SOFTWARE QUALITY ASSURANCE APPLIED TO
TRAINER SYSTEM DEVELOPMENT

Terry Tierney, Senior Quality. Assurance Engineer -
Link Division, The Singer Company
Binghamton, New York 13902
(607) 772-3011

ABSTRACT

This paper will discuss the application of software quality assurance tech-
nigues to tratner software development, taking into consideration military standards
and specifications and the unique characteristics of trainer devalopment programs.
Because. military customers are paying greater attention to software development and
software documentation, software gquality assurance has become an increasingly impor-
tant management objective. Although there are no quick recipes for adapting soft-
ware quality assurance techniques and standards to trainer development, this objec-
tive can be met by analyzing the software specifications and standards along with
the software quality assurance specifications and standards, by considering the
unique aspects of trainer development, and by considering the aspects of applying
and adapting software standards to trainer development. First, the various speci- -
fications and standards that apply to software development must be analyzed with
particular attention paid to their interrelationships and” to their relationships
with deliverable data items. Then, this conceptial framework must be related to the
software quality assurance standards and specifications. Differences and similari-
ties befween the standards and specifications written by different military custo-
mers will also be considered. Given this overall picture of the requirements for
software development and quality assurance, the unique aspects of trainer develop-
ment may be considered. Among these are shortened scheduyles, abbreviated data re-
gquirements and the application of weapon system standards to trainer development.
Once the various requirements and the peculiar constraints of trainer development
have been analyzed, the next step is to consider the meaningful application of
software standards and quality assurance techniques to trainers. Among these con-
siderations are cost effectiveness, who should accomplish the various quaTity assur-
ance tasks, applicability of internal standards, whether tasks are best handled on a
company or program basis, tailoring quality assurance functions to program needs,
and the problem of assuring quality of software when there are no specific software
data item requirements. . In conclusion, this paper will present an approach to
developing a software quality assurance program for trainer system development.

Software management and control presents the
same .challenge to the trainer industry that it
does to major computer and weapons system manufac-
turers. - Although the averall development cost for
a training system may be only a fraction of the
cost for the system it simuTates, the percentage
of development cost allocated to software may be
greater in the training system because the trainer

industry has- become. increasingly softwara Jnten-.

sfve and there is every indication that this trend
will continue. Given the fact that the cost of
software development comprises a larger portion of
the cost of system development each year, control-
Ting -sofiware development has become a primary
management concern.

Methads and procedures for control of cost
and quality of hardware development have been
applied in industry for so long that they have
become almost second nature and we no longer ask

whether or not procedures such as an engineering-

drawing system or a hardware change control. systam
should be instituted. Now that control of soft-
ware development has become more of a concern, we
cannot treat the software portion of system deve-
lopment as a black box- design for which we dedi-

454

cate money and manpower at the beginning of a
programy only to have 1t s1ip from view until test
and integration when it either works or does not
work. But it is obyious that the same controls
that "have been applied o hardware development
cannot be applied directly to software development
and also that controls applied- to major system
software develapment might not be feasible or cost
effective when appiied to trainer system software
development.,

Control of software development is generally
divided 1into management functions and quality
assurance functions. Software management includes
functions dintended to specify and control the
design, and software QA includes functions 9n-
tended to monitor the design process according to
the management objectives.” A number of software
management and QA techniques and proceduras have
been developed which can provide models for train-
er software management and GA, and provide techni-
gues that may be .adapted to fit the needs of a
trainer development program. Since the government
is the major buyer and user of software, it stands
to reason that the control of software design
would be a major government concern. This concern

is reflected in military standards and specifica-
tfons, which include a rather complete blueprint
for software development. It should be noted that
the software management and QA techniques employed
by many individual companies are either derived
from or reflected in these standards. This is not
to say that the military standards are the last
word in software development or that they are
unilaterally complete or effective, but they are a
useful source for companies desiring to institute
software management . and contrel techniques and an
effective software QA effort.

