User Friendly Authoring Languages: An Alternative Approach

Charles R. Myers, Jr
Roger A. Schaefer

Grumman Aerospace. Corpeoration

ABSTRACT

Two general types of programming languages have been developed for computer based educational
systems., The first type of language, which is patterned after such high order languages as
PASCAL or: FORTRAN, provides great programming flexibility. However, its structured, syntac—
tical comstructs require either that an experienced programmer be involved in lesson generation
or that instructional persomnel become skilled in sound programming techniques. 1ts use
‘frequently results in other problems as well, such as communication difficulties between
instructicnal and programming pexscennel in the implementation of the lessom design and develop-
meat process. To avoid these problems, the second type of langusge was developed. It allows
instructiconal persomnel to generate on-line instructional materials without acquiring sophis-
ticated programming skills. This second categery of languages is often thought of as being
"yser friendly.™ Such languages usually take an algorithmic approack to instruction and rely
heavily on prompting as the means of lesson program entry. They serve very well for many
applications, but their use has mot been without problems. Not the least of these problems has
been a lack of flexibility in the presentation and creation formats. This paper describes the.
OMEGA authoring system, 2 lesson authoring apprtoach that provides instructicnal perxsomnel with
the positive features of both of the above language types. The approach has been Implemented
on an educational system that includes _capabilities for the integrated use of interactive
videodisc and three dimensional simulation., The paper first relates some basic facts about
computer systems in gemeral, and then discusses the various aspects of user friendliness in the
context of educational programming. It then describes and evaluates both the traditional and

OMEGA approaches to user friendly authoring.

Users of educationally criented computer
systems have 2 limited number of authoring lan—
guage options available to them. Most systems are

‘equipped with two types of authoring languages.

The first type offers the author a great deal of
flexibility in instructional design, but requires
a very sophisticated kanowledge of computer pro-
gramming to be used effectively. The type, which
is advertised by manufacturers as "user friendly,"
requires little or ne computer backgreund; but
limits the author to a relatively rigid instrue-
tional presentation format.

Today's instructional environment recuires a
language option that is more adaptable than either
of the two discussed above, An author's computer
background can range £from nonexilstent to exten—
sive, and dinstructional applications vary Irom
simple to extremely complex.

This paper descyibes the OMEGA authoring
system developed by the Trairing Systems Depart—
ment of the Grumman Aerospace Corporation. OMEGA
was designed to bridge the gap between the lan-
guage option types discussed above., It combines
adaptability to any level of computing ability
with the flexibility and power required for
sophisticated instructional applicatioms.

The paper £irst discusses a few basics of
computers to define terms used in the discussion
that follows. That discussion begins with a
description of the various aspects of user friend-
liness. It then descyibes and evaluates the
appraaches that have traditionally been taken
toward wmaking educationally oriented computer
systems user friendly. Finally, the OMEGA
approach to lesson authoring will be described and
evaluated,

109

COMPUTER ESSENTIALS

4 computer is bagically a2 piece of ma-
chinery that uses electronic means to manipulate
data. The wachinery ~— called "hardware™ in
computer jargon --— consists of a processor and
various . support items known as peripherals.™
These peripherals allow the processor to communi-
cate and interface with the outside world. Sotie_
peripherals (e.g., keyboards and card readers) are
called "input" devices; they allow the user to
give information to the processor. Other per-
ipherals (e.g., printers and terminals) are known
as "output™ devices; they allow the processor to
display information fer the user. Mass memory is_
one of the most impertant peripherals in a com—
puter system. It stores data that is not cur-
rently being used by the processor, but which will
be required at some future time. This memory is
both an input and an output device, since the
processor "reads" from it or "writes" to it.

Computer hardware is controlled by programs,
or "software." These programs are nothing more
than structured sets of instructioms that can he
understood and executed by the computer's pro-
cessor. Programs control the sequence and nature
of the processor's interactions with its per-
ipherals and the way it menipulates and formats
data.

