TECKNIOUES FOR AVERTING PROBLEMS IN DEVELOPING .

TRAINER SYSTEM SOFTWARE

Carole J. Kuruma
Manager, Training Systems Department

Technology Service Corporation

Santa Monica, California 90405

ABSTRACT o ’ ’ o

Short schedules and changing requirements are common problems encountered when software
is being developed for training systems. This paper explorés techniques used by Techno]ogy
Service Corporation {TSC} to overcome or avert such problems while developing the B-52 0AS.
Part Task Trainer for the Training Services Division, Keesler Air Force Baser Technigues . = __ .
for dealing with Timited resources {time and budget) include carefully exploring, and ass1gn~
ing priorities to, system capabilities to determine the more important requirements; and
employing a top- down approach. Planning for changTng Fequirements ¢alls for identifying capa-

bilities that may change; constructing a well-dpcumented software design with app1!cat10n—
oriented modularity; and scheduling a design freeze, with late requirement changes incorpora-

ted after compietion. The paper presents step-by-step descriptions of ‘each technique and
provides examples relating directly to the part task trainer.

INTRODUCTION

The U.S. Air Force B-52 bomber is receiving a
major modification in the form of the Offensive
Avionics System (CAS), scheduled for deployment in
1981. Used by the B-52 radar navigator to perfarm
navigational and offensive weapon delivery tasks,
the CAS replaces clder ASQ-38 equipment and auto-
mates some previously manual functions.

A weapon system trainer {WST) is being built
for the B-52 as a part of the major weapon system
modification. The WST is scheduled to be com-
pleted in the 1983-1986 timeframe, which Teaves a
gap between deployment of - the 0AS and availability
of the WST. Crews using the first QAS-modified
B~52 will need a trainer in the interim. To meet
this need, TSC, in conjunction with the Training
Services Division, Keesler Air Farce Base, has been
contracted to design the software and configure
four E-57 O0AS tinterim trainers to be used by the
Strategic Air Command (SAC} in their 0AS conversion
training program.

In approaching this assignment, TSC recognized
that, in developing software for the interim
trainer, two major problems alsg found in other
saftware projects would be encountered: Timited
resources (short schedules and budgets) and
changing requirements.

Short schedules are a Tunction of the relation
between the training device and the actual system.
A training device cannot be specified until the
actual system is designed, but it is needed as soon
as ‘the actual system--either a new one or a modifi-
cation to the existing one--is operational, if not
befora then.

Meeting the schedule and cost constraints is
then complicated by deciding which functions can
reasonably be provided by the training system. The
first choice of the users may be a trainer that
gives a completely reatistic simulation of the
device.. It is, after all, difficult to identify
those skills that can be effectively trained with
other methods, such as classroom instruction, Tow-
cost training aids, or the system itself. The cost
of such a trainer, however, may be beyond the
available time and budget.

The second problem, requirement changes during
development, commonly occurs becatise both the .
trainer and the system are heing developed at the
same time. Any changes tg the system under develop-
merit must be reflected in the trainer] and, by .
extension, since modifications to the system are
1ikely. these same modifications must be supported

by the tra1n1no device.

This paper presents techn1ques that TSC has
found to be effective in minimizing, and sometimas
averting, the Tmpact of these problems. These

-fechniques are now being used to develop the B-52

0AS Part Task Trainer (PTT). Before detailing them,
we describe the trainer as a point of reference.

HESCRIPTION OFVTHE PART TASK TRAINER

The interim trainer is a part task trainer,
addressing some of “the tasks, procedures, and
conditions the crewmember: must handle with the
OAS. The crews receiving training will already be
skilled B-52 navigators. The focus of the PTT will
therefore be on procedures training; spe01f1ca]1y,
those procedures unigue to the new QAS. For -
example, the PTT must respond exactly as the OAS
would to all commands (button pushes, switch
activations, etc.), but onTy those features used
‘directly in navigational and weapon- targeting =
procedures need to be displayed in the simulated
radar videc. - _

The PTT is Taid out physically to provide
stations for the two crewnembers required to operate
the 0AS, as well as a position forTan instructor .
(Figure T). Included in this layout is a mockup of
the 0AS crewstation, comprising 16 operational
panels, four monochromatwc d1sp1ay monitors, and two
trackballs. The instructor's position is eguipped
with a CRT console for setting up and monitoring the

" training sessions. ~The hardware configured for the

part task trainer is composed of the five indepen-

" dent subsystems depicted in Figure 2.