The military standards that describe the
software development effort are MIL-5TD-483,
MIL-5TD-490 and MIL-STD-1521, and documents which
are devoted primarily to software QA are MIL-S-
52779, MIL-STD-1679 and MIL-5TD-1644. Briefly,
MIL-5TD-483 can be seen as the grandfather of this
group of documents because it details the content
requirements for software documentation along with
MIL-STD-490. MIL-5TD-1521 specifies the documen-
tation required at the completion of the various
phases of sofitware development. MIL-S-52779 calls
for the implementation of a software (A program
and could be described as a parallel document of

‘MIL-Q-9858, which specifies quality control re-

quirements for hardware development. MIL-STD-
1679, a MNavy document, includes more detailed
software quality program requirements and refer-
ences a set of software documentation which is
simiiar to that described by MIL-STD-483. Fin-
ally, MIL-3TD-l644 is basically a MIL-S5TD~-1679
approach applied to trainers with very Tlittie
tailoring.

Two basic concepts are common to all of these
documents and these two concepts can be applied to
form the basis for a trainer software management
and QA effort. The first of these is the concept
of development phases. That is, the -software
development process is divided into ' successive
phases marked by milestones, at which the design
up to that point {5 analyzed and validated. The
second concept comes. into play 1in the form of
documentation. Each milestone is represented by a
documentation set which may consist of a specifi-
cation or flow charts or printouts, depending upon
the particular phase that is represented. This
documentation must be seen as a management tool
which provides visibility of the design and which
provides sufficient detail to validate the design.
The documentation also specifies what will be
accomplished in the next phase so that at the
completion of each phase, the documentation may be
validated by comparing it with the documentation
generated in the previous phase. This provides
for traceability of the design to the original
system requirements throughout all phases of
development. A simplified schedule for a typical
software development effort is shown in Figure 1.

For the purposes of this discussion, the software
development process will be divided inte four
major phases: Analysis, Design, Coding, and Test
and Integration. Other divisions are possible,
provided gach phase leads to a milestone which can
be seen as a design baseline represented by a
specific set of documentation that describes the
design up to that point. The terms used to de-
scribe the documentation will be taken from MIL-

STD-483, recognizing that the MIL-STD-1679% differs
primar‘iiy in form, rather than intent.

455

If we envision a software development effort
beginning with a decision to allocate funds to a
certain project or beginning with a contract
award, the first task is to analyze the system
software requirements for testability, functional
grouping, and implementation. Testability is a
determination of whether or not the system re-
quirements can be implemented and tested, because
once the design is complete we must be able to
prove that all system requirements have been met.
Also during the Analysis phase, the system require-
ments might be divided into two or more functional
areas, often called Computer Program Configuration
Items, if it appears smaller units of design may
be easier to control than one larger system. The
major activity of this phase is the translation of
system requirements 1into software requirements.
That s, we analyze the overall requirements and
come -up with a set of instructions that can be
understood and foliowed by a software desigrer.
Thase finstructions are contained in a Computer
Design Specification, or & similar document, for
each Computer Program Configuration Item. This
document wiil include such information as block
diagrams, general flow diagrams, interface defi-
niticns, and software system requirements. Often
the milestone which closes the Analysis phase is
the Preliminary Design Review, during which the
Computer Program- Design Specifications are com-
pared to the overall system requirements and all
necessary changes are incorporated.

During the Design phase, the software de-
signers follow the requirements of the desfgn

‘specification and draft the Computer Program

Product Specification. Among the activities fin
this phase are the preparation of detafled flow
charts, developing a top-down module structure,
and allocating the available time and memory.
This phase culminates in a Critical Design Review
during which the Computer Program Product Speci-

-fications are compared to the design specifica-
“tions and validated, once all changes are made.

The Computer Program Product Specification is a
draft document at this point because 1t will be
updated to include Tistings once the Coding and
Test phases are complete. .

Following the Critical Design Review, the
product specifications may be turned over to the
programmers for coding, Completion of this effort
results in a milestone review which may take the
form of a design review or a similar activity,
such as a code walk~through. The purpose of this

‘milestone is to check the code against the ap-

proved flow charts contained in the product speci-
fication -before - the code js entered into the
computer load. This may be done on 2 module by
medule . basis or in larger units. The documents
that describer this milestone are the product
specifications, which are updated to include the
approved code.