Programs can be written in various computer
"languages," which, like human languages, consist
of a voczbulary and syntax. The "vocabulary" of a
computer language is the set of imstructions (also
called commands) it contains. Its "syntax" is the
set of rules governing the way in which the

instructions must be structured. Many different’

languages have been developed for computers over

the years, and several Ianguage options are
usually available for any given computer.

The most fundamental language for a computer
is its "machine language." Each instruction in
machine language is a series of binary states,
commonly Tepresented by 1's and 0's. Machine
language is consldered fundamental because all
programs, no matter what language they are written
in, eventually become machine language. It is the
only language a computer "understands,"” and is
unigue to a particular processor.

Programs can be written directly in machine
language, but it is very difficult to do so. Ta
make the programming task easier, a second type of
language, Kknown as 'assembly," was developed.
There is a one to one correspondence between
assembly language instructions and machine lan-
guage Instructions; but the instructions in
assembly language are easily recognizable mne-
monics, and are therefore much easier to work with
than machine language iunstructions. - Programs
written in assembly language ("source code") are
mechanically converted dinto machire language
programs (“ebject code") by a utility program
known as an "assembler." Like machine languages,
assembly languages are unigque to a given pro—
cessor,

Although programming in assembly language is
much easier than programming in machine language,
it 1is still a tedious and time-consuming task.
For this reason, various "high order" languages
(HOLs) have been developed. Source code written
in these languages is translated into object code
using utility programs known as compilers ox
interpreters. HOLs differ from assembly language
in that a single command normally corresponds to a
structured group of machine language instructions.

High order languages wusually have been
developed with specific applications in mind,
e.g., arithmetic computation, large data base
management, string manipulation, or instructional
delivery. Their specific design orientations make
it . relatively easy for programmers to write’
programs for their intended applications, but

programming for applications outside of those for
which the language was designed can be very
difficult or inefficient.

Source code for a program written in either
assembly language or an HOL is usually composed at
a computer terminal using some sort of editing
program. The code thus produced is put into a
logical entity, known as a *file," !in computer
memory. This file is used as input to the assem-
bler, compiler, or interpreter, as appropriate, to
produce object code. This object code is put into
another file, When executed by the computer, the
object code causes the computer to do the things
degired by the programmer.

A mnote of clarification is perhaps in order
here, The user friendly language options provided
for educational computing systems sometimes make
it appear that lesson authoring is something other
than programming. Despilte appearances, however,
it is dmportant to remember that the author is
actually writing a computer program. It doesn't

matter what the author's instruction set looks .

like or how the instructions are specified. When
the data that is entered becomes machine language,

the computer treats it the same as any other data
base. Ultimately, programs must be written in
some computer language, and the instructions in
that program must be translated into the machine
langrage of the computer being used.

ASPECTS OF USER FRIENDLINESS

A system that is user friendly is one that is
easy to learn and use, Thare are two approaches
to making a computer authoring system user friend-
1y, One deals with the language to be used, while
the other deals with the means of producing source
code in that language, or editing.

Language

It is -obvious that a language with compli-
cated syntax is less user friendly than one with a
simple and straightforward syntax. In additios,
an instruction set consisting of mmemonics that
are natural and meaningfvl to the author will be
easier to wse than one whose instruction set is
unnatural,

These are the aspects of language that are
most often thought of relative to user friend-
liness, but there are others as well. These
include the following:

Gapability: It deoesn't matter how simple a
language is if it doesn't provide the author with
the tools necessary to do what is required. An
instruction set must be complete enough to provide
flexibility.

Adaptability: Closely tied to capability,

. adaptability implies that a language czn be used

for diverse applications, For example, a language

developed only for interactive videodise applica-

tions could not be used by an auther in applica-
tions requiring interaction with a simulator,

Tolerance for Faults/Diagnostics: Anyone who
has done any programming knows that programs
rarely rTun correctly the first time. A useful

feature of any language is toleratfon for such
- faults as - typographical errors. Where erraors
excead the I1imits of reason, diagnostics indi-
cating what sgort of. error has been made {and
where) are a great help in identifying what needs
to be changed to make the program run correctly.

