SOFTWARE LIFE-CYCLE COST

DR. GERRY C. WHITE
Naval Training Equipment Center

ABSTRACT

Life-cycle cost estimation can be a means
to avoid mistakes in system design that would
result in Targe costs. Successful 1ife-cycle
forecasting, however, requires the ability to
predict, with reasonable confidence, the total
cost (life-cycie cost) associated with the
development, acquisition, and ownership of a
system. Unfortunately, 1ife-cycle cost analysis
has not been satisfactorily applied to computer
software systems. Unlike hardware, logistic
parameters for software are difficult to pre-
dict and measure. Thus, software costs have
been difficult to predict. Life-cycle costing
of hardware systems has evolved into a system-
atic approach invelving concept formulation,
contract considerations, development/production
and operations/disposal. Such an approach has
been useful to define areas of high-support
costs, evaluate alternative support policies,
determine impact of operational requirements
on support alternatives, and to provide for
long-range cost prediction. This paper
examines the cost of real-time simulation com-
puters with emphasis on computer software 1ife-
cycle costs.

INTRODUCTION

Computers are no longer the mystic entity
they once were, but they do present probiems
to any management which does not understand
the complexity of supporting computers that are
an integral part of a complex training system.
Cost overruns, schedule slippages, and inade-
quate performance have been commonly encountered
in the procurement of such systems. Even after
acceptance of these systems, modiffcations are
commonly required to correct faults in the
systems,

An improved approach is necessary. It is
not enough that hardware and software be
developed as a total system, with the usual
consideration given to hardware/software trade-
offs. Even an enlightened user with a total-
system approach to design and acquisition is
likely to experience problems in the support of
software for computer-controlled systems, unless
software is given special consideration.

Future software modifications must be antici-
pated and planning provided for them.

Software is, of necessity, an item re-
quiring maintenance and must be modified to
correct errors, to improve system response, or
to reflect changes in operational equipment.
There appears to be a shortage of personnel who

285

are capable of making sound decisions re-
garding the planning for software support of’
this type. '

The development of a maintenance concept
is considered one of the most important steps
in planning for system support during its 1ife
cycle. Unfortunately, maintenance and
enhancement of software is viewed as being of
lesser importance than the design and develop~
ment of software, and planning for sofiware
support is often inadequate.

Activities which keep systems that meet
user needs {maintenance and enhancement) are
a necessary expense. It was determined by
Swanson (12) that only seventeen percent of
such activity was for corrective maintenance.
That is, it was necessary in response to the
assessment of failures. Adaptive maintenance
(performed in anticipation of changes within
the data processing environment) or perfec-
tive maintenance (elimination of inefficiencies,
performance enhancement, and improvement of
maintainability) was required in the remaining
eighty-three percent of the cases, however.

When one considers that forty to seventy-
five percent of total systems engineering and
programming resources (2,10} are involved in
software maintenance and that this cost is
often obscured in other operating expenses
(7}, the need for effective planning for soft-
ware maintenance becomes financially clear.
Although total expected cost was being used
as early as 1968 (3) to evaluate proposals
for purchase of computer sofiware systems,
software maintenance was not a consideration.

Adequate planning must include all factors
that will influence the cost over the full-
system life cycle. Anticipated software main-
tenance is an important part of the Tife-cycle
cost, yet there is a dearth of historical
data. Predicting the maintenance costs of
computer software is a difficult task, not
unlike estimating software development costs.

Support probiems 1imit the operational
readiness and availability of any system.
Typical is maintenance down time, Much effort
has been expended to increase the mean time
between failures and to decrease repair time
of hardware. Personnel are trained te reduce
the adverse effect of failure and malfunction.
Logistic support may be used as a constraint
in hardware design. Alternative designs are
considered if existing designs create support
problems. Software has not received this

attention.

Software mafntenance costs may possibly
be reduced by extensive effort during the
development phase. Modifications are rela-
tively cheap during the early software devel-
opment while those reguired after the system
becomes operational may be twenty times as
expensive. The nature of training systems is
such that software modifications must be
introduced as operational equipment is modi-
fied, or even to simulate other similar air-
craft. It is possible that in the early
planning stages, one could consider the need
for future modifications and plan means to
easily incorporate these at a Tater date.