Before we describe the software and the
approaches to lessening the impact of major
problems in developing it, an overview of what is
actually simulated by the software is necessary.

280

Figure 1. B-52G/H 0AS Part Task Trainer

INSTRUCTOR'S CONSOLE © IMAINFRAME PROCESSQOR SWITCH CONTROL QAS CREWSTATION
UNIT

MINI

— CRU '
MICROS
PROSESSOR

s
?

DISPLAY SUBSYSTEM

DISPLAY

Figure 2. OAS Part Task Trainer Block Diagram

281

The DAS will automatically navigate the B-52
according to a predefined flight plan. The crew-
members will be able to monitor, update, and
override this automatic navigation system, using
the OAS equipment and a variety of navigational’
procedures supported by the PTT. The trainer will
also support QAS procedures te perform in-flight

refueling; preparation and delivery of Air-Launched

Cruise Missiles (ALCMs), Short Range Attack
MissiTes (SRAMs), and conventional bombs; and

backup procedures used when certain OAS fajlures __

occur.

As envisioned in the PTT, the instructor will
be able to selact a-flight plan from a set of __
cannad scenarios or modify any canned scenario to
generate a new flight plan. The canned scenarios
are representative of actual training missions,
and scenarios of up to five hours of f11ght time
can be generated within a region covering the

Western United States. Sufficient terrain Features, 7

navigational fixpoints, and target areas are
included within this region to dafine. at least 100
different realistic scenarios. Navigational charts
are used to generate synthetic radar imagery for
display of these features, fixpoints, and target
areas.

The instructer will also have the capability
to inject faults and malfunctions at any time
during the training session. With the abiltity to
steer the aircraft off the flight plan and to
accept covrections from the OAS crewmembers for
recovery, the instructor will be acting as the B-52
pilot. He will also monitor crewnembers® actions
and will be able to freeze the training session at
any time, give additional instruction, and then
resume the session.

As this brief description indicates, the PTT
is a complex *raining device. This complexity can
be further increased when the development of soft-
ware Tor such a device is constrained by brief
schedules and ¢hanging requirements. 1In the
following sections, we present a collection of ~
methods that we have found beneficial in a number.
of applications. We ¥First discuss methods for
reducing and overcoming schedule problems, and then
techniques that facilitate incorporation of
requirement changes. .

SOME SOLUTIONS TO TIME AND BUDGET PROBLEMS

As mentioned in the Introduction, completion
of the training device must coincide with or

precede that of the weapon system, often resulting

in short schedules. In addition, schedule slips
may occur, owing to inaccurate estimates and the

vicissTtudes of daily 1ife: illness, employee . _

turnover, machine failures, and requirement changes.
Specific methods TSC uses to anticipate potential
schedule problems and to avoid cost overruns
incTude carefully exploring, and assigning priori-
ties to, system capabilities to determine the most
important training functions; and employing a top—
down approach so that a very Timited, skeleton
system that performs some of the required functions
is developed first, followed by versions that
successively add more capabilities until the system
is complete. These two techniques are actually
interconnecting, with assigning of priorities to
different functions contributing to the definition
of develaopment stages or versions in the top-down
approach. Careful choice of programming Tanguage

and computer system, and incorporation of a pro-
gramming design language also contribute to
averting schedule problems and are discussed at
the end of this section:

Assigning Priority

_ The system specification usually details the
functional requirements; these functions, -however,
can be further ranked by the user into. such
categories as:

