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ABSTRACT

Generation and support of documentation accompanying software development is historically a low-efficiency, high-cost
undertaking. Frequently:the situation arises where a choice must be made fo fulfili documentation requirements and incur
cost and schedule overruns, or to complete the software product in a reasonable time and deliver less than adequate
documentation. The primary difficuities are efficient generation, quick and thorough update, and document correlation on
large projects. Automnated methods can alleviate these problems by (1) application of word processing systems to the -
generation and edlting of deseriptive text, (2) use of a data base manager-type control of sistem interface definition and
document correlation, (3) use of pseudo-code for first-fime design and flowghart generation, and (4) the use of special
purpose software tools to perform analysis of code for flowchart and module interface updating.

Dacumentation of software can be performed on several fevels of
complexity. The lowest level is perhaps the basic user's guide that
accompanles small software items or those packages where a
detailed knowledge of the software internals is unneeded or
undesirable, This guide is usually textual, giving only installation and
usage instructions. A higher leve! of complexity is encountered when
system descriptions are included, as may be the case with a vendor’s
operating system. The user in these cases is given needed
information gn the interplay of the system’s elements and pessibly a
fair amount af detail on the internal workings of the systemn in addition
to the installation and usage informatlon. Still omitted are the detailed
design information, engineering trade-offs, and associated
background information on philosopby, methodology, etc., that must
accompany the most complex level of documentation — that givento
the military or the government in general, Examples are compliance
with the “"Part §i Specification” called out by USAF Data Item
Descriptions - DI-E-3120B/M1  Computer  Program  Product
Specifications, and the DI-H-3277/M7 Training Equipment Computer
Program Docurmentation.

- The Part Il Specification includes computer program descriptions,
table and data base descriptions, a reai-lime cross reference,
programmer’s notebooks, time and memery allocation tracking data, a
Computer - Program System (CPS) guide, and of course, any
associated vendor manuals. The general contents of the Part |l
Specification are depicted In Figure 1. Of the documentation items
listed, only two items are easily supplied: the listings and vendor
manuals.
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Figure 1. Part Il Specification Structure

On a large software project, the effort required 1o produce this
documentation can be staggering. The Bosing -Military Alrplane
Company (BMAC), in building the B-52/K(-135 Weapans Systems

Trainer (WST) prototypes for the USAF, produced approximately

. 1,000,000 lines of source code. This resulted in roughly 91,000 sheels

of non-listing detailed design documentation. This does not include
the amount of documenlation produced in the generation of functional
speciflcations, implemerntation specifications, or the programmers’
notebooks, CPS guide, and other items of the Part || Spec.
Additfonally, there were in excess of 7,000 revisions to the source
parts comprising . the CPS. Assuming that each revision and

- assoclated document release required the modification of a minimum

of three sheets (ane flowchart, one narrative, and one revision status
sheet), there were at least 21,000 regenerated documentation sheets
for a total of 112,000 effective non-listing pages of design documents.

Naturally, there are impediments to the completion of a task of this
rmagnitude. One of the problems with which many organizations must
deal is the lack of sufficient numbers of skilled engineers and
programmers to perform the designing and coding tasks: Enginsering
support personnel who shouid undertake much of the documentation
task are therefore frequently utilized to perform in an engineering role.
This places a greater burden of document generation upon the
engineers and programmers which adds to the scheduls impact.

The major issue in documenting software, even with an abundance
of designers and support personnel, is the cost. A reasonable cost
estimate for a deliverad page of documentation is three manhours
(MH3.M 1t can be assumed that about one MH for one round of editing
and revising with an additional 0.5 MH for typing™ are embedded in
this figure. Each additional revision of a page can then be estimated at
1.5 MH. The documentation cost of a WST-sized project could then be
expected to be 304,500 MH, or approximately 1,750 man months
{MM). This can be further emphasized by noting that a comparison of
document generation to code generation shows that documentation
accounts directly and indirectly for about 60 percent of project costs as
cpposed to 40 percent of project costs for coding.™ Obvigusly,
documentation is a candidate for cost reduction..

How can this cost be reduced? Perhaps the most apparent remedy
Is the application of word processing to those areas of the decuments
that are texual. In-house BMAC experience with word processing
indicates that savings of 60-70 percent are possible when revision and
retyping are undertaken through word processing rather than
conventional secretarial methods. The 7,000-plus released revisions:
oh WST could be translated to an expected expenditure of 31,500
MH. A 60 percent reduction via word processing brings about a
possible savings of 18,200 MH. If the cost of revising a document
page Is conservatively set at one MH, the savings over the 21,000
revised pages Is sfill 12,600 MH. Applying these possible savings to
the embedded revision in the three MH per page vields a modifled
page cost of 2.4 MH, implying a savings of 20 percent gver the basic
cost of the 81,000 non-revision sheets, or 54,600 MH (still using one
MH per embedded revision}, When considered together, the
reductions amount to about 57,200 MH ar 22 percent. Of course, the
major benefit of this type of reduction is not that the job couid be done
more efficienily. Rather, a less ominous specire of the documentation
cost would aflow the job to ha performed in the first place.

