests and
verification procedures, subintegration test
procedures and documented test results.
The documentation mechanism used was an

adaptation of the milestone system (Figure €).

OFFENSIVE FLIGHT DEFENSIVE
STATION STATION STATION
EXECUNVE EXECUTIVE EXECUTIVE
Lot cPU cey
EXECUTIVES EXECUTIVES EXECUTIVES
) @) m
h 4 L -
RTOP RTOP RYOP
FIGURE 3a B-52 INDEPENDENT MODE -
MASTER
EXECUTIVE
{FS)
FLIGHT OFFENSIVE DEFENSIVE,
STATION STATION STATION
EXECUTIVE EXECUTIVE EXECUTIVE
o ¢g§§§
CPU ceu Py
EXECUTIVES EXECUTIVES EXECUTIVES
LE] o) 24
y v J 2
REAL - REAL - REAL -
TIME TIME TME
OPERATION OPERATION OPERATION
PROGRAMS PROGAAMS PROGRAMS

FIGURE 3b B-52 INTEGRATED OPERATION MODE

23

Datapoo!

e Datapool {Sottware/
Hardware
Intertace
Definition) Release to
]) - BWC
Computer Data Space [+ — Datapool Antekna
Data Space + Manager Dictionary G.E.
Definition Sotiware Logicon
I Sheety Redifon
i Data
BWC BWC . Base To
Antekna (Shared CPUs
G.E‘ Listings Memory)
Logicon lterate Layout
Redifon Monthly
FIGURE 4 SOFTWARE INTERFACE CONTROL
SlRCUT POWER
BOX SuUPPLY
EQUIPMENT
SUBINTEGRATION
CIRCuT MOTHER 3T ARD AMND TEST
830k
SAECIFICATION P ¢ BOAAD NO. 1 . |
o jomour L op.
P C. BOARD NO. 2 sox Ltusva

HARDWARAE

SOFTWARE

@ SOFTWARE
REQUIAEMENTS

DESIGN

=
ENG‘”‘ER\&D-GRAFTSMAD—‘ FABRICATION

ICD z

b
MS
NQ. 2

h 4

UND. 3

™ ™
PRELIMINARY INTERFACE DETAILED
DESIGH AND DRAWING DESIGN
TEST PLAN DATA POOL

STORAGE

FIGURE 5 SOFTWARE VS HARDWARE

24

@ OPERATION
NSTRUCTION
& TEST AESULTS
@ SUBINTEGRATION
@ FINAL DESIGN

B itk haan L LA AR] [t R /N Lk B

URERS QUIDE

PRACARAMMERS
NOTERQOK
MILESTONE MILESTONE MLESTONE PROGRANMING
DOCUMENT § DOCUMENT 3 DOCUMENT & MANUAL
REQUILLENTS IH{ERFAGE UroaTd BESIGN LERYORE
ACIFICATION DEFINTION OCUMENTATION T 11
I ST
U ESTONE MH.ESTONE WILESTONE RESULTS
DOCUMENT 2 DOCUMENT 4 BOCUMENT 8-1 ,
HWFLEMENTATION pasian N
CONCERT ARD TEST MILESTONE
TEBT PLAR DOCUMENTATION PROGCEQURES DOCUMENT T
o OPERATING
NETRUCTIONS
preany |} oerae CODE AND]

DERIGN DESIGN CHECKOUY,

| || sopuce] {sussverem | |svazeu _H QUALIFICATION
TEaT

maT INTEGAATION| ™ INTEGRATION
AND TESY AND TEST

CONTRACY
AWARD

= (=)

arTem 2

- FIGURE 6 MILESTONE DOCUMENTATION

The other key management action was to apply
the same engineering design disciplines used
successfully by Boeing for hardware and air-
plane systems integration to the formal soft-
ware develppmeni process shown in Figure 7
{and we stuck to it). We modified the water-
fall theory as shown in Figure 8, by providing
feedback through the mechanism of completely
revised and approved documentation prior to
a11owing coding, and the implementation of
formalized computer program change procedures
that provided traceability and contrpl of all
changes resulting from module and system test-
ing (Figure 9). A committment was made to
include a quality assurance roie early in the
software development process prior to module
testing instead of at the verification test
precedure effort late in the program, This
helped maintain configuration control and
audit trails.

