POST DEPLOYMENT SOFTWARE SUPPORT

Allen T. Irwin
Technical Director, Science Applications, [nc.
3655 Maguire Blvd., Suite 150 :
Orlando, Florida 32803

ABSTRACT _) ST

As computer based training devices profiferate, the need to maintain the software associated with the.
devices will cease to be an isolated need and will become a general requirement. Based on experience with
tdctical systerns, it can be estimated that the maintenance of the software associated with a simulator over
the life of the device will cost at least as much as the original acquisition cost of the software. In this paper
the procedures and requirements for software maintenance are analyzed.” The many associated trade-offs are

© examined.

Based on the requirements of post deployment support the impact on the acquisition process is

examined. Recommendations are made as to how the acquisition or development phase can best support? post
deployment support activities for software such that system utility can be maximized and life cycle costs

minimized.
INTRODUCTION

In a recent. |[EEE ftutorial on software cost
estimation, Putnam shows soffware maintenance cosis
ranging from the same as initial acquisition costs to
nearly three times the cost of ~original . software
development. {|} Jensen and Tonies report figures ranging
from 50% to 80% of total software budgets being devoted
to software maintenance. (2) Clearly, the Life Cycle
Cost of a training device involving software will include
significant expenditures on the support of the software
after it has been deployed for operational use. Thus,
proper planning for -post deployment software support
offers the training device purchaser at least os effective
control over life cycle costs as does proper planning for

the developrnent of the software. Indeed, as the expected :

useful life time of a training device gets longer, more and
more leverage will he available through. control of post
deployment costs. This paper attempts to describe the
nature of post deployrment software support activities, the
nature of the resources necessary to accomplish the
activities and to provide some indication of the planning
considerations fo be addressed during system acquisition.

SUPPORT ACTIVITIES

The nead for post deployment changes to softwere
come from such sources as:

o Residual errors not previously discovered.

o Inadequate design leading to dissatisfaction
with performance.

o - Increased wuser sophistication leading to

extension of performance requirements.

o Modifications to the basic system leading to
new training requirements.

o Changes in tactical doctrine also leading fo
new iraining requirements.
o Upgrading of trainer hardware leading to new

interface requirements.

All of the above sources generate a continuing need
to change or correct the software of a training device

over its life time. The provision for accomplishment and .

management of these changes in a cost effective manner
needs to be a high priority goal of those acquiring the
training device.

The types of activity which characterize post
deployment software support are illustrated in Figure I.
The two are not totally distinct and that which begins as

one type of activity generally concludes as the other. The.

two types of activity referred to are immediate problem
response and on going scheduied version production. Most
training devices are of sufficient importance today, that
significant error conditions, once discovered, cannct be
tolerated while the lengthy process of formal version
production is accomplished to correct the error. Instead,
some farm of Immediate action is required to bring the
device back to a state that is ready-for-training.
Immediate actionis characterized by focus on the single
problem at hand and often takes the form of a "work
around” that avoids the unwanted symptoms rather than
curing the source problem. Such fixes dre temporary in
nature and are segregated from the _formal change
package that will eventually resoive the wunderlying
problerm.

One of the most important aspects of immediate
action programming is simplicity. The programmer moust
find the simplest means possible to avert the unwanted
performance. He must seek to minimize his impact on
the system. [f he does not, he will most likely introduce
two or three new problems for each one he resolves.
Some times he will find an cbvious coding error and will
totally clear up the problem with a simple correction.
Howevery, such errors will generally be found and
eliminated early in the life of the system. Problems that

are discovered past initial deployment are often caused by

complex interactions of code that are only apparent now
that the user has gained a level of sophistication in the
use of the training device. For immediate action, it may
be best to suppress an erroneous ouiput rather than to
rmake changes impacting multiple functional areas of the
simulation. Very often the instructor can easily supply
the missing information to the sfudent allowing training
fo continue.

Meanwhile, thorough design analysis of the reported
problem is conducted and a complete correction is
developed, implemented and tested. Once that process is
complete, the new version of the software, containing
corrections 1o multiple problems and design enhancements
as well, is released to the field. The process by which a
problem report is processed to final solution requires
formal control as described in the following section.