The word processor would be the mainstay of smaller projects and
those supplying only the lower fevels of documentation. Indeed, for



the large project generating a Part 1l Spec, the word processor can
play a very large role, particularly in supporting the CPS guide, the
programmer’s notebooks, and the modeting and narrative sections of
the computer program descriptions. Other areas are better served in
other manners, especially the module design flowcharts, interface
lists, data base structure and memory allocation, and the real-time
cross reference. Of these, the most extensive and time-consuming in
-generation are the flowcharts and the interface lists.

Flowcharting an ‘as-built’ piece of software is prone to similar
problems as wriling the narrative text ~ adherence to drawing
standards, typing commenis into the flow elements, analysis of the
code, etc. An alternative is to implement an automatic flowcharting
tool. Without the spacific approval of the procuring agency, however,
this is proscribed by data item descriptions such as the DI-H-3277/M7.
Why is there an aversion to auto-flowcharting? The usual auto-flow
tool has been used to generate what amounts to an additional listing
of the code which fails to enhance the software’s suppartability. The
secondary goal of an auto-flow tool then should be to chart the design
in an understandable and useful form. One of the more highly
acclaimed design approaches iz the lop-down method, where the
basic programming prablem is iteratively divided into subsets of iess
general, more detailed problems that can eventuailly be easily solved
or an individual basis. Flowcharting a top-town design in a likewise
rnanner greatly enhances the usefulness of the documentation and its
acceptability to the user.

BMAC has an auto-flow tool in the final stages of development, the
Document Suppart System (DSS), which performs the flowchart
generation in a top-down manner thus direclly reflecting the levels of
the design. At the same time, the source code image is separated into
design [evels corresponding to the generated fowcharts and
formatied to reflect the logic nesting of each leval. For jllusiration, a
simple two-design level program has been generated and analyzed.
Figure 2 shows the entire source image listing of the. pregram which
has been written for a Gould SEL 32/55 using a subset of
S-FORTRAN developed by Calne, Farber & Gordeon, Inc.
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Figure 2. Example Program

Separation of the code and attendant flowcharts per design level is
depicted in Figures 3 through 7. The leading block of code, used for
variable mnemonic attribute generation, common area references,
and data initialization has been set aside in Figure 3. Figures 4 and 5
represent the top design level of 'executable’ code. In Figure 4, code
subsection 1.1 is shown with a replacement statement highlighted by
dashed lines, while subsection 1.2 is represenied only by a comment,
This makes it immeadiately apparent that 1.1 is not subdivided into
lower design levels, while 1.2 is. The flowchart of Figure 5 shows the
logical flow of the op deslgn level. Branching due to TRUE ar FALSE
states of the decision is indicated by ‘T' or ‘FF within the logic paths
leading from the decision block. Figures & and 7 show the second
level of design {code subsection 1.2) pictured with the corresponding
comment and process block displayed in the previous deslgn level to
aid in identification of the listing and flowchart. Those separated
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segments of code and flowchart lend themselves quite readily to
integration with descriptive text for each of the design levels,
Rey = STATEMENT

-

* PART MUmBER

Prutseam X
LEPFAUGY

DATAFUL
LD IfAL = 1 LoPrPAuG

L ]
!l.tl.llltol

Figure 3. Leading Ceode Block
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Figure 5. Top Design Level Flowchart .
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Figure 7. Second Design Level Flowchart

As evidenced, DSS can be used for analysis and docurnentation of
existing code, provided certain coding standards have been followed.
Additional applications are the generation of firsi-time flowcharts and
lhe update of documentation per changes to design. Module
designers generate a pseudo code of comments and generic logic
structures; then use DSS to construct the design's flowchart. This
gives excellent visibility to the design, its evolution, and its adherence
fo top-down and structured techniques, The example program of
Figure 2 Is in much the same format as would be generated by a
designer under these circumstances. The twa variables L and | have
been inserted to provide proper syntax for the *IF' logle structures, and
would be replaced with proper mnemonics as they are defined.

An extremely optimisiic expectation for the cost of the fiowcharts
and design level listings would be 1/4 MH per sheet. The amount of
time required to generate all the sheets represented by Figures 3
through 7 was about 15 seconds, or 1/4-minute of real-time, leaving a
great deal of spare computer fime withirs the 15-second span. i we
assume that text and 'boilerplate’ comprise about one-half of each
design document's non-listing pages, and the other half consists of
flowcharts and design-level listings, we can arrive at a cost-savings
estimate for . combined word processing and auto-flowcharting.