1. Necessary for train1ng T T s

2. Important function without. wh1ch the
system will be marginally useful.

3. Important function deFinitely desired
by the user but which could be taught, |
if need be, using another mediumff

4. Nonessential or desiraﬁ?é'function[-

The user's initial rank1ng ‘of system funct1on§

. may place all functions in Category 1, and

convincing the user of the importance of ranking
them may be difficult (or even impossible) until
schedule s1ips occur. It is hoped, however, that
discussions with the user will be fruitful for
identifying the more critical training functions.
This ranking can then be used in top-down develop-
ment as part of the process of identifying the
successive versions.

Top-Down Develapment

In top-down software development, described’ by
Yourdon, {1) the high-level design of the system
is followed by implementation of a barebones
system that performs some of the reguired func-
tions, followed by versions that successively add
more capabifities until the system is complete.

By contrast, in the classicial, botiom-up

: épproach, the entire system is designed, coded,

debugged, and then integrated. If a scheduling
problem occurs, the developer and user may find,
when the deadline arrives, that although 100
percent of the code is written, nothing works.
The same schedule slip with the top-down approach
will find a working version that may provide 75
percent of the total system functions. And
although the user will not be satisfied with 75
percent of a system, that 75 percent will be more
acceptable than 50,000 Tines of code that are
useless because they have not been integrated.

Fd?tkermore, a user is more likely to have

-confidence in your ability to finish the job if

he can see a working version of the partial system.
For example, Version T of the PTT, described
below, was valuable because we were able to
demonstrate 7t to the customer, which was more .
effective than telling him 10,000 lines of codé
had been written. And, if the versions are care- - :
fully defined, the customer may be able to start
training with the current version while the
training device is being completed. -
_ The mpst impartant functions, decided by the
priority ranking discussed above, are scheduled
for implementation in the early versions, the Tess
impoertant, ir the later. This scheduling of)
functions in versions is a compromise between the
Togical steps required to deveiop the software and

282

the desire to provide intermediate working versions
that are useful for training. For instance, the
radar position fix procedure may be the most
important training function; however, since it
requires panel inputs, radar graphics, trackball
control of -the crosshair, simulation of aircraft
flight and navigation systems, ete., intermediate
versians are defined to develop the basic building
blocks, and then the position fix procedure is
scheduTed for implementation in the next version.

0n the PTT project, the users (SAC) were very
cooperative in ranking the priority of training
funcions. From this ranking, we defined seven
versions (Tabte 1} for the top-down development of
the PTT. The first three versions provide a
logical development of the basic functions of the
system required to: support the operational pro-
cedures scheduled in Versions 4 through 7. - Versions
1 through 4 have been implemented, and Version & is
under way. The estimated time to complete each
version vanges from four to nine weeks.

Version 1 may appear so basic as to be trivial.

Its compietion, however, was a significant event

because, for one, this version required that two of
the four system interfages work: input received
from the instructor's console, and output generated
to the display subsystem. Yourden disgcusses in
detail the advantages of top—down deveTopment in
testing major interfaces early in the development
cycle. (1} - 0ften these interfaces are where prob-
Tems occur, and such prebiems are usually the most
difficult to correct. .Second, in this first.
version, although only three of 12 tasks are
implemented o any degres; these three tasks are
scheduled and communicate with each other, exer-
cising a wajority of the system executive routines
that handle task interfacing, another area where
significant problems often occur. T

Version 2 added considerably more capabilities:
al7l subsystein interfaces were exercised; inputs
from .one_switch panel were processed by the soft-
ware, allowing evaluation of response times; and.

_ most alphanumeric display formats and static radar
_video were displayed. Version 4 should be adeguate

for training the first B-52 crews, because ALIM

_and SRAM procedures training is not: required for
them; and Version 5 is expected to provide 90 7
percent of the necessary training functions.