Editing

As was the case with language consideratilons,

- simplieity is the most obvious characteristic that

will make an editor user friendly., The simpler

the editor is in functilon, the easier it will be

to learn and use 1t., However, .there are some

additional, and perhaps less obvicus, featuras
that can be useful:

Internzl Helps: Closely associated with
simplicity, internal helps provide the user with
assistance when he doesn't know what to do mext.

Speed: How fast can source code be entered
on a sustained basis?

Documentation: To what degree can comments
.be added to the source code to provide information
on program logic? This is a very important
feature when the author must go back into the

110

program to correct errors ox change it for some
reason.

JUDGMENT CRITERIA

From the foregoing discussion, it is obvious
that there are at least. seven factors that can be
used to judge the user friendliness of a2 given
system:

Simplicity

Capability

Adaptability

Tolerance for faults/diagnostics
Tnternal helps when editing
Editing speed

Documentation.

3000000

These eritexia provide the basis for the discus-

sion that follows.

HISTORICAL BYSTEM DESIGN

The most common system design for a user
friendly authoring language actually obscures the
language being used, The author deals exglusively
with an editor that provides menus and templates
to extract the required program Iinformation. As
the author responds, the editor composes and
formats the requisite commands, and inserts them
at the required places in the program. 1In this
way, the authoring language is totally transparent
to the author. This approach can be evaluated as
follows:

Simplicity

A template system is very simple to learn,
Typically, a mew author can be on the system and
working within a few hours. Authoring vocabulary
and syntax are mot problems, since the author is
isolated from the actual language base.

As simple as this approach seems, however,
there are problems with it. While it is true that
the mew autheor can begin te work quickly, total
proficiency comes much more slowly. A flexible
language, with extensive capabilities, requires a
great many menus and templates, and the sheer
numbers may be overwhelming at first.

As proficiency is gainea, a new problem
develops. With experience, the author outgrows
the need for many of the prompts the system gives.
The speed with which the author can create reaches
a terminal point, and frustration with the system
sets im.

Capability

As discussed abave, the capabilities of this
type of system may be quite extensive. The nature
of the approach, however, limits the abllity to
extend those capabilities. Each new feature
requires mnot only that new commands and program-
ming routines be prepared, but alsc that new code
be written for the editor that allows authors to
use the feature. This is 2 time consuming and
expensive proposition, since the updated. editor
must be thoroughly tested to ensure that the new
features do not interfere with previously existing
features.

1M

Adaptebllit

difficult to
game Treasons
The problems
extensive.

This approach makes it very
adapt to new applications for the
listed for increasing capability.
are of the same nature, but are more

Tolerance for Faults/Diagnostics

This approach scores very high for this
criterion for omne potential error situatiom, since
the aystem does not allew the author to enter an
unrecognizable. command. Problems can result,
however, if an entry is made that is syntactically
cerrect, but logically incorrect. The recognition
and solution of this type of error will be ex-
tremely difficult and time consuming

Internal Helps

This is the strongest suit of the traditiomal
system., Using an editor of this type provides
excellent internal helps for the author. The next

. required entry is always displayed om thes screen.

Speed

As noted earlier, the new author can begin to
create very rapidly, and the time it takes will
probably be faster. than would.be possible with
other systems at first, However, as proficilency
is gained, the prompts Dbecome a hindyance.
Templates require that each prompt be - addressed,
whether the feature it represents is required or
not. This creates the first bottleneck. A second
problem is that it takes a finite amount of time
to perceive the prompt and respond to it.

Documentation .

The ability _to document the source ceode
varies from ome system to . another, Generally
speaking, however, this approach does not provide
for the extensive internal documentation required
for a sophisticated program, This Jlack of
documentation severely curtails the usefulness of
the training system. . Programs need to be changed
from time to time, and changes are not always made
by the same person who origirally wrote the
program. A new author may mot be able to perceive
the original .author's logic if it is not well
documented, and may be forced to recreate a lesson
from scratch as a result,

THE OMEGA DESIGN

The OMEGA authoring system has been designed
to incorporate as many of the strengths of the
traditional system as possible, while overcoming
its weaknesses. . It consists of three elements:

the OMEGA language itself, an editer used to
create OMEGA source code files, and a set of pro-
cedures developed for using the editox effec—
tively.