A parallel branch of the development effort

"which has not been mentioned so far is the deve-

Topment of test plans, test procedures and test
software. During the Analysis phase a plan to
test the completed software should be established
and the necessary procedures written. Any test
and analysfs software that will be required to
verify system requirements should be designed and
documented in the same way that the rest of the
system software is designed. That is, test soft-

-

ware should not be a last minute consideration.
It may be helpful to allocate a Computer Program
Configuration Item to the test software during the
Analysis phase to ensure that it will be ready and
operable when testing begins. Test plans and
procedures should include provisions to test avery
requirement of the system specification.

The Test and Integration phase usually begins
with some form of module testing.
verified against the design and product specifi-
cations according to the approved test plan and

pracedures. - Verified modules are compiled into

their respective Computer Program Components and
further testing is conducted to verify the entire
component before 7t is compiled into the Computer
Program Configuration Item. The complete config-
uration item may then be validated against the
design and product specifications. Once we have
verified the software Toad, integration with the
hardware may take place, and this process culmin-
ates in a testing procedure which validates the
entire system against the system specification.

Following successful completion- of all testing,
the updated ' product specifications define the
production baseline for the computer program
system.

S0, we began with the system specification,
gleaned from that document the software abjec-

tives, defined specific software design tasks,

divided the design effort into phases that corres-

pond to visible baselines, which were themselves

defined by a specific set of documentations and
then compiled the software packages into a com-
plete system which we verified against the system
specification.

The objective of the software QA effort is to
monitor - this- process and ensure that the system
requirements will be met. Again using the mili-

tary specifications and standards as a model, the

Modules may be

software QA program tasks will include documen-

tation reviews, participation in design .reviews
and walk-throughs, independent audits of design
procedures, corrective action and trend analysis,
and configuration control. - Inciuded in the con-
figuration control tasks are monitoring of Tibrary
cong‘.rms, review of test reports, and change con-
trol.

In general, there are four design character-
istics that the software QA representatives wiil
hope to identify during the QA reviews and audits.
The first of these characteristics is traceability
of design requirements, which means sfmply that at
each milestone of the design process, we should be
able to trace each element in the software docu-
mentation back through the product specification
and the design specification to the system require
ments. If the documentation has been completed
correctly and if the design has been documented
completely, management confidence in the progress
of the design will be gained from the reviews and
audits. . If design traceability has been lost,
this problem will be evident in reviews and audits
and there will be Iess confidence that the design
will eventually meet all system requirements.
Secondly, the various QA reviews and audits will
determine whether or not all interfaces between
software elements and between software and hard-
ware ~have been identified and properly defined.

456

Again, this is a major QA concern because if
interface definition is dgnored in the Analysis
and Design phases of the development effort, there
may be difficulties when we try to compile and
test the software. The third consideration is fo
ensure that the design s proceeding according to
the baseiines established at the previous develop-
ment milestone. That is, we check the design
specifications against the system requirements,
the product specification against the design
specification, and the coding against the product
specification. Finally, the reviews and audits
will also ensure that the documentation conforms
to the established standards for format and con-
tent.

The QA tasks and the development process we
have briefly outlined in this paper are intended
primarily for large scale design efforts and must
be tailored to mest the specific problems often
encountered in trainer system design efforts.
Characteristic problems of trafner system develop~-
ment are shortened schedules, associated data re-
quirements, and the application of spacifications
more suitable to development of critical systems
or larger systems than to development of trainer
systems. Managers and engineers experfenced _in
trainer design may have asked questions simijar to
these: How can we write design specifications
before the preliminary design review when it is
scheduled two months after contract award? Is it
cost effective to write design specifications if
they are not required by the contract? How much
of the software control exercised for critical

systems s cost effective when applied to
trainers?
Often trainer . development schedules are