TABLE T. OAS PART TASK TRAINER VERSIONS —

Version 1

Instructor starts system in Run mode

Aircraft flies in a straight Tine

D1zp1ay prime mission data, left-hand-side
ata

VYersion 2

Instructor maneuver aircraft commands
Aircratt flies default scenario
Crewmember inputs from Integrated Key
Boards {IKBs):

Select MFD

Select Format

Select Menu

FLY TO Command
Display:

Static radar video .

Static alphanumeric data

Yersion 3

Instructor select/preview command
Instructor's real-time garameters d1sp?ay
Navigation errors modeTed
Crewmember nputs:
Remaining IKB functions
Radar Navigator's Management Panel
Dfsp]ay
‘Dynemic radar video (default format)
Dynamic alphanumeric data '

Version &

Procedures:

Bemb run

Auto fixpoint sequencing
Crewmember inputs:

Bomb panels

Special weapons pan€ls
Display:

Crosshair and residuals

All radar video formats

Version §

Procedures:
ALCM weapon procedures
SRAM weapon procedures
High altitude calibration
Radar position fix :
OAS inftialization I
Crewmember inputs: :
Weapons Control Panel

Version 6

Instructor commands:
FauTlt
Wind
Alternate nav heading error
Missile all/none status
Freeze/resume

Procedures: .
Alternate true heading calibratIOn
DAS bus fallure
Panel failures

Crewmember tnputs:
Remaining:panels -

Version 7

Instructor capabilities:
Edit/save scenario
Post-run mode

Procedures:

Point paraliel réendezvous

Alternate bomb run

Terrain carrelation fix

Low altitude calibration
Display altitude ribbon

283

To Show how the top-down development relates
ta the actual code written; Table 2 tabulates the
estimated effort: to complete each task and Tibrary
of routines for each version. It shows that, in
Version 1, a major portion of code in the Tibrary
routines for error handling, data passing, input,
output, etc., was developed and exercised to. sup-
port a very small amount of task code. By Version
2, nearly all Tibrary routines were operational.
This infermation 93 also beneficial in explaining
to the customer how much effort goes ints a
Version 1 to produce what may be a small qubset of
visible functicnal capabilities.

TSC has found that, using top-down development,
the high-level design for the system should be
completed before any versions can be implemnented.
That 75, the system executive routines which per-
form such functigns as input/output, data base
. control, and intertask communication must be
defined, as well as each task and data base. These
definitions shouid include the functions of each
entity, and all inputs and outputs at the fume--
tional level. For example, the task that provides
the instructor's disptay should identify the
current aircratt parameters of speed, heading, and
altitude as inputs from a named data base, but
would not have to specify the format of the data
base. Given this high-Tevel design, implementation
of each version can proceed and the developers can
be assured that no major problems will be dis-
covered in Version 5 that could, for instance,
necessitate a redesign of code developed for
Version 1.

Top-down development also makes estimating
easier, as well as having other -advantages. The
software staff prefers it because, instead of one
Tong cycle of design, coding, and integration, .the
project is segmented into sharter cycles of design,
cading and integraticn for each version. The
completion of each version results in the software

team having a feeling of accomplishment and enthusi-
asm to tackle the rext version. Having several
such cycles makes estimating the time to complete
the remaining versions easier. By contrast, in

the bottom-up appreach, knowing how tong it took to
design and write all the code does not help to
estimate how long it will take to integrate.

Programmning Language -and Comnuter System Choice

. Short schedules alse encourage careful choice
of programming 1anguage and computer system and
support software. Coding time is significantly

- reduced when high-Tlevel languages are used Tnstead

of assembly Tanguage. Any inefficiencies in
program size caused by the high-Tevel language Can
usually be offset by purchasing more memory. As
for inefficiencies in execution time caused by the
high-Tevel tanguage, thase portions of code -
detected as causing t1m1ng pwcblems can be rewrft-—

ten in assembly language. ~ .

