MANAGEMENT CONSIDERAIZONS IN COMBUIER SYALUATIOQN

Jeffrey Pulcini
Parkin=Elmar Corporation
Binghamton, NY 13901

ABSTRACT

Quality and programmer preductivity are more than the latest buzzuwords.

Quality is demanded by the

competitive procuremants.

customar
To that extent,

is essential in
the computer

productivity
selection

and

the of

system should be a management issue as well as 3 technical issve.

This paper 1is directed

their role 2s the decision maker in the world of computer selection and

towards managers who have previously limited

now

se@ the need to take conirol of a business area that is a significant cast
driver.
Thare are two major areas of interest in evaluating a computationsl
system. These major areas are:
1. Evaluation of computer performance
2. Program development environments.
Within esch area of discussions, the results of research and management
guidelines will be presented as applicable. -
INTRODUCTION In the early 70°sr commercially
available minicemputers were being built
In the early 1%707s, the computer and sold in large gquantities. These
hardware accounted for as much as 25% of machines proved more cost effective than
the ¢cost of a simulator. In the late those manufactured by the simulation
70"s, the cost was approximately 10% of community. One major problem with the
the wvalue of 2 simulator. Today, this commercially available maghines wWas
cost is reduced to 5% of the total determining the parformance lavel
procurement value. This has led many available for simulation. ’
managers to believe that +the computer
selection process is ne longer @as Performance measurement was attacked
important since the cemputar is regarded using empirical 2nd theoretical analysis
as 2 "commodity". based on our "simulation instruction
mix". We felt confident. After 2ll, we
In reality, the selection of a coded in assembly languager wrote our ouwn
computer system is more important than executives, and had a good knouwledge of
evera While tha hardware cost |is the simulation tasks to be performed. In
approaching zerc, the cost to develops assencer, we did a2 pretty good jab of
debug and install software is Trising evaluation.
geometrically. Furthers life cycle
costss, supportapilitys, vendor investment In the mid 70°s, things bagan to get
in the industry, and the support the out of controle. The simulator wusing
vendor gives the contracter can community began to require simulator code
dramatically affect the cost of in high level languages and the use of
implementing the simulation softuware. the vendor operating system Tfor the
control of the simulaticn programs.

COMPUTER EVALUATICN

4 $hort Hisiery

In the 1960"s, we made the step from

analog simulators teo digital simulator
technology with our own machines.
Rediffusions R=-2000 and The Singer
Company” s GP saries computers were
designed for simulation and thers was no
gquestion as to the computational

performance of the machines er cavaats in
the computers design of which to beuszre.
After alls, they were our babies, and e
knew them well.

1

5

Further., the simulation requirements were
growing in terms of bLoth fidelity and the
number of auxillary trzining systezms such
as record-playback, malfunction insertion
and instructor displays. These factors
challanged our ideas of instruction mix
and cverheads. We tried to adapt.

The final blow came in the late
70°s, early 80°s. This time the culprit
was technology. The building blocks of
computers, chips, were becoming more
dense and less costly. In turns, the
designers were able to architect systems
using technigues that were previocusly
cost prohibitive.

instruction
and complex

These +techniques 1insluded
pipelining, caching.,
instruction sets. The latter of these
would be exploited py the new compiler
technology which was alse coming into its
oun .

this
of
and

The bottom line of a2ll of
that traditional methods
computers became inadequate
misleading.

was
rating
Worses

pitfells in Cempuier Evaluziicn

pitfalls in
be divided

computer
into the

The mzjor
evaluaticn can
following areas:

1.
2
3.

Inadequate g¥stigm testing.
Skewed results.
Vondor software svaluation.

2¥siem Igsiing. Inzdequate systenm
testing can be attributed to several
factors., The first factor is historical.
In the pastr, the one portion of the
computer system testiasd was the CPU. This
was not a problem since little I/0 was
done and our problem was primearily
compute intensive. Today s environment
is more complex. With record/playbhacks
visual displays within the c¢ockpit as
well as ocutside the cockpits, and a widar
ranga of instructor support CRTs, I/O
plays a very impertant role. Yatr vwvery
few benchmarks exercise the I/0 system
during computation ar the CPU during I/fO0.

The second factor +that contributes
to inadaquate testing is cost. Simply.,
it takes time and rasources to do 2
preper Joba Management has been eithar
unwiliing or wun=zble teo devote the
resources Necessarya.

Finallyr 1in most companiass true
computer expertise is as rare a commodity
as tithe other engineering disciplines.
Thereforae, finding that individual with
the skill, knowledger and experiencer wha
knows tha preoauction environment and can
then translate that into valid testing is

extremely difficult. Invariably, +this
individual is involved in "more
impertant" (or at Jleast more urgent)
assignments. This lack of propers
experiencaed analysiss, couplaed with
increased complexity of the production
envirenment and the computaticnal
hardware availzhle ieads to skewed
results,.