shortened, especially when the trainer is intended
to support a new device, because trainer design
cannot begin until the device itself is designad
because essential design data must be available,
but the customer wants the trainer delivered in
time to support training of personnal to use the
new dayice. The optimum amount of time required
to desfgn a trainer. is therefore sgqueezad into a
sharter time frameé. If schedules become shortened
to the extent that tasks essential to the software
design process may be limited or deleted, the
impact on cost and defivery must be assessed. For
example, a suggestion to - skip the writing of
design -specifications or to eliminate module
testing must be evaluated against the cost which
may be incurred because traceability of the design
was Tlost or some critical modules were pooriy
designed and not checked. Conversely, the cost
and schedule risk of having to redesign software
during -customer acceptance testing may Jjustify
allowing more time at the beginning of the program
to complete all design phases and QA tasks. It
should be a function of the Analysis phase to
determine whether contract requirements are con-
sistent with schedule constraints, and, if there
are conflicts, resolve them with the customer
early in the program: A more risky approach would
be to begin software development, that is, require-
ment analysis and the writing of design specifi-
cations, prior to contract award. In any case, if
schedule brevity is a problem, it must be ad-
dressed to ensure that the software will be de-
signed correctly and on schedule. In general,
software design tasks and software QA tasks should

not be eliminated because design deficiencies that
are not discovered early in the design process are
more costly to correct during the test phase.

Another problem which might be unique to
trainer system development s abbreviated data
requirements. What is meant by this is that the
customer often does not order a complete set of

software documentation or will .specify documen--

tation that attempis to combine iwo or more Func-
tions into a single document. An exampie of the
first case is a contract which requires Computer
Program Product Specifications but does not re-
guire design specifications. Or, rather than
ardering both design and product specifications,
the cuystomer may order a document that combines
the design and product specifications into one
specification. In either instance, what might
have been an atiempt to save money by ordering one
less document does not .save the trainer developer
a penny. The reason for this is that to develop

reliable sofiware, the trainer system contractor
For example, if a

to write both specifications.
contract calls only for final documentation, the

management and QA objectives which are dependent

on the visiblity provided by design documentation

will be difficult, if not impossible, to meet..

Rather than risk lesing control of the software
design, the contractor wili develop some means of
assuring the quality of the design and often this
concern will result in some form of preliminary
documentation which can be used to evaluate the
design before it is released to programmers and
finally to coding. This implies, of course, that
in these 7nstances the contractor will generate
documentation for which he will not be directly
paid. The alternative approach would be the “big
bang" theory whereby the design 1is minimumly
controlled, if at ail, and the entire software
system is loaded and debugged during the test
phase and the firal documentation 1i1s generated
sometime Jater. Although this seems to be a
relatively inexpensive approach compared to writ-
ing specifications or similar documents according
to defined design milestones, studies have shown
that this is not the case.. In fact, it has been
concern over the high cost of test and integration
that has led many companies to develop software
management and QA procedures that emphasize main-
taining control and visibility of the software
during the entire design process.

Instead of Tleaving the guestion of software
QA to the discretion of the ‘manufacturer, the
trainer customer might decide to -impose software
QA requirements. Often, however, the requirements
imposed on the training system will be taken
directly from the requirements imposed on the
device that the trainer will be designed to simu-
.late. This may resuTt in what could be termed a
software QA overkill. For example, the customer
might desire a training system that corresponds te
a new fighter aircraft, which, because of the
criticality of the system, production concerns,
and perhaps the handling of classified data, was
developed upder very strict software managemant
guidelines. Usually, these take the form of more
documentaticn, more design milestones, more test-
ing, and more record keeping. The training sys-
tem, however, will probably be designed to operate
in a classroom enviromnent rather than at super-
sonic speeds in the upper atmosphere, will involve

457

a much Tower production run, and will process a
smaller amount of classified data, if it processes
any at all. To impose weapon system standards on
the training system would not seem to be cost
effective in this case, and could result in a

situation where the cost of control exceeds the

cost of the software itself. What is needed in
instances such as these is a careful analysis of
the cost and objectives of the sofiware system 1o
determine the level of control necessary to ensure
that management concerns will be satisfied through
all phases of system development. Hopefully, a
dialogue between the contractor and the buyer wil]

result in an approach that balances software QA

cost and software performance for a given training
system.