The OMEGA system 4is designed to support
diverse instructional applications, including

operation and. maintenance of complex equipment.
Unlike other authoring systems, OMEGA can control
students as they acquire. both cognitive skills
using two dimensional (2D) media and psychomotor
skills using three dimensional (3D) media. A
typical hardware for these training applications
could consist of:

BRI U R L e n) Lok i Ll U L it

o A microprocessor for system comtrol

o Mass memory in the form of either floppy
or hard disks

o Mass video memory in the form of laser
videodiscs

© A color television monitor to display
stored video and/or digital materials

¢ A touch sensitive bezel, mounted on the
front of the momitor, to allow student
inputs

0 A voice recognition unit to allow for
student inputs when both hands are
occupied with performing a manual task

a A three dimensional (3D) simulator to
allow the student to manipulate equipment
as required by the training task.

Lesson design and authoring for 3D applica-
tions can be extremely complex. Experience has
shown ‘that it is sometimes necessary to anticipate
15 to 20 responses at one time while teaching the
troubleshooting of a complex plece of electronic
equipment., - Sometimes, half of these are antici-
pated incorrect responses that require remedia-
tion. The other half 4in that sitvation are
logically correct responses. Each correct
response requires a separate branch path in the
lessen that would accomodate the actions that
follow.

The system can also be used for more tradi-
tional applications. There are times when the
system is used to present standard interactive
videodisc instruetion, even when dealing with very
sophisticated equipment, This instruction can
consist of a basiec series of instructional frames,
or "pages," to be presented to the student. They
are "turned" when the student indicates that he is
ready for the next page, usually either by
touching a designated spot on the screen or by
giving a verbal ccmmand using the - voice
recognition wunit.
tested from time to time by presenting questions
on the screen. Incorrect trespomnses are rvemedi-
ated, while correct responses take the student
along the main path of the lessoxn.

The Language o

The OMEGA language consists of approximately
50 commands, but only a dozen or so are required
for most lesson authoring. These commands are
divided inte six categories, according to fune-
tion;

o Lesson exeqution

¢ Instruction

o Student interaction

o Leason variables

o Simulator communication

a Instructor communication.

Lesson Execution: The - lessomn executien

commands serve two functions: they divide lessons
into logical units called EVENTs, ard they provide
branching within a lesson that is not student-
initiated, These commands are totally transparent
to the student at lesson run time, but if is
primarily these commands that give flexibility and
power to the language.

Instruction: The 'commands that. present
instruction to the student at tun time either

4 student's understanding is -

- the program

display video images and/or audic messages from
the videodisc, or they present computer generated
graphies that can be overlaid on video graphics.
As dis the case with all computer based instruc-
tional systems, - each instructional message is
determined during lesson design. The OMEGA
instructional delivery commands simply sequence
the messages properly.

. Student Interaction: Student interaction
commands allow the student to communicate with the
system. This communication can take the form of
"go . ahead" indications, respomses to direct
questions, or 30 manipulations, as. discussed
above. Student responses. are judged as either
correct, anticipated imcorrect, or unanticipated.
The system reacts differently to each category of
response. For both correect and anticipated
incorrect respomses, it. proceeds to an place in
that has been specified ir the
command. At that place, the system either advan-
ces the student on through the lesson or provides
remediation specific to the action taken.

Unanticipated actions are dlncorrect by
definition. Since they have not been anticipated,
it is not possible to provide specific remediation
for them. In such situations, the OMEGA software
provides a system generated message that tells the
student what control was moved, what positiom it
was moved to, and what position it was moved from.
This allows the student to correct the error
before attempting to continue through the lessom.