Using a 1anguage with which the programmers
are already familiar also helps. In the B-52 0AS
PTT, the TFTRAN Janguage was.used. = IFTRAN is a
dtructured FORTRAN Tanguage used by TSC for near1y

all programang prejects.

The minitbmputer selected for the PTT is
compatible with TSC's in-house system; therefore,
the PTT project was able to draw upon a pool of
programnars experienced with the system and a
Tibrary of routines and software tools. The
vendor-supplied operating system also prov1des
many of the capabilities required for real-time
systems: multitasking, semaphores, priority
Tevels, mapped I/0, etc., thus minimizing the. _
number of executive routines to be generated. The
vendor-suppiied.software includes capabiTlities to
facilitate software development: timesharing with
virtual memory management that allows several
programmers to develop and test code simultaneously,

TABLE 2. PERCENTAGE OF SOFTWARE DEVELOPED FOR
EACH MAJOR MODULE, BY VERSION
VERSTON [1 2 3 4 5 6 7
TASKS: ’

COM 5 30 40 50 60" 70 100

IND 70 70 70 - 70 700

CRUW 80 | 90 90 100 | 100 100 o L
RIK ‘ 40 | 50 60 | 70 80 100 0 T
NTK . 20 | 50 60 70 a0 100 __ -

RNM | .20 40 80 90 100

WPN : _ | 15 70 90 100)
AIR - 30 40 80 50 | 100 100
MFD i 20 50° 60 80 90 100 ' o
PMD D30 40 40 80. 90 90 100

XHR . 5 50 80 90 | 100

ROR f 30 40 75 90 100 100 o

LLIBRARIES: :

I0 L1B 30 70 90 100 100 100 100 -
EXEC LIB 50 90 100 100 100 100 100 :
DB LIB 80 100 © | 100 100 100 100 100"
Q LIB 100 100 100 100 100 100
NAV LIB 80 90 100 160 100 100 100
ERR LIB 60 75 75 100 1700 100 100

284

and a source-leve] debugger that allows programmers
to debug on-line in the high-level language. A

Anather. suggestion for speeding up progress in
software development is to have project management
intervene when design discussions drag on. When
the programming staff is undecided over alternative
methods and ng outstanding risks are identified,
the chief designer must pick one method and con-.
tinue. - The method that is most straightforward to -
implement should be the one selected.

Program Design Language

Finally, it is important that development
standards not be abandoned because the schedule is
short. For instance, at T3C, the first step in
software development is to express the design in
PDL (program design language). PDL is an Engtish
Tanguage description of the design with a few
structured programming keywords such as IF, ORIF,
ELSE, REPEAT. WHILE. Expressed in PDL, the design
is structured, machine-independent, and understand-
able by nonprogrammers, such as the user. Figure 3
is a sample PDL listing of a routire that controls
cursor movement on a menu-driven display.

The entire spftware team reviews the PDL to
ensure that the PDL is understandable by everyone,
to detect errors and omissions, and to suggest
improvements in the design. Once the design is
approved, code is generated and aiso reviewed.
Code is inserted in -the same source file with the
PDL, and preprocessors allow the listing of PDL
only, code only, or code with PDL inserted as
comments.

.Use of PDL and reviews significantly shortens
the integration and documentation phases of the
software process 1n the following ways. First,
PBL design reviews eTiminate many of the errors
that are normally not detected until software inte-
gration. Secgnd, reviews of PDL and code ensure
that each person knows enough about all the soft-
ware to detect and correct many errors quickly
without invoiving other team members. Third,
software debugging ¥s easier with PDL embedded as-
explanatory comments in the code. Fourth, keeping
POL and code together ensures that coding changes.
are also reflected in the PDL. Thus, at project
completion, POL listings can be used as final
program documentatien. Finally, the requirement
that the software design be expressed in PDL
ensures that the design is decumented--and not in a
disorderly set of notes or stored in a programmer's
head. Thus, if the programmer becomes 11 or
Teaves the project, the disruption is minimized
because another programmer can get "up_to speed”
more easily.