25

INTERFACE CONTROL

A key mechanism for ensuring that the soft-
ware design was tied to the simulator hard-

ware design was to use the datapool mremonics -

as the hardware and software interface i
identifier (Figure 10}. A1l wiring connectors
and signals were identified and correlated to .
the variable mnemonics. The datapoot was
maintained and controlled by the adaptation

of a cammércially available data base manager
program. By insisting that all software
development standards, and all interfaces with
shared memory be defined among all team
members, the tasks of hardware/software
integration and test wevre made possible

with a minimum of the problems encountered

in this phase of software development,

; ¢ Conduct a formal software development process

System
Requirsments

‘Software (Waterfall Theory)
Requirements !

i
{ Analysis ‘
|
l Program
l Design ‘
l [
| 1| Coding
1 :
le .
' 40% 1 20% Testing
5 40%

FIGURE 7 FIRST PREREQUISITE TO INTEGRATING SOFTWARE

¢ Results
System
Rgmts

— Cost and schedule overruns

SIRD -~ Software radesign
Software
Rgmis — Belated recognition of problems
PRI | (Surprises!)
: Analysis
E ! VSIRD
!____________ Program — . o o g e i S
Design :
I
|
; |
: Software :
. System |
; Testing |
e Solutions MS6 I
| — Managemaent to stabilize waterfall Simulator
Operations

—~ Insartion of control mechanisms

~ Engineering discipline applied to software
FIGURE 8_ WATER FLOWS UPHILL IN THE SOFTWARE DEVELOPMENT PROCESS

26

Alr Force
System Spec

. Mnemonic
. System Diagram' No.

. Al Modufes Associated
. Generic Description

. Detalled Description

[SF SRS I L N

RTOP
Milestones
1,2

Def Sta —
Qff Sta ~
Nav Sta —
“Fit Sta -~

. Mremonic

- Linkage Address
Level-Pin-Position

. Circuit Diagram

. Type

Fu L N

_Li_nl-caée
el
4 Book

. System
Diagrams

FIGURE 9 DESIGN TRACEABILITY AND DATA CORRELATION REQUIREMENTS

27

1. Mremonic

2. Relative Addresg

3. Base Address

4. Generic Description
5. Type

7) . .
Milestones -
Correlation . . G-I, 611 '
Requfred "

1. Mnemonic
2. Milestone
No. 3

3. SD No.

Shared Memory MS/4
System Diagram {Datapaol) Detailed Design
‘ 3
9 1 2 3 45 ot 2 3
4 T
SD #

{. Mnemonic
2. M5/ ¥
3. SD #

1. Mnemonicg

2. Relative Address

3. Base Address

4, Generic Description
5. Type

1. Mnemonic

2. Linkage Address
Level-Pin-Position

3. Circuit Diagram

4. Type

MS/3
Detailed Interface
Description

'y

Y
ne LN -

Mnemonic

SD #

All modules that generate or use the variable
Generic Description

Detaited Description

naoN =

FIGURE 10 HARDWARE/SOFTWARE INTERFACE CONTROL

PROBLEM AREAS

Management Organization

The original organization of the computer
pragram development group consisted of a
design organization and requirements and
verification organization. There was no
single .authority for the computational design.
Early in the development program, it was
recognized that this organization was unwork-
abTe. Those portions of the requirements and
verification group that were necessary to
provide the checks and balances were retained
and placed under the computer program design
manager. The main function of this group was
to ensure the integrity of the design by
thorough documentation review and design test.
Later in the development schedule, this group
shad its role as watchdog and performed most
of the module coding and testing functions
which proved the modularity concept of the
software design. Most important to us, this
proved that with the proper design documenta-
tion and adherence to programming standards a

28

person other than the designer could code
the RTOP, and a third person could test
the RTOP., These activities had three)
" effects. First it demonstrated to manage-
ment that the software was properly docu-
mented, maintainable and could be easily
taken over by the Air Force. Second, this
approach resulted in considerable cost T
savings as our records indicate. The usual
20% of project funds allocated to coding
was reduced to less than 15%, which includ-
ed the costs expended for module testing.
Third, the extent of documentation, modular-
ity, and testing allowed a decision to be
made to omit the usual extensive sub-
integration of software. This function was
combined with the Hardware/Software Inte-
gration (HSI)} tasks. The result was con-
siderable savings in dollars and.achieved
a very challenging schedule by allowing .
overlap of the design, code and test phases
of the software development and allocation
of personnel to these functions cost-
effectively.