Lesson Variables: The author can define and
manipulate variables using OMEGA commands. . These

. variables can be wunsed for a number of purposes.

112

They can be used to keep track of student errors,
including number and type. They can count the
nunber of times a student exercises a procsdure;
this could be used in a situation where there are
three different versions of the same help message.
By keeping track of how many times the student has
asked for help, the lesson can provide a different
message each time. The variables can also be used
as the basis for branching within a program,

Simulator Communication: When dealing with a
3P0 gimulator, it is Zfreguently necessary for the
lesson programs to communicate with the simulator
programs. Much of this communication -is done
automatically using the student interaction com-
mands discussed azbove, There are times, however,
when additional communication is required, either
to manipulate variables in the simulator's pro-
grams or to determine the wvalue of those wvari-
ables. The simulator communication commands allow
for this additional interaction between the lesson
and the simuilatox.

Instructor Communicaticn: The OMEGA system
allows an insrructor to menitor what the student
is doing on a separate cathode ray tube (CRT).
Alerts and/or.informative messages can be incor-
porated into the OMEGA lessons to ensure that tha
instructor always knows what is happening.

All of the OMEGA commands are straightfor-
ward, regardless of the -category they are in.
Each g¢ommand consists of a meaningful mmemonic
followed by parameters. Most of the commands have
three parameters or less, and the most commonly
used typically have only one. The most common

values of the parameters are set as defaults to
simplify thedr entry at edit time.

The syntax for organizing a lesson program is
also quite simple. A lesson is organized as a
series of EVENTs, whieh are logical groupings of
OMEGA commands., The group of commands in an EVENT
specify what can happen at one particular time in
a lesson. Generally speaking, the elements of an
EVENT include what the student will see and/ or
hear, as well as acceptable student responses.
Other information, such s instructor prowpts,
histarical remarks,
can also be specified as requived.

‘The Editor

The OMEGA system uses a sophisticated off-
the-shelf word processing text editor, because of
its power and its simplicity. It provides exten—
sive edit time help in the form of menus, and the
author can easily set ({(and reset) the ameount of
help desired while editing. The following
capabilities are provided:

o Inserting text (characters, complete
files)

o Deleting text (characters, words, lines,
groups of lines)

¢ Moving text (from single character to
large blocks of text)

o Global corrections

o BSaving text (blocks, complete files),

The Procedures

Each OMEGA lesson is constructed by putting a
series of commands intec a computer file using the
editor. TFour different methods can be used to
entex this code, depending on the instructional
requirements and the programming capabilities of
the author:

Command: The author can enter individual
commands simply by using the computer keyboard as
& typewriter, This option provides maximum
flexibility, as the author can group and sequence
commands in any way desired.

Here the COMEGA system begins to
resemble the more traditional systems, but this
resenblance is only superficial. Since certain
groupings of commands tend to occur more often
than others in any programming language, they can
be grouped together te form a2 template. Specific
details may vary from one specific grouping te
another of the same type, but the command struc-
ture itself changes wery little. For convenience
in editing, common OMEGA command . groupings have
been put into individual files., Any of these
files can be inserted into any source code file as
an intact unit simply by wvsing the "RRAD" option
available 1n the editor.

Template:

The standard groupings can be considered as
templates because they provide a predetermined
structure te an individual EVENT. However, they
are flexible templates since they can be tailored
to individual situations by adding or deleting
commands as necessary. The commands provided in
the templates already have their most frequently
used parameters filled in; parameters that change
frequently are left blank to be completed at edit
time.

or documentation notations,-

113

Theoretically, any number of templates can be
gtored in the the system's mass memory, but we
usually limit the number stored at any one time
for the sake of simplicity. If the author sees
that the same command structure will be required
frequently, he can create a new template that can
be saved, used, modified, and deleted without ever
leaving the lesson file being edited.

