EXPLODING TECHNIQUES FOR CIG OBJECTS*

John Rooker®*, Michael Collery, Charles Csuri and David Zeltzer
Computer Graphies Research Group
The Ohio State University

ABSTRACT

This paper will present programming techniques and mathematical algorithms for producing

animated sequences of exploding objects such as bulldings and ship targets.
has obvious extension for application in simulation of combat conditions.

The visual effect
Potential applications

include simulation of weapons effects on real—time CIG visual systems.

*Supported by Navy contract N61339-8-0C-0008
#*%Naval Training Equipment Center N-74, Orlande, Flerida

INTRODUCTION

Computer animation continues to be a valuable
tool for the algeritbmic generation of
time-dependent phenomena. Techniques for the
display of motion that have been developed over
the past 15 years, combined with display
algorithms for high resolution imagery, enables
one to generate more realistic pictures and
animation. These displays can add to our
understanding of complex processes.

In aur research we concentrated on developing
tools for highly detailed data base generation.
The emphasis has been upon interactive compuLer
graphics techniques to work with a Defense Mapping
Agency data base adding cultural features. We
also generated at non—real time rates animation
which simulated moving along a shoreline of
Norfolk, Virginia. During the course of this
effort we have considered the requirements for
real-time display and the kinds of visual cues one
might create to make the simulators more
realistic. It occured to us, perhaps
serendipidously, that we might be able to simulate
explosions because of our data structures and
display algerithm.

We have developed a program that we believe
has applications for simulators and training.' The
realism of combat situations portrayed in a
simulator with graphics capabilities could be
ephanced if, aleng with maneuvers of the craft or
vessels engaged, the destruction of targets were
simulated as well. The program takes an object
described as three-dimensional data and animates
the individual polygons that define its shape.
This technique has been used successfully to
"explode” and "implode” objects and to alter the.
shape of objects. For example, the first
implementation of the program was the explosion of
a realistic model of a tank. It should be noted
early in this paper that the goal of this program
is not to create lifelike explosions. The
explosion of a physical object is an
extraordinarily complex phenomenon governed by
many factors, ineluding the nature of the
explosive and the manner of its detonation, and
the properties of the exploding object and its
surroundings. These factors affect the size of
the blast and the amount of smoke, flame, dust and
debris produced. For our purposes we are not

~uniformly.

31

interested in faithfully reproducing the processes
that constitute such an event. Rather, we wish to
produce a visually interesting and unambiguous
suggestion of a detonation.

The program is general enough to allow for
numerous applications. Buildings, bridges, towers
and structures of any kind can be detonated
providing simulations for training and education.
It can even be used to depict the explosion of a
cataract in the simulation of a surgical
procedure.

Computer animation deals with manipulation of
three-dimensional models. These models are
frequently represented as polygonal data.
is, the data is described as a series of
¢oordinate points and a list of polygons that
describes the relationships between these points.
Traditionally in computer animation, once the
object is described there is rarely a need to
break it down into sub—parts. During animatiom,
objects are transformed as a single unit to create
the illusion of motion. For instance, a three
dimensional model of an airplane can be made to
fly through space by incrementally translating its
position from frame to frame. Objects can be made
to grow and shrink by the successive scaling of
the coordinate information. These transformations
are global, affecting all points and polygons
The premise of this paper is that
since objects are made of component parts
{polygons) there exists an inhereat ability to
manipulate each polygon individually as if they
were objects in themselves.

That

The algorithm te control linear explosions
can be explained as follows. The first step is
altering the description of the data so that
polygons no longer share points with adjoining
polygons, as is normally the case. This step
increases the number of points in the data
description without altering the shape of the
object. Next a "movement vectoxr” needs to be
calculated for each polygon. This vector
determines the direction of travel that a polygon
will také during the course of an animation
sequence. It is arrived at by subtracting the
"center of explosion” from the centroid of each
polygon. The "center of explosion” is determined
by the animator and is based on the bounding box
of the ohject.

EXPLODING CIG OBJECTS

32

For instance, in the detomation of a tank the
"center of explosion” was the minimur height of
the bounding box and the center of the object in
depth. This “"center of explosion” caused the
pieces to fly in equal directions in both the
horizontal and depth planes, but only upward in
the vertical plane, as if the tank was hit dead
center by some explosive force.