Processing of a Problern Report -

A problem report is initiated when user of a fraining
device sees some feature that does not appear correct fo
him. The report is forwarded through normal main-
tenance channeis until it reoches the_ support faciiity

4'7'7

VERSION
PRODUCTION

o
A .

ON-GOING IMMEDIATE ACTION
SYSTEM
OPERATION
PROBLEM X
DETECTED

WORK-AROUND

FOR

PROBLEM X
PROBLEM ¥
DETECTED

WORK-AROUND

FOR

PROBLEM Y

h |

PROBLEM Z
DETECTED.

WORK-AROUND

FOR

PROBLEM Z

/" VERSION RELEASE

\ FORMAL RESOLUTION OF PROBLEMS ~

FIGURE 1 -

where an initial analysis is performed.

The initial analysis is technical in nature and seeks
to answer the following questions:
)] Can the situation described in the problem

POST DEPLOYMENT SOFTWARE SUPPORT ACTIVITIES

report be duplicated? If not, the user reporting the

problem is queried for more information unftil the problem

can be repeated or is fraced to improper operator action.
2) Is the system performing in accordance with

specifications?
specified requirements, corrective action is explored.
3) If the system is performing gaccording to

If system performance does not match_

specification, does the problem report indicate a situation

that requires a _design change? Very often an apparent

problem, particularly in a simvulation is, in fact, a trade-
off that was made to gain some. more imporfant area of
performance. For example, a simulation may have
sacrificed {full fidelity of some feature to maintain real-
time operation. Such past decisions must be a matter of
record to avoid unnecessary analysis each time that a new
user detects the apparent discrepancy. On the other
hand, contfinued reports of such a situation may be the .
basis for a re-evaluation of the design, indicating that the
apparent training impact may have been more severe than
originally anticipated.

The initial analysis, therefore, establishes if a
problern really exists, and if it does, whether its

478

resolution requires only corrective action or if it requires
a design change.

Once the initial anclysis has established the required
resclution, the necessary -corrective action or design
change is scheduled for implementation in a forthcoming
version. Based on the required effort, the urgency of the
change and the available resources, one of the upcoming
version releases will be selected for incorporation of the
new code. If a minor carrection of a few instructions is
ali that is needed, it will most likely be incorporated inte
the next release. However, each version has a "freeze
date" beyond which, no further modifications can be
incorporated. -Actions that require significant design

effort may be- scheduled for further analysis. before
actually being scheduied for . implementation. An

important aspect of the analysis at this time is to
establish “user" concurrence on the proposed design
change, Only after the user has validated the new
- requirement can it be scheduled for incorporation in the
system.

Prior to scheduling for implementation, any design
change must be analysed to deveiop a proposed appredch,
a probable cost and an “expected impact on system
performance. This is, of course, standard ECP procedure.
The process leading to formal scheduling - for
implementation is illustrated in Figure 2.) ;

The "Version" Concept)

Systerns containing relatively little software require
only informal means of control.. The trend today,
however, is toward large, complex software. Such
systems require formalized baseline confrol and
disciplined change procedures. Formal procedures

become necessary whenever the software is too large or _

complex to be maintained by one or two people. Formal
control is also needed when the software is one system of
several being maintained by the same people at a central
facility.

The primary means of obtaining formal conirol over
software has been by means of Version Releases.
Periodically, over the operational life of the system, new

- versions of the software are released for operational use.
The frequency of wversion releases varies with the
criticality of the system, the maturity of the software,
and the dynamics of the system.

Critical systems, such as operational air defense
systems may generate frequent version releases to insure
continued peak performance of the system. As software
matures, fewer and fewer latent errors are present, and
version releases can be further apart withoul adversely
impacting the system. Some systems will always be
highly dynamic. Simulations of new aircraft, for example,
will.be in a constani state of change wniil the aircraft
they represent mature and stabilize into a fixed version.
For maost systems, software version releases will be

frequent during initial operations and will taper off to an ~

as-needed basis as the system matures.