In 1977, Department of Defense (DOD)
software costs exceeded $3 billion. Sixty-
eight percent of this was for development;
only thirty-two percent was allocated to
operation and maintenance {1). There has been
T1ittle planring for software maintenance.
Historically, software has included a large
number of errors. Although errors are intro-
duced in the system design phases, corrections
must often be instituted at the most critical
points (during test, evaluation, and accept-
ance). Consideration must be given to soft-
ware development using the same concepts and
approaches that have successfully controlled
hardware costs.

The cost of software is skyrocketing,
and results still fail to meet expectations.
Applications of engineering techniques could
improve this area. Computer technology has
reached an era where hardware development
costs are declining per unit of capability.
This trend is 1ikely to continue. Software
development costs (as measured in lines of
code per manhour) are rising. The difference
is that hardware design is based upon engineer-
ing principles and manufactured in highly
automated processes. These principles do not
exist for software. 1In addition, managers do
not understand software and are unable to
generate adequate specifications for its
performance, design, or development {9).

Life-cycle costing has required the
ability to forecast the amount of the cost
with reasonable confidence. This concept must
be expanded to include ail those factors,
including software, which significantly
influence the cost of support over the life
cycle of the system.

SOFTWARE

Software became an item of significant
cost in training devices with the increased
use of digital computers for the simulation
of weapon systems. In the training environ-
ment, extremely compliex algorithms must be
programmed to simuiate the weapon and its

286

environmental characteristics. Such software
is costiy, and neglect of this software in
planning a training device can result in un-
satisfactory operation and increased Tife-cycle
cost. With the introduction of new hardware
and shrinking budgets, control of software
cost is of increasing concern.

Although 1ittle data are available on the
cost of dedicated computer systems, an exami-
nation of automatic data processing (ADP)
costs reveals much about software costs in
general, It was found (5,9) that forty to
forty-five percent of the $6.2 to $8.3 billion
cost of 3,460 DOD computer systems in 1973
went for software. The cost of software re-
quired in the Naval Training Equipment Center’s
training devices is sixty-five to seventy-five
percent of the total systems cost {(6).

SOFTWARE_PRODUCTION

Software for military computer systems
can cost several million dollars and require
several years to develop; yet may result in
ineffective hardware incapable of meeting
program milestones. The production of this
software (systems analysis, design, and pro-
gramming) consumes approximately twenty-three
percent of the ADP costs of DOD computer
systems (9}.

One of the important requirements for
management planning is an accurate estimate
of the resources required to complete a pro-
ject. Estimating the cost of software produc-
tion is difficult. Considerable design work,
good software specifications, and intensive
project planning are required for realistic
estimates. One common problem has been the
poorly estimated cost of computer program
developmefit.

Estimates of program development costs
are usually based on the number of lines of
code to be written. Yet one of the most
difficult questions to answer is "how long
will 1t take to program this application?”
Programmer productivity varies from 1,000 to .
4,000 program statements per year. The average
is 2,500 including time to block diagram, code,
and test (11). Although there are many sig-
nificant variables n predicting programming
effort, the one most commonly used is
delivered Tines of code.

Basically, three factors (4) affect the
cost of computing: (i) The job to be done
{the number of program instructions}. This
has usually been poorly estimated. Safety
factors commonly range from twenty to four
hundred percent. (2) The resources with
which to do the job; and (3) The environment
in which the job is done. Although accurate
estimation of computer programming costs is
an important prerequisite for effective

programming management, such estimates have
been historically unreliable.

SOFTWARE MAINTENANCE

The cost of software maintenance is
staggering: Seventy percent of the overall
cost of software in the Air Force goes ‘into
software maintenance (5). Many ADP installa-
tions apply seventy percent of the time of
systems analysts and programmers to software
maintenance functions (8). Currently, forty
percent of overall hardware/sofiware effort
is going into software maintenance and this is
expected to grow to sixty percent by 1985 (2).
It is maintenance of software that consumes a
major part of system 1ife-cycle cost. This
cost increases as the 1ife cycle is extended.

One item of importance, especially in
Tong-life training system computers, is soft-
ware maintenance. It has been estimated that
program development costs seventy-five dollars
per instruction, while maintenance could cost
as much as $4.000 per instruction {11). The
higher cost has been attributed to poorly
designed, poorly structured, and poorly docu-
mented older software.

Future software maintenance requirements
are difficult to estimate. Extensive data on
predicted relfability and maintainability
has been required for life-cycle cost analysis
of hardware. Little historical data of this
type is available for software.