Applying the 22 percent word processing savings to one-half of the
original 304,500 MH cost, or 152,250 MH, vields a savings of 33,830
MH. If we then assume the 15-second. expenditure for generating the
analysis of the example program applies to each sheet rather than all
of them, then each sheet costs 15/3600 MH or 1/240 MH. Compared
to our conservative 1/4 MM estimate for manual generation, this
represents a savings of over 98 percent. The original cost of the
56,000 flowchart and design level sheets would be 14,000 MH at the
1/4 MH rate. A 98 percent reduction would be 13,720 MH for a total
savings of 47,550 MH. Applied to a revised original cost of 166,250
MH (allowing 1/4 MH each for the flowcharts and design level lists
assumeéd to comprise one-half of the 112,000 effective pages), the
results are a savings of nearly 27 percent. Possibilities of this sort,
especially given the conservative estimating, obviously start 1o bring
high quality large documentation tasks into the realm of feasibility.

Documentation of tnodule and system interfaces in a large system
can be substantially mora difficult than the documentation of the
designs, given that many of the designs must be analyzed and
correlated to give proper information for a few interfacas. This, of
course, should then be accomplished in parallel with the progression
of the design as the interfaces evolve. A prime candidate for support
of this would be a Data Base Management System {DBMS) which
correlatas and maintains a data base of system interfaces. Far this
purpose, BMAC has instituied a DBMS with the MAXXIMUM data
base manager by Callfornia Seftware Products, Inc., as its nucleus.
This DEMS maintains interfaces which are implemented through the
Gould SEL Datapool common memory facility and creates the
mnemonic dictionaries used to link software [oad modules to the
appropriate data spaces within the Datapool. In” additlion to the
variable mnemonic, recorded data include variable attributes, dates of
entry to the system and modification, iogical location within the
appropriate Datapool, software modules using the variable, and
computers where using modules are resident. This obviously eases
the pain of document generation as a great deal of this information
can be gleaned from software module source code. Others, such as
legical location within the Datapool, can be generated by the DBMS in
response fo variable attributes, unless constrained by operator input.
An example of decumented interface varlables is given in Figure 8.
Each of the two varlable data entries gives the basic information
stated above plus other pertinent facts such as the frequency at which
the data is used and generated. Such listings can be easily generated
for entire Datapool mnemaenic dictionaries, or subsets thereof, to
document iables and data bases according to the requirements
contained within the Part |l Spec. .

The individual software module documentation is enhanced by the
DBMS-produced module interface listing, shown in part in Figure 9.
The module in question is shown boxed in asterisks on the left with
individual interface linkages drawn to related modules shown boxed
an the right portion of the figure. Each link shaws the varable
mnemonic for the data space that it represents, the type of data space
(i.e., integer byte, logical byte, etc.), the data space array size, and the
relative flow of data depicted by an appropriately oriented caret.

' Interiace documentation on the part of the DBMS is top-down in
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Figure 9. Inter-Module Interfaces

essence, starting with the contents of the data base and moving down

1o the medule interface level. On the other hand, DSS has an interface

documentation capability thal starts with the module intemal

interfaces and moves up to the system level. An interface analysis of

the brief example program is shown in Figure 10. The variahle
mnemonics |, K and L are shown to be unique to the module, while
LBFPHUGD has been found in a predesignated common memory
data base, thus allowing DSS to obtain array-size information and the
variable's description. Mnemonic " is shown to be an output of level
1.0, by viriug of an 'Q” in the left column of the /O matrix in the right
pertion of the figure. The right-hand column (for leve! 1.2) has no
eniry, indicating the ‘U’ is not used on the second design level. DSS
has abviously shown us that the module is suspect, since a unique
variable is generated as an output in one design level, but is never
used as an input. Similarly, mnemonics are shown to be inputs by the
presence of an 'I' in the design level column of the matrix, and
mnemonics both used and generated are represented with a 'B°, As
DSS analyzes modules, external interface information may be

refained and-later used lo document interfaces between madules

within a system, and between different systems of muitiple modules.
This difference "in approach between the DBMS and DSS is
summarized in Figure 11, The redundant aspect of system interface
documentation makes an- excellent cross-check mechanism, and
helps to ensure data base and interface integrity.
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As with DSS, the DBMS process has the added benefit that
discrepancies can almost always be detected and brought to light as
soon as the ofiending source code Is analyzed and its interface
expectations are compared to the data base. the DBMS produces an
output that documents these discrepancles, as depicted in Figure 12,
This particular example indicates that the module RO2BBAOU has
defined several mnermonics to be in a eommon memory area, but
never references these mnemonics in-executable code. Additionally,
the mnemonics are shown not to exist within the data base. This has
probably arisen from a previous deletion of the mnemonics from the
data base and executable code, while a somewhat careless change
implementation has allowed the common definitions to remain. Two
other variables are shown 1o disagree in array sizes between those
expected by the module and those implemented by the data base.