After the object is redefined into unigue
polygons and a movement vector is calculated for
each polygon the object is ready to be transformed
by the main program. The movement that results
from this program is based on parameters supplied
by the animator. These parameters determine how
much and which transformations will occur and
their order of occurence. These patrameters
consist of a range of minimum and maximum values.
They are computed internally by the program using
a random number generator. It is our experience
that this randomness gives the movement a more
natural quality. It is important that the random
nunber generator be given the same seed value for
each new frame of animation to insure the movement
continuity of each polygon.

Within the main program these steps occur.
First, each individual pclygon is tramslated to
the origin. Then the rotations (if desired) are
performed in the order specified by the animator.
The polygons are then translated back to their
original position. From this position a new
location ig calculated based on the polygon's
"movement vector” and parameters supplied by the
animator. It is at this point that functions such
as acceleration and deceleration can be applied.
These translations can occur equally in all three
coordinate planes or a unique value can be
calculated for each of the axes. For instance, if
the effect of gravity is being simulated the
direction of movement in the vertical plane should
be positive at first and then gradually shift to a
negative translation until the polygon's position
is equal to the level of the ground plane.

A more precise mathematical model of an
explosion can be developed into the present
program if so desired. The firsc algorithm
represented linear explosions. A second algorithm
deals with parabolic explosions. Objects launched
in a gravitational field at less than escape
velocity will follow a parabolic trajectory. In
two dimensions, and without regard to friction,
the path of an object aleng such an arc is given
by

1
(2)

x = t®y0%*cos(e)
y = t*y0*gin(e) — .5FGRL¥*2

where e is the angle of elevation above the x
axls, G is the acceleration due to gravity (.98
meters per second), is an initial velocity, and t
is a parameter.
the position without regard to the previous
location of the object, we can extend (1) and (2)
to three dimensions by simply specifying an
additional angle that gives a directiom in

Since equations (1) and (2} give .

33

addition to the elevation. That is, we can
compute x and y in the %y plane, and find the
third coordinate by rotating in the x-z plane.
This gives ’ i

li

(3>
(4

b3 t*v0¥*cos{e)*cos{a)

2 t¥y0*cos(e)*sin(a),

where a is the azimuth angle, and y is found as in

(2) above. This can be expressed conveuiehtlyrinr
vector form:
x = t*v0x' (5
y = tRvQky' — [5kGRLAEZ (6) ~
z = tryGz’ (7)

where x', y', and z' are the components of a
normalized vector giving an Iritial directiom, vO
is an ipitial velocity, and t and G are devined as
before.

The éigorithm for parabolic explosions is
analogous to that for the linear case.

for each object begin
compute the centér of explesion CE;

for each polygon Pi begin
-compute the polygon centroid PCij
find the vector Vi from GE to PCi;
compute v0i, the length of Vij;
normalize Vi;
&nd

end

for each frame
for each polygon Pi begin
compute xi, yi, and zi using eqns. (5)-(7)
compute the change in ®i, yi, zi since the
last frame, call this vector Di;
translate Pi by Di;
end
While the velocity of the exploding polyzons
is constant using this algorithm, it is possible
to scale this velocity in several ways. We
initially assumed that the force of the explosion
was constant in all directions. We could however,
scale PVi based on say, the distance of the
polygon from the ceatroid, which is just the
magnitude of Vi. This would have the effect of
glving polygons farther away from the center of
explosion small initial velocity. Or we could
scale PVi based on some measure of the angle
between a polygon, the center of explosion, and
some reference axig, and thus give a direction to
the blast.

The effect of the algorithm is to tramnslate
each polygon alemg a parabolic trajectory radially
outward from the center of the explosion. The
center of explosion can be the centroid of the
object or some other peint chosen to achieve the
desired effect. As in the linear case, the
algorichm specifies only the position of the

polygon, and not its orientation, so rotation
transformations must be explicitly applied if
desired. We can take advantage of the fact that
motion in the x—z plane is constant, only the
vertical velocity of the object wvaries with t.
Thus we can compute constant x and z increments
once, and we need only compute the altitude each
frame.