It is ¢lear from our discussion of some of
the problems encountered in training system deve-
Topment that software management and QA programs
and technigues proven in other areas of industry
must often be tailored to meet: the needs of train-
er manufacturers. One way te approach the ques-
tion of software management and QA from a company
standpoint would be to come up with a suitable
in-house program. In other words, rather than
simply responding to whatever sofiware management
and QA requirements are fimposed by prospective
buyers, the trainer contractor could develop an
in=hoyse program that fulfills the objectives of
software management, The advantage of this ap-
proach is that once the in-house software manage-
ment and QA programs are off the ground, unique
customer requirements may only imply a tweaking of
the working system rather than the writing of
wholly new company procedures. Also, -if the
company program is structured to meet the intent
of wmilitary software standards, the contractor
will probably not have to revise any of the in-

ternal procedures to meet the software management _
“and QA program requirements of most military and

commercial customers. .

Assuming a decision is made to go ahead with
developing company - software - management and QA
programs, there are a number of considerations
which must be addressed according to peculiarities
of each company and d{ts respective business.
Among these considerations are what existing model

can provide the basis for the company programs, =~~~

how much control should be exercised, who should
be assigned to the various tasks, and whether
software management and QA should be handled on a
company-wide or program by program basis.

As we have already impiied in this discus-
sion, the existing military standards and speci-
fications probably provide the best model for
developing software management and QA programs
because they have already been applied - in many
areas of industry and because by -applying such a
model, we could satisfy both military and commer-
cial customers. Since much of the instructive
Titerature on the subject of software managemént
and QA addresses the two part specification ap-
proach as a management tool and the guidelins of
MIL-53-52779 as a QA model, if a company decides to
use this approach or a derivative approach,: there
are plenty of helpful hints- available. Such an
approach is also consistent with the spirit of
standardization because 1if all contractors deve-
Toped unique methads of software design and docu-
mentation, communication would be difficult.

Also, it is much easier to explain your approach
to a customer if it sounds familiar than if it is
a unique system. Another source for software
‘management and QA models would be the . systems
empicyed by other industries, of which there are
also numerous published descriptions. In many
cases, -however, the titles used to describe the
various. design phases and milestone documents
vary, but the general concepts of software man-
agement are very similar and resemble the military
model.

Whatever model.is chosen, a.decision must be
made to determine how muich contrcl should be
exercised given the cost of control and the level
of performance desired. In general, the software
development procedures must provide enough -visi-
bility of the design that the software QA reviews
and audits - can be accomplished. Requirement
traceability, interface definition, configuration
control, and documentation standards are elements
which should be part of any software management
program and, as a minimum, the software QA program
should include sufficient reviews and audits to
ensure that these elements are present .in. each
design. Documentation reviews can be used to
check traceability, make sure that all interfaces
are defined, and verify that the design is com-
plete. Participation of the software QA repre-
sentative in design reviews will provide an oppor-
tunity for questioning unclear aspects of the
design. Software Tlibrary .controls and periodic
audits of test reports and scftware change notice
incorporaton can be used to verify that configura-
tion control is mafntained. Since it may not be
feasible to review each software document in
detatl, sampling inspections may be planned to
ensure that the established design procedures are
being followed. Reviews of corrective action and
analysis of error trends are useful in that they
provide a basis for determining the effectiveness
of software management efforts and recommending
changes to standard procedures. Trend analysis,
especially if a dollar figure can be appliied, can
prove valuable :for the software QA effort because
the effectiveness of such a pragram would then be
expressed in dollars saved. This analysis could
also show how well or how poorly the company
software management procedures compare to pub-
lished studies.