Skewed Resyliss There are numerocous

technigues and devices
scientists to improve
a processing system.
davices are cache and cptimizing
compilers. If the ewvazluator is not
preparead to cope wWith these devicess, the
results will be wisleaaing.

used by camputer
the perfarmance of
Two of these

Caching is & technpique by which a
spaed buffer is placed betwean main
By providing data

high
memory and the CPU.

186

and instructions to the processor faster
than main memery coulds, ¢ache will boost
the machines performance. The
traditicnal small benchmarks, such as the
Whetstoner may fit in and execute from
cache and thus will give artifiecially
high results.

In 5 recent papers Ors. Chor Lins
and Jen demonstrated that programs whose
execution range exceeded cache size c¢ould
experience & dggradation of as much as
73% over the <c¢ache resident versiocn of
the program [Cho843. Figure Ong isg
reproduced from the sformentioned report.

FIPS

n
[x)

Sz

Az

Xz

Xy
2K 24K 38K 8K 60K CACHE MEMORY SIZE

T
0 1000 2000 000 4000 5000 NO. OF INSTRUCTIONS
IN DO LOge
FIGURE 1

CACHE CAUSED PERFORMANCE DEGRADRATION

SOURCE: ANNUAL SIMULATION SYMPOSIUM, MAY 1983

In shert the machine could be drastically
cverratead by small, unrzpresentztive
bancthmarks.,

Optimizing
similar problems.
cptimizing campilers
understanding of a program’s structure
and varisble wusage. Benchmarks that
contain loops that do nothing may have
that code segment entirely removed.
Aftzr 2ll, why generate zode (work for
the CPU) that has no meaningful result?
Sor while +the <compiler nas made an
intelligent decisions

the results of the
bpenchnark wiil show & higher tham nermal
performance.

cemprlers can cause
High Juality

develor & great

As mentioned =earlier, I/0 plavys a
significant part in the sinulation task.
The need for I/0 is sigrificant in that
it can affect the performance of 2
Lrocessor. The praoacessor gets its dats
and dinstructions wultimately from main
memory. If the memory is busy with I/0,
the processor waits. How long and how
aften the processor waits is 2 function
of the bandwidth of the memory system and
the processor spzad. -

shows memory barduidtn
requirement vsa. processor speeda. Lache
can reduce thisr, but its effects are
variable primarily a5 a function of
memary architecture and program flow.

Figure Two

32 -~

28—+

MEMORY TRAFFIC
(]

MB/SEC 6
g
1 1 | 1 Il
| | | T I
1 2 3 4 5
MiPs
FIGURE TWO
MEMORY BANDWEDTH NEEDED FOR
SIMULATION TASKS
MAXIMUM —
PROCESSOR
PERFORMANCE
—] Il L 1
T T] T
MAXIMUM
10 TRAFFIC
MB/SECOND

FIGURE THREE
PROCESSOR PEAFORMANCE UNDER I/O LOAD

Figure Three shows how a nan=cached
processor‘s performance degraded as I/O
load was increased. On & system of
limited memory bandwidthes processor
performance can degrade from the
"benchmarked" level.

vepdor Sefiware Evalyatiep. I
there is one area that receives little

attention, it 1is the software system
provided with the computer. The lack of
analysis in this area is not surprising.
Histericallys we have used little wendor
software, We wrote our own executivess
did ocur own I/0, and worked im assembly.
In the last ten vears, howavers, wa have
been raquired to use high level languages
and vendor supplisd cperating systems.
This software <¢an have a significant
aeffect om ocur ability +to "oget the job
done™. For the moment, the area in which
we are mos5t interested is the real time
capabilities.

Oftenr, if oanalysis of software
capahilities is attempted, it is based on
oeng or twc parameters. For operating
systems- context switch speed and TI/0
cverhead are the most common parametars

1

7

requested.
ill-define
are often

of issues
these issu

These parameters are sc
dr that misleading conclusions
drawn. In fact, a broad range

are left unaddressed. Some eof
es are:

1. Are thare hardware/softuare

archite
modific
design
growth

cture limitations reaquiring
atiens to our current real time
philosophy or limiting progranm

or portability within a

coemputer product lina?

2a Can we use the operating services
as they exist or must we work around

them?

I. If we must work arcund the 05
will we still ba customar
specification compliant (ia0a na

modification of the vendor (3)7

4. Will the 05 help us do our Jjob?

The f
real time
with struc
and Ada* n

in2l point in the evaluation of
software requirments has to do
tured code. With MIL=STD-1644A
ow a reality, the demands of

structured pregramming must be faced,

In b
language
camputer
2xecute ith
this auth
structured
increasing
ware used
execution
million 1t
For the
ultimate c

riefrs, the more structured the
and implementation, the more
rescurces are required to
g2 codQ@a. In 2 previous workr
or cited testing done on highly

coda [Pule83l. Whan

ly sophisticated optimizations
s the physical instruction
count decreased from 39.6

e 15.2 million instructions.
trainer manufacturer and the
ustemer, the implications are

simply this: bhuy more hardware and
incregase acquisition and life cycle
castss or spand more computer time
optimizing.
guidelipgs for Evaluglion

How <c¢an an organization prevent
improper evalusation? The follewing
guidelines are submpitted 2s 2 basis from

which tao b

1e fLre

agin.

ates a2 computer seleg¢tion board.