Just what is a version? Since it is released for
operational use, it obviously must have undergone all the
controls and checks and tests that any new ifem must
- undergo before it is released to the field for operational
use. A software version rmust be thoreughly validated for
correctness of design and implementation as well as for
correctness of technical performence before it can be
released. Further, all ncessary items needed to support

the version must be validated and ready for simultaneous.

distribution to the field. This includes all user's manuals,
performance aids, technical decumentation, maintenance
procedures and nstructions and any necessary training
materials. In situations where a significant design change
is being implemented, training teams must be prepared to

install the new version at each site and to train the
operational crews on the use of the new system. As can
be seen, support of systems at multiple sites poses a
logistical problem for software as well as for hardware.

Version Production o - o

Version produciion: is-the entire process of analysis,
planning, design, implementation ond fest necessary to
convert selected modification. requirements Inte q
software version ready for release to the using units. This
process is illustrated in Figure 3. To dccomplish version
production, ali selected changes must be carried through a_
design phase with appropriate reviews and coordinatien.
The latter is particOlarly important in software
maintenance efforts, The tendancy to view a particular
change or enhancement as an isolated problem makes the
possibility of inadvertant adverse effecis on other areas
of performance an ever present danger. A thorough,
formal and disciplined process of review and coordination
must be established and enforced throughout the version
production process. [f nof, the version will never survive
the prerelease testing fe qualify it for operational use.

Design Teams o) N

One technique for accomplishing such coordinafion
and review is the establishment of design teams. Each
change or design requirement is assigned to a lead
anialyst. Then a representative of each functicnal area is
appointed to form a design team. Each member may well
serve on several design teams, because their primary
function is to review the work of the lead analyst to
ensure that impact on their functional area of .
responsibility is correctly understood. - The lead analyst is,
of course, selected from the functional area mest
severely affected by the change. [t is his responsibility to
coordinate his design with all members of his team and to
obtain forma! concurrence from the team that this design
is an acceptable implementation for all functional areas.

The design team aiso serves to coordinate the |
documentation and testing associated with the particular
change package. Changes to user manuals, technical
documentation, maintenance manuals, and training
materials must all be prepared and coordinated. Tests

" must be prepared that will test out the change itself ond

also to validate that all other areas are not impaired.

Version Testing

Version testing mirrors normal software develop-
ment testing, but with sonte significant differences. For
modifications representing new design, a bottom up
approach is generally followed. The modified modules are
tested and debugged in isolation then integrated into the
system and tested for correct operation at the system
level. Smaller corrections may only require verification
at the system level to show that they have, in fact, been
correctly implemented. The most significant fact about
version testing is that any one version-changes only a very
small percentage of the sysiem software performance
requirement. Thus, system level version testing does not
require a new system fest for each version, but rather a
new version of the already validated system: test. _This -
approach to festing can allow significant savings in the
testing effort required to validate a new wversion for
release. . A very desirable approach is to develop an
automated system test that provides stimulating inputs
and automatic analysis of results (See Figure &). Such a
test tool, once accepted by the user can greatly reduce
the effort of version qualification. The automated test .
program can short circuit normal operator input and
output since it is required to show enly that unmeodified
software still performs correctly. Thus, by running pre-

recorded inputs “through the systermn and automatically

comparing the outputs with expected results, it validates’
the operation of the software not affected by the changes
incorporated by the new version. {The system fest itself,

4'79

USER
REPORTS

M
PROBLEM NOT
A
PROBLEM -
PROBLEM
VALIDATED
BY ANALYSIS
REQUIRED
RESOLUTION
ESTABLISHED
DESIGN QBTAIN
CHANGE USER .
REQUIRED \ CONCURRENCE

R | i

DEVELOP -
APPROACH,
COST AND

IMPACT

SCHEDULE
FOR
MPLEMENTATIO

FIGURE 2 - PROBLEM REPORT PROCESSING

must be updated for each version, however, this is much
more manageable than developing a new test each time.)