Extended- Template: As the name implies, an
extended template is a special case of the tem-
plate. Extended templates include more than one
EVERT, and can include several hundred. They
usually involve rather sophisticated logic, and so
are mnormally prepared and saved by authors with
extensive programming capabilities. These tem-
plates are used for instructional formats whose
logic always remains constant, but whose details
may change, e.g., interactive games used for drill
and practice. Completing an extended template
requires only a small amount of editing relative
to the amount of lesson code generated.

Module: A module is distinguished from an
extended template in that it is a totally intact
unit. It requires no modifjcation by the zuthor.
Neither the logic nor the details change in a
module. . It is always used for the same purpose,
and it always presents the same Instruction,
Modules are normally used for hands on, iaterac—
tive instruction, where the same set of actions is
performed a number of times 1n different lessons.
This feature represents a tremendous savings of .
time and labor, since the tode for any module can

be included in any lesson once 1t has been
produced,

EVALUATING OMEGA
Simplicity

OMEGA 1s a rather simple system, since both
the language and the editor arve easy to learn and
use, Though new authors totally unfamiliar with
programming cannot begin. productive work as fast
as they could on a traditiomal "user friendiy"
system , they are able to do so within a period of
about two weeks., Total proficiency c¢an be gained
as quickly as with the traditional approach.

Capability

. OMEGA has a broad range of capabilities.
Source code can be infinitely tailored to the

requirements of any particular instructional.
circumstance.
Adaptability

The .OMEGA system was designed from the

beginming for the most sophisticated applicatioms.
These include pot only traditional computer
assisted instruction and interazctive videodise,
but alse ipteracticn with a three. dimensional
simulator. For this reascn, the system can be
used to teach any cognitive or hands on objective.

Tolerance for Faults/Diagnostics.

As is the case for any system, .errors in

command syntar (such as entering an - alphanumeric
character -where a number is required) will cause
problems with OMEGA, These errors are trapped
when source code is compiled, however, and a

complete set of @ diagnostics helps the author
identify and locate errors quickly. The extensive
capabilities for internal lesson documentation
alsc make lesson maintenance a relatively simple
matter.

Internal Helps:

The editor provides selectable levels of help
to the author at edit time. A new author can have

help displayed constantly, and can gradually
reduce the amount available as experience is
gained.
Editing Speed

This is a major advantage of OMEGA. The use

of adaptable templates, extended templates, and
modules allows the author to enter large amounts
of source code very quickly and efficiently.
Experience with the system has shown that editing
is considerably faster than with comparable menu-
based systems. The most outstanding feature of
this approach is that there is no loss of flex-
ibility din using the templates since they are
invoked -and modified only as required.

Documentation

OMEGA source code can be thoroughly docu-
mented by iInserting comments at any point deemed
necessary by the auther. Internal peolicy toward
documentation i1s that virtually every command is
commented, and that additional = comments are
inserted as required,

114

SUMMARY

The COMEGA approach to authering lessons for
computer based instructional systems is a signi-
ficant improvement over traditional approaches.
It is a simple system to learn and use, yet it has
all the capabilities required for .the most sophis-—
ticated applicatioms. It can be used for a wide
range of applications, including the teachiag of
bothh cognitive and hands on tasks. Editing
proceeds quickly and efficiently, and wvarious
levels of help are available to any author at any
time. The system provides for extensive internal
lesson documentatiom, and extensive diagnostics
are available to help the author identify, locate,
and correct errors in lessom source code.

ABQUT THE AUTHORS

¥r. Charles R. Myers, Jr., 1is an Instruc-
ticnal Systems Engineer at Grumman Aerospace
Corporation. He is currently the Principle Eval-
vator of the Instructional and User Qualities of
Grumman Common Core CAL Software, He holds a B.S.
degree from the United States Military Academy,
and he has apn M.S. degree and is a PhD candidate
in Instructional Systems Technology at Indiana
University.

Mr. Roger Schaefer i1is a systems
leader for the Grumman Aerospace Corporation. He
is responsible for design and development of
microprocessor based training systems. He holds a
E.S. degree from Hofstra University and a patent
for a microprocessor based: interactive traiming
aid.

project