Another early organizational mistake was

placing of the documentation of the mathemati-
cal models in a systems engineering organiza-
tion. This organization produced the Software
Implementation Requirement Documents (SIRDS)
which, although adequately detailed on a module
Tevel, failed to include sufficient system
integration considerations and test require-
ments in the math models. This deficiency
was overcome by the adherence of the soft-
ware designers to module design and testing
integrity. The lesson learned 1s that devel-
opment of the math models should be placed
under the software development manager to
ensure sufficient interchange with software
designers, and maintaining of standards to
facilitate subsystem and HSI testing down-
stream. The Systems Engineering function is
to define requirements and determine alloca-
tion between hardware and software.

Subcontract Integraticon

A basic 1ntegration problem was the lack of
adequate interface definition which resulted
in false starts and/or Tate starts on the
software design. Interface control documents
including datapool definitions were not
properly prepared early enough in the project.
Correcting this situation required costly
establishment of task forces and development

of data base generation and control techniques.

Earlier and proper data base management

and coordination with team members, all of
whomwere at least 2000 miles away (including
England}, would have prevented considerable
difficulity in the HSI and tast activities.
The fact that the basic scheme of shared
memory design was sound allowed successful
attainment of the software design and integ-
ration. Other key techniques for contrel and
integration of subcontractor software was to
contractually impose the same standards on
them, to provide executive and support soft-
ware, and to provide configuration control
and object verification procedures to suppert
software testing (Figure 11).

2%

Measurement and Tracking of Software
“Development

As stated above, the early establishment of
software design and development standards
combined with the modular design allowad
tracking of progress at the individual RTOP
Tevel. The milestone documentation system
shown previously in (Figure 9) also allowed
the further tracking of each RTOP at each
mitestone lTevel. Insistence was maintained
on complete and thorough documentation prior
to code and test and complete review as
shown in Figure 12 (requiring 3 signatures)
at the working level, Work charts (Figure
13) were established and updated weekly for
each simulator station and used by mapage-
ment to monitor progress and reveal problem
areas. As work fell behind, management
actions, decisions, and recovery plan were
implemented. Extensive tracking by all
Tevels of management on daily and weekly
intervals was included and a computerized
program planning and control system was
established showing the start and completion
dates of each event, down to the individual
milestone document.

CONCLUSIONS BY BWC

A complex simulator software development
project can be successfully accomplished on
schedule and within budget by adhering to
engineering design disciplines and manage-
rient controls. There are no shortcuts to
design and development of software. The key
to design integrity and configuration control
is to maintain formal quality assurance
through established mechanism as shown in
Figure 14. Documentation of design prior

to coding is essential. A popular belief
that programming is an uncontroliable |
intellectual exercise, that defies applica-
tion of engineering disciplines and manage-
rnent control techniques, is erroneous as we
have proven in the B-52/KC-135 Weapons
Systems Trainer. Detail tracking of soft-
ware development progress is required using
realistic measures of progress such as
documentation, code and testing of the
smallest definable module.

t

DIRECTIVES AND
INFORMATION

= ADD SQURCE

« DELETE SOURCE
+« COPY MODULE

USER FILES

4

BACKUP AND
OVERFLOW FILES

v

L 4

v

CONFIGURATION
CONTROL PROGRAM

« MODIFY LIBRARIES & FILES

* LIBRARY & FILE STATUS DOCUMENTS

» RECOVERY PROCEDURES

AUDIT TRAIL
* DATE
® LAST USED DATE

CONFIGURATION

CONTROL

LIBRARIES AND

FILES

* DRAWING TREE
FILE

= TEST DATA FILE

* DATA POOL
LIBRARY

OBJECT VERIFICATION

FIGURE 11 CONFIGURATION CONTROL

30

v

v

DOCUMENTS
* DRAWING TREE

* MODULE LISTING
* TEST DATA
s DATA POOL

USER FILES
»BASELINE

*CURRENT

BACKUP AND

OVERFLOW FILES

Q7708 S A

* USER NAME _

gt

TECHNICAL WALKTHROUGH REPORT

MODULE NAME

DRAWING NO.