Even in highly veliable systems, mal-
functions can be expected and provisions for
their correction must be made. Planning for
long Tife-cycle support requires provisions
for personnei, money, and other support
factors. Some reliable estimate must be made
of the effort required and software mainenance:
must be included.

Kirby (6) found that during the average
useful 1ife of eleven years for a major
training device, seventy percent of the soft-
ware costs would be spent on maintenance. In
addition, he found that fifty percent of all
modifications in Chief Naval Education and
Training Support's field organizations were
for software.

An outstanding characteristic of every
complex military system is Tong 1ife. Soft-
ware maintenance for these systems is costly,
but failure to plan for this item can result
in inflexible hardware, incapable of being
modified to fill new system requirements, thus
shortening useful 1life. |

HARDWARE DEVELOPMENTS AND SOFTWARE
TMPLICATTONS

The DOD has supported the increasing use
of Targe-scale microcircuitry to jmprove

287

and software.

system reliability, reduce 1ife-cycle costs,

and to achieve systems with expanded capability.
Qn]y recently, however, have large-scale
integrated (LSI) microcircuits influenced the
design of training devices.

Microcomputers have generally decreased
system development time (over hardwired systems)
and increased system reTiability (due to fewer
parts and fewer interconnections and high
relfability of the microprocessor itself).

Also, these LSI chips are cheaper than mini-
computers, as well as being smaller and move
flexible.

One disadvantage (or advantage) of the
use of microprocessors is that the designer
must understand the relation between hardware
In addition, modifications to
software will require special skills. This is
somewhat similar to the early days of computer
design when the programmer had a part in build-
ing the machine.

It has been predicted (13) that the cost
of computer hardware for training devices would
decrease as microprocessors assume more func-
tions. Historically, each new generation of
computers has had capabilities that far sur-
passed the previous generation. Microprocessors
are continuing this trend, and even direct
compilation of code may soon be common.

Such advances will undoubtedly reduce
the cost of software, but software costs and
especially software maintenance will Tikely
continue to be a major part of systems Tife-
cycle costs. Thus, control of software life-
cycle costs continues to be an item of major
concern.

CONTROL OF SOFTWARE COSTS

Within the training device community,
there has been no "standard" system. Both
hardware and software were designed for a spe-
cific application. Severe timing constraints
and the requirement for real-time interaction
with the external environment originally
necessitated the use of assembly language in
real-time simulation. Work toward standard-
jzation has been initiated.

Recently, NAVTRAEQUIPCEN adopted a
standard high-Tevel language (real-time :
FORTRAM) for use in training devices. The use
of higher level source Janguage will mean more
reliable programs, ability to write structured
praograms and fewer opportunities for errors.
In addition, program malntenance should be
simplified and correcting errors and adding
enhancements can be better documented and
easier to debug, .

In order to reduce the time required for-
software maintenance, software engineers should
be provided facilities to simplify testing and

modification of operational programs. This
might take the form of immediately accessible
time-sharing terminals, capable of accessing
programs stored on disc in a large computer
institution. This would speed up the process
of debugging any errors that might occur, and
also permit the training to be increased to the
highest fidelity in a reasonable amount of time.

Vendor supplied software is an item
NAYTRAEQUIPCEN has no control over. It is
expensive and time consuming when operating
systems and compilers, and the utility programs
do not work as expected. When contractors
modify operating systems for their particular
application, NAVTRAEQUIPCEN's extensive use of
cross assembiers is temporarily rendered in-
effective. The acceptance of these systems
must be based on more intensive and effective
test procedures.

Control over saftware is essential. Fre-
quent modifications to meet new operational
requirements require good documentation.
Accurate complete documentation is vital for
software configuration control and maintenance
throughout the system's 1ife. Modifications
without this documentation are expensive, if
not impossible.

Training of software personnel iz a
relatively inexpensive area with good returns.
As microprocessors become more widely used,
consideration must be given to preparing the
software staff for modifications and mainte-
nance of microprocessor software. Personnel
costs are high but highly trained software
personnel can be an effective cost-conirol
factor.

CONCLUSTONS

Design concepts such as system redundancy,
in addition to testing and conditioning {burn-
in} of 1C's, circuits, and systems, have
resulted in hardware systems that meet the
reliability requirement of Tong Tife and
mission-critical aerospace military systems.
This reliability became a function of cost and
profit. Similar effort must be applied to the
software for training device computers. Unfor-
tunately, there is little of the engineering
discipline that is characteristic of hardware
design in the software area.