The test cycle for the version is as follows:
o Debugging at the module level

o Testing of new features for correct
implementation at the systemn level
o Validation of unmodified software using

the automated system test

o User (Operational) Testing of new
features

An important consideration of the [ost step in the
above sequence is how much user testing is required?
Clearly, the user of the training device must be satisfied
that it is performing correctly. However, it should not be
necessary to revalidate by operational testing all

performance parameters of the system at every version

‘release. The ability to satisfy the user (he is, after all,

the customer) that he needs only.test the new features of
the version will depend heavily on the degree to which the
user can be convinced that the automated version test .
does successfully validate the unchonged software. This

is further support for a well planned and well documented
system test.

Formal, centralized control is a necessity in the test
program. [f central control is not maintained, testing can
degenerate inte an unending set of failures as test after
test encounters unexpected side effects. This can only be
avoided if proper resources are committed fo the testing
effort throughout version production. Testing is also very
sensitive to "Wersion Freeze Date™. I[f the input of change

480

INPUTS ACTIONS PRODUCTS
e PERFORMANCE REQUIREHENTS
o TESTING REQUIREMENTS
ANALYSIS ' =—> o RESQURCE REQUIREMENTS
M _ L o
iEgEEES > . SCHED?LES ‘)
e PRIORITIES . e
PLANNING F—=> o prooURCE ALLGCATION
¥§KINING —> e DETAILED SPECIFICATIONS
NEEDS . s TEST PROCEDURES 7
DESIGN —> o OPERATIONAL PROCEDURES -
-
DESIRED _ -
TS b e REVISED CODE
ENFANCENENTS ¢ REVISED TEST SOFTWARE
IM?&gﬂENTA‘ —> - REVISED DOCUMENTATION
CURRENT o L
VERSION | S NOOIFIEALIONS - -
VERSTON . 5
- TESTING P—> o YALIDATED PERFORMANCE)
AND DOCUMENTATION
e CERTIFICATION FOR
RELEASE |—> OPERATIONAL USE
¢ SYSTEM OPERATING
INSTALLATION |- UNDER NEW VERSION
FIGURE 3 - THE VERSEON PRODUCTION PROCESS

requirement for a particular version are not cutoff early
enough, testing will suffer along with design. This can be
offset by scheduling version release dates with sufficient
frequency to reduce the pressure to keep adding "just one
more change”.

‘Scheduling of Version Releases

The time required to design, develop, implement,
fest and release a version will necessarily vary with its
contents. If the version is primarily to correct coding
‘errors then it will require a short pericd to prepare it for
release. As new design effort s added to the version's
contents, the required time length will go up. . Thus,
version release may take from 6 to 18 months, - When
significant hardware . changes are. also invoived, the
release time could easily approach the initial development

schedule and run s much as 3 years.

For administrative reasons, it may prove desirable

_ te schedule versions for release on a fixed timetable. In

this case, version content can be adjusted to meet the
schedule. [n addition the start date for versions selected
for significant change efforts can be set chead of the
normal version”start time. The phased nature of version
production lends itself to- overlapped production of
versions. That is, while one version is undergoing testing
by the testers, a second one can be in the hands of the
programmers, while system analysts have begun the
design of a third version. In this manner three versions
are in production at any one time. Version release occurs
more frequently and the technical staff is allowed fo
specialize in the three specific -areas of design,

481

CURRENT . CURRENT
SYSTEM SOFTHWARE
TEST VERSION
y
MODIFICATION MODIFICATION
PRGCESS PROCESS
-
N N
EXPECTED PRE-RECORDED SOFTWARE
RESULTS TEST > VERSION
INPUTS UNDER TEST
RECORDED
QUTPUTS

be— 5 COMPARISON

b

DISCREPANCY
REPORTS

FIGURE 4 - - AUTOMATED TESTING PROCESS = } - . .

implementation and testing. Such specialization leads to Conce ini i i
imp. on . Z e pt for a training device, questions such as where
H;‘fln]eqseg efficiency since each area requires particular software support will be performed, who will accomplish
lel ﬂi and not many individuals will be equally capable at - the support, and what equipiment will be required must be
ree areqs. qnsyvered. The answers to such questions are not
arbitrary, but are determined by .several .contributing

PLANMING FOR POST DEPLOYMENMT " 7 7 factors.
SOFTWARE SUPPORT. ! '

In establishing the Post Deployment Support

482

Locating the Software Support Capability

Assuming that we are talking about a training
device with a significant software support requirement,
then the issue of where to perform the support task is
largely a question of resources. Perhaps one of the
primary considerations is the availability of equipment.