It is a simple matter to calculate whea the
height of any polygon reaches Q. If the initial
height of the pelygon is 0, the final value of t,
say T, when the polygon again is 0 Is given by

T = (2.0 %# v0 % y'} G. (8)

If the initial height of the polygon is some
non—zero value, say h, then we need to increment t
beyound the point at which the finmal height of the
polygon reaches zero, since then the object will
have returned ounly to its lnitial height h above
the ground plane. This value of T can be
determined from the equation

.5RGELER2 — yOy'ky + h = D, (9

solving for t with the quadratic formula. Both
(8) and (9) give a unique value of T for each
polygon, as each polygon will follow a different
path depending on its initial direction vector and
velocity. Since we can determine the time and
position at which the polygon should impact, we
can portray a splash, a cloud of dust, or a
secondary explosion at the point of impact.
Alternatively, we can use the direction and
velocity of the polygon during preceding frames to
compute a subsequent trajectory and thus cause the
polygon to appear to bounce after it struck the
ground.

An extension to these programs would be the
ability to group polygons into units and then
animate these units. Another extension which we
implemented creates animation quite unlike
explosions and implosions. The idea of
manipulating polygons is the same., The difference
ig that the data structure is not altered into
unique polygons. Instead the polygons are
eriangularized, while still sharing points with
neighboring polygons. This step is performed to
protect against nonplanar pelygens which typical
scan coverting algeritims do not accept. With
this technique objects can be made irregular and
new shapes can be formed. This technique was used
to create the ocean like data seen in the
accompanylng photographs. Before modification
this "ocean" was a flat plane. The "waves” were
created by random rotation of constituent
polygons.

SUMMARY

We have described techniques for the
simulation of explosions of crafts or vehicles.
In the paper we were not concerned about the
precise physics invelved in such a problem. Our
concern was only with the visual effect. We view
this effort as a preliminary effort and more work
needs to be done for an implementation in a

real-time flight simulator. It is important to
mention that much of the realism asscciated with
our explosions is due in part to our display
algorithm. Further extensions of our techaiques
to real-time digplay would require a careful
analysis of the relationships, trade offs and
computational costs which may be necessary among
various algorithms to achieve realistic
explosions.

ABQUT THE AUTHORS

JOHN L. (JACKE) BOOKER is acquisition director
and principal investigator on tasks 8741 low level
daytime CLG for trainers and 8743 area of interest
CIG for NAVTRAEQUIPCEN computer sytems laboratory
code N-74 Orlando, Florida. He served as project
engineer for the aviation wide angle visual
systems (AWAVS) CIG system procurement. He has
been active in computer graphics since 1967 and
has served as project engineer on a number of
computer graphics systems and procurements
including an Idiiom and E and 5 LDS-1. He
received an M.$S. Engineering degree from the
University of Florida in 1967, BSEE from North

‘Carolina State University in 1961 and an AB degree

in Journalism from the University of North
GCarolina ia 1953. Mr. Booker is a member of Tau
Beta Pi, Eta Kappa Nu, Sigma Xi, IEEE, IEEE
Computer Society, SIGGRAPH and the ACM.

MICHAEL COLLERY, computer animator/
researcher, The Chio State University. B.F.A.
Fine Arts, The Ohlo State University. He -
developed data generation and animation techniques
for the Norfolk Data Base project (Navy contract
N61339=-80-C-0008). He has also c¢reated numerocus
animation sequences of high resolution computer
imagery for applications to commercial television,
special effects for film and educational projects.

CHARLES A. CSURI, professor, Art Education,
Computer and Information Science and Director of
the Computer Graphics Research Group, The Ohio
State University. Recipient of National Science
Foundation support for the past 12 years.
Received grants from the Air Force Office for
Scientific Research, Bureau for the Education of
the Handicapped and the Department of the Ravy
(NTEC-74}. Member, editorial board of the IEEE
Journal of Computer Graphics and Applications. He
has published widely in the fleld of computer
graphics and animation.

DAVID ZELTZER, B.Sc. Mathematics, Southern
Oregon State College, 1978. M.Sc. in Computer
Science, The Ohio State University, 1980.
Currently Ph.D. candidate in Computer Scilence,
0.5.U. Dissertation research in complex animation
involving studies of robeties and artificial
intelligence techniques for computer generated
figure animation. Published papers in the
Canadian — Man Machine Communication Conferences,
1980, Graphiecs — Interface 1982. IEEE Computer
Graphics and Applications, Fall, 1982. Tutorial
on 3=D computer animation, SIGGRAPH, 1982.