SOME SOLUTIONS TO THE PROBLEM
- OF CHANGING -REQUIREMENTS

Requirement changes during development of a
trafrner device are unavoidable when the system
simulated by the trainer is undergoing simultaneous
development or modification. In such a situation,
& freeze should be invoked on the trainer design
sa development can proceed without upheavals and
delays caused by changing specifications. Foltow-
ing completion of the software, an update phase
should be planned to allow incorparation of
backlogged change requests.

-specification changes had cne benefit:

... trainer are Tikely.

On the PTT project, the OAS was being built
while TSC, with considerable help from SAC,
was writing the functional specifications for the
trainer.” This task reguired an understanding of —
how the 0AS would workin crder to define how the
PTT should support the procedures 1dent1f1ed as
training requirements. Difficulty in obtaining
and understanding existing 0AS documentztion and
coping with changes tc the DAS resulted in a :
significant schedule s1ip. . Working with these . __
the soft-
ware team recognized the need for a flexible
software design to accommodste the inevitable
changes in the future and ebtained a good under-
standing of where changes might occur in the O0AS.

Even when the actual system is stable through-

. out development of the trainer, future changes to

the weapon system which must be refTected in the
Accepting the fact. that
changes are unavoidable, the trainer developers
should be encouraged to provide flexibility for .
future changes. Design tradeoff decisions should
favor the straightforward, easily modifiable
approach over a more efficient method requiring a.
complete redesign if one of the requirements
changes. " As an example, one technigue used by TSC

_is to provide many of the system parameters in

separate data files that can be easily changed
without aftfecting any of the code which uses
this data.

Some of the technigues suggested for helping
to meet short schedules also facilitate incorpo-
rating requirement changes: preducing PDL ensures
that the software design is documented, making it
easier to see the impact of a change; using a
high-level Tanguage and PDL as. comments in the
code makes the code more- understandable, facilitat-
ing coding changes; and reviewing PDL and code _
resultsin a more flexible design and code to
accommodate future changes.

SUMMARY

. We have discussed why shortened schedules and
changing requirements are often associated with the
development of training systems. These conditions _
increase the probability of schedule slips and
cost overruns or delivery of an unacceptable

"“training device 1f the development plan does not

adequately provide means of dealing with them.
Several techniques used by TSC to minimize the
impact of problems caused by schedule s1ips and
requirement changes were presented. These
techniques are being applied to the B-52 QAS Part
Task Trainer, which was briefly described.

A major technique for dealing with potential
schedule probiems is top-down development. As
described with specific examples from the PTT,
top—down development entails the implementation of
successive versions of the trainer so that, if ~
delays occur, a working version of the part1a1
system is ava1TabTe on the ariginal deadTine while
develapment of the complete device continues. An”
important part of the definition of versions for’
top-down development is ranking the priority of

.training requirements to schedule the more critical’

functions in the earlier versions, maximizing
usefulness of the working versions while the -
trainer is completed. Program design language as _
well as design and code reviews are other

285

e DG amd PG et et P = DD GO TN BN G2 P LD B et B30 B 00 MY e

T!TLE BUFFER KEYBOARD INPUT (BKI) - 8:55:13 06/22/79

e ok vl e ke e e ke e R e e R T A ok TR R TR TR e R o ke e e e e e e e R e e R e ook e e e kg ke ko e e e A e e Rk R ROR RROR R ek ke ke e e ok i ek ek e

NAME : CURSOR TAB TASK: BKI

PURPOSE: POSITION THE CURSOR ON THE MENU IN ACCORDANCE WITH THE
CURSOR POSITION ENTERED BY THE USER.