It does no goed fo locate the maintenance facility of
the training site if the training device is so heavily
commitied to iraining use, that 1o time is available for
software maintenance usage. The temptation to save
money by plenning to do all software maintenance en
operational equipment must be balanced against the very
real cost penalties of having programmers being paid fo
sit around waiting for computer time. The early planning
for training devices generally includes an assessment of
device vtilization. Using this assessment plus an estimate
of how much device time will be required for hardware
maintenance, provides an indication of what time will be
left over for software maintenance utilization. Analysis
of the software maintenance task, based on the dynamics
of the system that will lead to changes to the training
device can provide an estimate of the size of the soffware
workioad and hence the required device access. |f a
conflict exists as to device availability, then the thought
of using operational equipment should not be carried
further since the initial estimaies of software change
activity usually tend to be low!

Once the decision is made to acquire a software
support faciiity (i.e., computer equipment dedicated io
softwore maintenance) the question of where tfo locate it
still must be resolved. At this point the other essential
resource must be considered--personnel. |f a centralized
support facility already supporting similar or related
training devices exists, then it provides an attractive base
for economically expanding o provide support for the new
system. If a stand-alone maintenance facility is to be
established, it will genérally require more personnel than
would be required as odd-ons to an existing facility. An
existing facility also provides a source of personnel

experienced in the technical and managerial skills .

associated with software maintenance. (It should be
recognized here and now that the developing contractor is
not going to turn over his design and programming staff to
maintain the delivered equipmeni. They will be off

designing and programming new products.) A brand new

software support facility will always undergo an expensive
learning curve as the new persoennel come up to speed
with the system and with the maintenance process.

The equipment placed in the support facility need
not necessarily be as elahorate as the full up training
device. The majority of software development and
testing can be accomplished without the full set of
hardware ' required for the wmore eloborate training
devices. While training time will not usually permit
software maintenance to be fully supperted on operational
equiment, it usually can support some of the final system
testing necessary for version release. Thus, a concept of
shared facilities may prove a useful compromise with the
majority of software maintenance being accomplished at

a less elaborately equipped suppert facility and the formal .

system level wversion dacceptance testing being
accomplished at a designated operational "test" site.

When choosing the operational site or an offsite
facility location, consideration should be given to the ease
with which qualified personnel can be recruited
andretained at the locations under ~ consideration.
* Questions such as the availability of trained personnel,
and the desirability of the geographical area will have
long term significant economic impact on the operation of
the facility.

The "WHO" of Software Support o

— Daley, speaking. of commercial software, estimates
that one full time programmer can maintain 10,000 lines
of realtime software or 30,000 lines of support software.
(3) This figure does. not include configuration
management, supervision, field support or other averhead.
While his estimate is not necessarily directly applicable to
training device software, it does serve fo iilustrate that
the manpower requirements to maintain' any significant
software package are not small.

- As Daley also points out, a programmer will be more
effective in a maintenance roll if half of his time is
devoted to maintenance and haif 1o development of new
software. (3) This effect derives partly from motivation
and partly from proficiency rhaintenance gained by
experience with new systems. This factor seems fo drgue
against dedicated soffware support facilities. However,

the experience of developing new software can be

provided at g support facility if systfem enhancements are
also assigned to the facility for development. Otherwise,
it con be expected that g facility devoted solely to error
correction and minor enhancements will suffer as good
people move on to mere interesting {and petter paying)
work and those that remain lose touch with the

developmentul side of software programming. T

The question of coniractor support versus
Government in-house support of software is frequently
raised. There is, however; no simple one time answer fo
the issue. The choice must be made and justified on a
system by system basis. ’ L

The key issue, if Government in-house support is
being considered very often comes down to whether or not
the Government can make available the personnel
resources needed to maintain the software. Right now _
the Government has limited capabilities in this areq,
however, as tactical computer systems proliferate, the
software support capabilities within DoD will expand
dramatically. Thus, it may be that in a few years,
assignment of training device software to a Govérnment
software support facility will be routine.