While making a determination of how much
control should be exercised, it might become
evident that we already have more control of
software development than we realize. For ex-
ample, we could have determined that the software
design effort was out of control because no docu-
mentation requirements existed in the company, but
found that most of the desfgners kept some form of
notebook anyway. This would not be an optimum
sftuation from a management or software quality
point of view, but it is better than if nothing
was written down at all. Perhaps the lead engi-
neers had taken it upon themselves to insist that
2l1 designers keep notebooks and thus filled a
void they recognized.
is that all software QA functions do not neceg-
sarily have to be accomplished by dedicated QA
personnel as long as all the necessary functions
are assigned to someone. In many companies a
software QA department has been created and
staffed with software QA experts, -while in other

458

What we are implying here.

companies certain tasks are left entirely to other
departments, such as engineering or configuration
management, or assigned to other departments and
then monitored by the software 0A representatives,
Library contrels, for example, might be the res-
ponsibility of the software engineering department
but subjected to periodic Q& audits. Or, all
configuration management functions, such as soft~
ware change control, might be assigned to a separ-
ate department entirely and this department would
also be responsible for configuration reviews and
audits. - It should be pointed out that MIL-S-52779
does .not specify that a11 QA functions be per-
formed by a QA department, provided all functions
are performed.

Whether - software QA functions are performed
on a company-wide or a program by, program basis is
also left to the discretion-of the contractor.
This determination depends in part upon how much
control is desired for systems that have no soft-
ware QA or management requirements fmposed by the
customer. Generally, it would seem desirable to
have a standard set of procedures to fall back on
if none were imposed. Some of the functions,
however, could be handled on a program by program
basfs if this approach seemed most cost effective.
For example, rather than establishing a central
1ibrary for the entire company, individual soft-
ware Tibraries could be controlled by .each program
office. In this case we would have a company
procedure which would assign responsibility for
Tibrary control to the program offices. The same
could be done for all other software QA functions
and there could even he a person assigned to all
these tasks from within the program office. Of
course, during schedule squeezes, the ioyalty of
the QA representative to the program office might
campromise the objectives we set out to accom-
plish. For every function assigned outside the QA
department, there is a corresponding risk that the
individual performing a quality task s Tikely to
please whoever signs his paycheck, whether it be
QA or the program office. Whatever approach is
decided upon, it is important that it be docu-
mented in a set of established procedures so that
all personnel invelved in the software development
effort will know their assigned responsiblities.

Obviously, there are no solutions which will
work for all companies. across all training system
development projects. It s up to each manu-
facturer to address the question of software
management and QA by taking into -account the
specific problems of the trairer industry and the
unique management objectives within the COmpany.
The existing military standards and specifications
provide a model which can be analyzed and tailored
to meet the needs of a company program. Perhaps,
once .software control has been addressed on a
company by company basis, a set of software stan-
dards applicable to the trainer industry, coor-
dinated and approved by all industry representa-
tives, might be written. This would provide the
final solution to most of the questions addressed
By this paper.

Contract

Award

System
Zrpec

i

_— e — — —

1

Proposal Jq D:;igg
g
o Verificaticn l
5 g
ul Al
&l &
i 3
= :I
8l 31
a 3|
gl 5
= HI
&l <
Proposal % Analysis

Preliminary

Product
specs

Verificaticn

Design

Design Baseline

SOFTWARE DEVELOPMENT SCHEDULE

FIGURE 1

BIBL IOGRAPHY

Final Validated
Product System ang [
Spers Data
validate e 2
System ﬁl E&
Spec EE 3]
m
1
2 = |
—i
g |
Q
gl 3|
3] 5|
= o
b B
| S|
Coding & l Test & H
Checkout Integration

Boehm, B. W., "Software and Its Impact: A Quantitative Assessment,”
Datamation, Volume 19, No. 5, May 1973.. .

Buckley, Fletcher, "A Standard for Software Quality Assurance Plans,"
Computer, August 1979.

McKissick, John, Jr. and Price, Robert A., "Quality Control of Computer

Software," ASQC Technical Conference Transactions, 1977.

Mendis, Kenneth S., "A Sofiware Quality Assurance Program for the 80's,

ASQC Technical Conference Transactions, 1980,

Prudhomme, Robert R., "Sofiware Verification and Yalidation and 3QA,"
ASQC Technical Conference Transactions, 1980.

- Thayer;, T. A., "The Role of Product Assurance in Improving System
Reliability," TRW Systems, Redondo Beach, California.

Thayer, T.A., "Software Reliability Study Final Technical Report,"”
prepared for Rome Air Development Center, March 1976.

Walker, Michael G., "A Theory for Software Reliability,”
Datamation, September 1978.

459