While cost estimates for the preparation of interface docurmentation
are not really available, it should be- apparent that the process is
certainly no easier than manual design documenting. Suffige it to say
that the process which generated the information, of which Figure 8 is
a part, took less than four minutes of computer real-time. The
possibilities of savings should speak for themselves.

In order to efficiently perform these flowcharting and interface
documenting capabilities, some standards and conventions should be
imposed upon the software to be documented. In the instance of the
interface DBMS, variable mnemonics are required to utilize the first
three characters to show variable attributes of type and size, and
whether they are to reside in a pariicular region of the Datapool
COMMON area or are unique to the module: DSS requires that the code
follow structured precepts and be designed in a top-down fashion.
Submodules and design levels within the code must then be
commented with a numbering system that indicates to which
submodule and design level a:segment of code balongs. Flgure 13
illustrates the hierarchical numbering of the example program
processed by DS5. It can be successfully argued that other benefits of
such practices (e.g., increased reliability) far outweigh the trouble of
standards implementation, without even considering the applications
o documentation. ’

The basic requirements of 2 general Part | Spec can be satisfied with
the word processing, auto-flowcharting, and auto-interface-
documenting described above. Cther items such as the Real-Time
Cross Reference can be completed with an extension of the DBMS
souice code analysis. Once these or simitar mechanisms -are
implemented, however, there is stil room for Improvement.
Carrelation of documentation is a consideration, as are consolidation
of document integration and generation of such items as test
discrepancy reports, change requests, etc. Dacument correlation may
well take the form of a DBMS function that maintains data on
functional requirernents documents, implementation requirements
documents, and design and test documents. A change to a functional
requirement paragraph could then be linked to subordinats
implementation requirements - and design and test documents,
generating a ‘need to change' list. Likewise, a module design change
could be picked up by the DBMS and result in an output indicating a
need to change the appropriate text through word processing.



ACKNOWLEDGEMENTS

2ne MODULE ROZRBABU  291-43172-1 K 06/26/1982 EMPLOYES 110 DATAPDOL VARIABLES TN THE FOLLOWING
CPUS = "9
THIS REVISION ( K) HAS PREVINUSLY BEEN VERTIFIED
VARTABLE IRPAQUIO SHOWS UP IN COMMON ELOCK s EXTENDED MEMORY DF PROGRAM BUT 1S NEVER USED BY PROGRAM
VARTABLE IRPAQUIO DCOES NDT APPEAR TN DATE AAS )
VARI-\BEE 1RPAQUZ0 ggmsvs ue }gpgggmnu %kggxﬂgggﬂfmm MEMORY OF PROGRAM RUT IS5 NEVER USED BY PROGRAM
ARTA PAQLZ0 N N SE .
gng%ﬁétg %gmgggg %“E‘“’S l({? ﬂp%%”?ﬁ gliti]%xﬂis%x'rsnnsb MEMORY OF PRNGRAM BUT IS NEVER USED BY PROGRAM
A 1] DES N
VAR%ABLE %BSADUPR SHOWS 1P IN COMMON BLOCK / EXTENDED MEMORY GF PROGRAM 8UT IS NEVER USED BY PRDGRAM
VARIABLE IRSAQIPR DOES_NOT APPEAR In DATA BASE
VARIABLE T8SATGTI IN STATION B = ARRAY MISMATCH (MODULE= 1) (DATA BASE= 200}
VARIABLE LBPPCDPA TN STATION A0 = ARRAY MISMATCH (MADULE= . 3) (DATA BASE= s>
Figure 12. Interface Discrepancies
REFERENCES
10
| \ 1. Boehm, B. W.,, “Scftware Engineering Economics,” Prentice
]I ~ Hall, 1981, p. 574.
11 1.2 .
]I Design 2. ibid, p. 572.
\ Levels
{ 121 b 12 3. ibid, p. 574.
[
|
|

Submodule Divisions

Figure 13. Example Program. Design Levels and
Submaodules

Dacurnent integration could entall consalidation of the output of these
various processes in ordet 1o avoid the manual sorling and shuffling of
papers. Use of laser printers, plotters, and the like, If available, is not
out of the question. With the obvious savings involved, the automatic
processes explored can make giant strides toward high-quality,
reascnably priced documentation.
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