The possibility of Government support of the
software at some_future date is another argument for the
acquisition and maintenance of thorough and complete

documentation of all software, even if it is fo be initially

supported by the developing contractor.

Post Deployment Software Support Equipment

When acquiring “a training device, considerable
thought should be given to .the acquisition of software
support equipment. As mentioned above, operational
equipment is often .not available for software support.
This makes it necessary - to have computer equipment
dedicated to the support role. © One means of
accomplishing this is to assign prototype eguipment to the
support role upon completion of prototype - testing.
Another means is to buy excess computer power so that .
both operational and . support functions can _be
accommodated in a timesharing mode. (This is only
possible where the operational requirements can tolerate
the limitations of time sharing operation.) In many cases
it will be necessary to buy (or lease) a totally separate set
of equipment for the support role.

Whichever method is selected, it is important that
requirements for the supporf function are specified and
designed in from the beginning. Attempts to go back and
force such functions in later on always meet with limited
success and are generally _much more costly than when
they are recognized and designed in from the beginning.

483

When the prototype of a fraining device is to end wp
as the software support facility, thought should be given
to procuring excess computer power in the protoivpe
configuration. Mot only will this make the development
of the cperational software easier, it can also allow the
support facility to support multiple programmers in a
time-sharing mode. It will also make it possible to
establish a test environment for the operational software
by the addition of other software designed to provide on-
line analysis of operational software performance.

SUMMARY

In conclusion, the planners of a training device
development -can, through proper provisions for post

deployment software support, do as much or more to
control the overall cost of the fraining device as can be

accomplished by proper provision for the initial software
development. - Coversely, failure to consider support
requirements for software can be just as disasterous as
failure to consider hardware support requirements. Lack
of adequate provision for software support cam prevent
effective use of the training device and can cause
excessive growth of life cycle costs.

Software support, once the f{raining -device is
deploved, will consist of software modifications to
enhance device performance, to eliminate latent errors,
or to reflect changes in the operational equipment.

These modifications must be managed to ensure that
the operational validity of the training device is not lost.
Thus, formal procedures must be established for the post
deployment support operations.

Two primary activities characterize post
deployment support operations; immediate wction and
versicen production. Immediate action s intended to
provide quick fixes or work-arounds for problems detected
during system operation. Version production is the formal
process of analysis, planning, design, implementation,
testing, release and installation that provides integrated
and wvalidated software enhancements . and fault
corrections that ensure effective and efficient use of
system resources throughout its life eycle.

To make certain that the support facilities and
resocurces required for post deployment software support
are ready and in place when needed, planning must begin

with the initial training device concept formulation. To -

accomplish the necessary planning, consideration must be
given to where the software support activity will be
accomplished; what personnel resources will be, o
required, and b) available to provide the support; What
equipment is to be used for post deployment support and
how it is to be obtained, and how the overall effort is to
be managed.

It is strongly recommended that q Post Depioyment
Software Support Plan be developed early in the
acquisition process and that it be maintained up-to-date
throughout the device life cycle.

BIBLIOGRAPHY

(1) Putnam, Lawrence H., Softwere Cost Estimating

and Life Cycle Control, IEEE Tutorial, Computer Society
Bress, 1980, pages [3FF.

(2) Jensen, Randall W. and Tonies, Charies C., Software

Engineering, Prentice-Hall Inc., 1979, pages 403 17.

(33 Daley, Edmund B.; Management of Software
Development, IEEE Trcnsachons on Software Engmeermg,
May 1977, page 232.

ABCUT THE ,AUTHOR E

Mr, Allen T. Irwin, Technical Dlreci‘or, Education
and Training Technology. Division, Science "Applications,
Inc.; has provided technical supporf to PM TRADE for
over 3 years. His previous experience includes software
acquisition support to other Army Projects, development
of software for the US Air Force and software
maintenance activities with the SAGE and BUIC air
defense systems.

484