METHOD: A CIRCULAR SCHEME IS EMPLGYED. THE CURSOR ALWAYS CIRCLES
ARQUND IN THE SAME COLUMN OR THE SAME ROW. WHEN AT THE
BOTTOM OF A COLUMN, A DOWN TAB CAUSES THE CURSOR TO
'CIRCLE' TO THE TOP OF THE SAME COLUMN. WHEN AT THE
TOP OF A COLUMN, AN UP TAB CAUSES THE CURSOR TO CIRCLE'
TO THE BOTTOM . OF A COLUMN. THE LEFT
AND RIGHT TABS KAVE THE SAME EFFECT. THAT IS IF THERE
EXISTS ANOTHER COLUMN (POSSIBLE ONLY IN COMMAND SELECT)
THEN LEFT OR RIGHT POSITICNS THE CURSQR IN THE NEXT
COLUMN.

INPUT PARAMETERS:
CURRENT INPUT STATE (FOR BKI)
COMMAND ID
PARAMETER ID
CURSOR KEYSTROKE (FROM MOC KEYBOARD)

OUTPUT PARAMETERS:
COMMAND ID {UPDATED)
PARAMETER 10 (UPDATED)
COMMANDS FOR THE MOC TO POSITION CURSOR

DATA BASE USAGE:
NONE

INVOKING -METHGD:
INVOKE CURSOR TAB

INVOKED BY:
COMMAND SELECT KEYSTROKE (TO POSITION CURSQOR)
PARAMETER SELECT KEYSTROKE (TO POSITION CURSOR}

BLOCKS INVOKED: .
NONE

AR SRR TR R KRR ATk A e de ek e e de ek e e e Rkt e ek dede sk e ek sk et sk ek e ok
BLOCK CURSOR TAB
IF DOWN CURSOR KEYSTROKE
. IF AT THE BOTTOM OF A COLUMN =
. PUT CMNDS IN MOC BUFFER TO POSITION CURSOR AT TOP DF COLUMN
ELSE : NOT AT THE BOTTOM OF A MENU = o
. PUT CMNDS IN MOC BUFFER TO POSITION CURSCR AT NEXT ROW DOWN
. ENDIF
ORIF UP CURSOR KEYSTROKE
IF CURSOR IS AT THE TOP GF A COLUMN
. PUT CMNDS. IN MOC BUFFER TO POSITION CURSOR AT BOTTOM OF COLUMN
ELSE : NOT AT TEE TOP OF A MENU
. . PUT CMNDS. IN MOC .BUFFER TO POSITION CURSOR AT KEXT ROW UP
. ENDIF
ORIF KYSTRK IS LEET/RIGHT AND NOT IN PARAMETER SELECT INPUT STATE
. . IF THERE ARE TWO COLUMNS & MENY COMMANCGS IN THE NEXT COLUMN
.. . PUT CMNDS IN MOC BUFFER TO POSITION CURSOR INTQ NEXT COLUMN
. ENDIF
ORIF KEYSTROKE IS A HOME KEYSTROKE
PUT CMNDS IN MOC BUFFER TO POSITION CURSOR AT TOP OF MENU
ENDIF
IF CURRENT INPUT STATE IS COMMAND SELECT
. MODIFY COMMAND ID
ELSE : CURRENT -INPUT STATE IS PARAMETER SELECT
. . MODIFY PARAMETER ID
ENDIF
ENDBLOCK : CURSOR TAB

PR T T T B S R B

R T ST T |

CD Fokkedodkdodhokdkk hgokdodokkRok koh R K FoR kdokded koded ke dedodeofeokok f R ddedodedodededodododedoke dedede ok fo ek sk Fedk ik gk

Figure 3. Program Design Language (PDL)

286

techniques that help to avoid schedule s11ps and
facilitate requirement changes. -

Programmer familiarity, ease of use, and
availability of required operating system functions
and software tools are factors which should be
considered in selecting the computer for the
training device in order to help meet shartened
schedules.

REFERENCE

1. Yourden, E., Managing the Structured Technigues,
Yourdon Press, New York, 1979.

ABOUT THE AUTHOR

Ms. Kuruma is the manager of Technology
Service. Corporation's Tra1n1ng Systems Department
She has over 1Z yéars' experience in project man-
agement and real-time software development.

287