Hardware design has involved compromises
between many alternatives. Sufficient data
are available to opitimize specific character-
istics which determine maximum efficiency,
minimum costs, and minimum weight. This type
of data is not available for software.

The life-cycle costs of software have
been too long ignored. The problems involved
in estimating software production costs must
not be allowed to prevent progress in estimating
software life-cycle costs. Although there is

288

Tittle historical data available on the cost of
software maintenance and enhancement, it is not

‘too Tate to start the development of a data base

in this area.

A large part of training device costs are
expended on software. Although the develop-
ment of software is a high-cost item, the
maintenance and enhancement of software is a
Tong-term, high-expense item throughout the
system's Tife cycle.

As with any system, efforts at conserva-

~ tion must be applied to the higher cost areas

to be fully effective. In the field of train-
ing devices, it is software and software mainte-
nance that is the high-cost ftem. In this era
of Timited budgets and increasing inflation,
effort must be diverted towards predicting and
controlling software costs.

Control of software costs must include
prediction of high-cost areas. These are the .
phases that significantly influence the cost
of support over the 1ife cycle of the system.
Cost control reduction and prediction is most
important. Examination of alternative support
concepts and taking advantage of flexibility
jn design of support systems is & necessity.
Cost control can also be affected through re-
ducing mistakes that result in large costs.

Effort expended in determining software
1ife-cycle costs will aid in support planning,
identifying high-cost areas, and open the door
to more effective software maintenance and
enhancement.

BIBL IOGRAPHY

1. AIARA Conference on Software Management,
Washington: American Institute of
Aeronautics and Astronautics, 1977.

2. Boehm, Barry W. "Software Engineering,"
IEEE Transactions on Computers,
{Bec 19767, pp 1226-1241

3. Department of Defense, Casebook Life-Cycle
Costing in Equipment Procurement
Publication LCC-2, 1970

4, Farr, L. and B. Nanus., "Factors that
Affect the Cost of Computer Program-
ming,"” Technical Documentary Report
No. ESD-TR-64-448. Electronic Systems
Command., United States Air Force, 1964.

5. Fisher, David A., Automatic Data
Processing Costs in the Defense

Department, Arlington, VA: Institute
For Defense Analysis, 1974.

6. Kirby, George T., "Digital Computers in
Training Devices: Trends and Forecasts"

Tenth NTEC/Industry Conference
Proceedings, Oriando, FL, 1977,
pp 261-2/0.

7. Lientz, B. P., E. B. Swanson, and G. E.
Tompkins, "Characteristics of
Application Software Maintenance,”"
Communications of the ACM. Vol 21,
No. 6 (June 19687, pp 466-471

8. Liv, Chester C., "A Look at Software
Mafntenance,” Datamation, 11
{Nov 1976), pp 51-55

9. Naval Postgraduate School. Proceedings:
Symposium on the High Cost of
Software, Monterey, CA, 1973

ABOUT THE AUTHOR

10.

1.

12.

13.

Riggs, R., "Computer Systems
Maintenance," Datamation, 15 {Nov 1969},
pp 227-235 . . :

Rotherg, Brian, Installing and Managing
A Computer System, London: Business
Books Limited, 1968

Swanson, E. B., "The Dimensions of
Maintenance," Proceedings 2nd
Conference on Software Engineering,
(Oct 1976), pp 492-397

White, Gerry C., "Impact of Micro-
processors on Training Devices,"”
Tenth NTEC/Industry Conference
Proceedings, Orlando, FL, 1977,
pp 293-296

DR. GERRY C. WHITE 44 a Sysfems Emgineer in ithe Computer Laboralonry
at the Naval Taaining Eguipment Center,
wake Engineer in Lhe Sofiware Devefopment Section., While President L
of John E. Pochie Systems Consultants, he was employed by Memphis

State Univernsity as an Associate Pnoﬁeaaoa o4 Computer Sysiems

Technofogy. He received the B.S, and M.S. deghees .in electrical

engineerning from Christian Brothens College and the Upiversity of

Tennessee and his Doctoratfe from Texas ASM Unfvernsify. Dr. White

48 a memben of Lhe Tnstitufe of

Previousfy, he was a Sofi-

Electrical and Electronics Eng&neené

and s Vice Chaimman of the TEEE Computer Society.

289/290