PREL.IMINARY DESIGN

DETAILED DESIGN

DATE

CODE

o Walk through material and work off old comments 1ist.

0 Create comments list.

Functional Description
Requirements Referenced
___ Malfunctions
— I/0 Definition
Time & Memory Allocations
User Information
Variable Description
Design Meets Requirements
Structure Chart
Design Meets Standards
Flow Diagrams
Test Plan/Procedures
No Extra Requirements
No Division by Zero

—_—

Decision:

CHEEK LIST

Accept as is

Header

Program Name

User Information Consistent
Variable Descriptions

Time & Memory Allocations
Code Represents Design
Commenting

Code Meetsg Standards
Checkout Sufficient

Revise (no further walkthrough)

Revise and schedule another walkthrough

Signatures:

Lead

Reviewer (Tech Staff)

Presentor {Design Staff’}

FIGURE 12 TECHNICAL WALKTHROUGH- REPORT

31

WEEK FROM CONTRACT

FIGURE 13b TYPICAL SIRD STATUS VISIBILITY

32

ACTUAL
7-01-TT
240.00
200.00 ‘ 1 e
160.00 =
NUMBER
OF
MODULES 12000} -
80.00 —
12 ‘ 16. 29 24
WEEK FROM CONTRACT
FIGURE 13a TYPICAL MILESTONE 1 STATUS VISIBILITY
---------- SCHEDULE
ACTUAL
— — — TOTAL
‘240|
200 : S P
NUMBER 160 /
“ 4
S1R0S —
. 20 .
o / /’
40 - ~—/ TOTAL SIRDS RECEIVED ———
/_4,/-' SCHEDULED SIRDS RECEIVED
e
o ,—!_..-5‘- j l
0 4 8 12 6 20 24

- W wTTy T Treel T8 BT

SOFTWARE

SUBINTEGRATION
REGUIREMENTS TEST AERULYS
Ms
“1' 64 | NOTIFY RESPECTIVE
GROUPS:
ry + BOEING
+ LOGICON
uE 3 + REDIFON
E
TECHNICAL INTERFACE DESIGN TGk
WALX THROUGH DEF REVEW > ANTEKNA
/ - X l
-C>—’ ' -& ; RESOLVE
WALK PROBLEM
THROUGH priveees
Lo M3 Ms Ms 2| MS UPDATE
2 4 5 6l PROBLEM MILESTONES
PRELIMINARY DETAIL FINAL SUBINTEGRATION 4
DESIGN DESIGN DESIGN TEST PROCEDURES
T T T T T SOFTWARE HARDWARE
ASSEMBLY & CHECKOUT CORRECT
p COMPUTE
vALIDATION SENSIBLE
(\\"// TEsTING | MEDIA
SYSTEM
INTEGRITY
¥ ¥

VAULT RELEASE

FIGURE 14 COMPUTER PROGRAM QUALITY ASSURANCE

33

ABOUT THE AUTHORS

MR. ALBERT S. GOLDSTEIN .{is cwwrently Managenr of Design Engineering fon
Zthe B-52/KC-135 Weapon System Thrainer Production Profotype Unit. He has
been associated with command control and computer systems fon over 20
years Ain both mililany and space programs. He has a B.S.M.E. degree
grom Pratt Institute, M.S.A.E. degree from Syracuse University, and an
M.S. degree .£in operations heseanch from USC.

MR, WENDELL J. NEWELL is cuwwrently Chied Engineer of the B-52/KC-135
Wegpon Systfem Thalner Produetion Prototype Unit. He has been previous-
Ly assoclatfed with the B-52, B-1, Alrborne Wanning and Controf System,
and Navy Aerospace Ground Equipment Programs in the areas of electronics/
efectrical design and airberne data systems, He has a B.5. degnee in .
electrical engineering from Kansas State Univensify. T

34