This board would consist of genior

people
devalop
marketi

with experisnce in program
ment, varicus vendors”’ systemss
nges saless and program

managementa

2. Bea
ogther

reprase
environ
ugse of

* Ada 1s &
Depariment
Officel.

cartain that benchmarks and
evaluation criteria are
ntative of the preduction
ment and <capable of realistic
cachesr caompilerss, and I/0.

trademark of the United States
of Defense (Ada Joint Program

3« Be prepared to revise and revisit
benchmarks and eavaluations a8s +the
production environment changes and
vendor product lines evolve.

4. A good benchmarking
not be completely portable. This is
an advantage. It will allow time +to
be spent by the techniczl members of
the evaluation board using the
potential vendors® development system.
Thea next section focuses on the
importance of tha development
environment.

system will

5« MWork with the vendor rather +than
trying to isolate the vendor from your
production environment. This will
serve two purposes. Firstr the amount
of support 2 vendeor gives during 3
sales situation is a small measure of
this ability to support you afiter the
sale. Second, by attempting a
preliminary design of a real +time
system on the vendors’ equipment, the
board may uncover the strengths and
weakness of the proposed hardware and
software.

Seciion Symmary

The impertance of proper evaluation
is found, not in the right or wrong of
the evaluations, but in the costs incurred
based ¢on- the evaluation. These costs
fall into two areas. First is the cost
to purchase additional computer hardware
te bring the performance up to the level
needed for simulation. This cost may be

as significant as buying 2 complete CPU
and sShared memorye. This cost is
gquantifiable and much weeping and
gnashing of teeth wusually accompanies

this decision. Though potentially great.
this cost is small compared to the hidden
cost.

The hidden cost 1is the cost +to
redesign and rework the simulation 1load.
This cost is more significant since it
oceurs during the nardware/softuare
integration phase, when time is at a
premiums, and design documentation is
complate.

While accurately gauging hardware
and software performance will reduce risk
and rawork costsr it is the program
develeopment cycle that contributes most
heavily to the costs of a training
device, This being so, management’s
attention has turned to finding a
development envirenmagnt that reduces
costs by improving productivity.

agor the only
for a computer

pbroprietary system
computer vandor. This
gdevice manufacturer
compilerss linkers.,

few vyeaars
egnvironment

Up %o a
developmant
system was the
supplied by the
locked the training
intoe that vendars”

128

and editors. ~Further, if tools were
daveloped, those tools were most likely
not portable to other vendors”

Processars. The UNIX** and Ada language

environments were developed +to address
these problams.
UNIX and Ada have captured the

attention of both the technical staff and
management., Both environments promise a3
measure of portability, user friendliness
and increased productivity. Because of
thiss many view +these environments and
their aitendant languages as a panacea.
Nothing could be further from the truth.
While each envirgonment will go further
than any previous environment in
achisving the abave objectives, it
remains imperative to appreoach each with
a "heads wup” attitude. The following
subsections on UNIX and Ada are an
attempt to put the capabilities and
limitations of each environment into
perspectiva.

Ihe UNIX Epyicgnment.

UNIX is the hottest word the
computar market place today. This
collection of software has been touted as
the be all and end all of operating
systems. Increased productivity, program
portability, machine independencer user
friendliness and standardization are
arguments used to encouragg migration to
the system. It is important to exXamine
these argumants carefully.

in

When
most

Boriabiliiy and Ipdependencg-
a person speaks of portabliltye
peopla envision a ne effort
transportation of software from ong
machine +to another. wWhile such mobili+ty
is possible it is seldem achieved gven in
user level software. A commeon languags
such as € or Ada helps, but other foctors
such as arithmetic fermats, memory
organization and word lengths may cause
execution problems even 1if compilation
proceeds smoothly (Wall823l,

These problems 2re gxacerhbated when
portable system software {operating
systems, etc) dis attempted. Qperating
system software must address differant
peripherials, different hardwzare memory
management schemesrs and even differing
numbers of registers within the CPU. In
assencer it is 2 "porting'" rather than a
"tranaporting” of softuars that occurs.

In support of +this statement, it
should be noted that ATRT and only AIST
has UNIX. Everyone e¢lse has systems
basgd on ATET UNIX. It is in %the porting

of *the UNIX system from ATET hardware to
other vendors”’ hardware that
incompatabilities may occcur.

*% UNIX is & +trademark of AT&T Bell

Laboratories.

Numerous case studies have been
published showing the trials and
tribulations of porting UNIX EJalid3,
Tiis83]. A good rule of thumb is a high

quality port of a2 UNIX system reguires
approximatly six 1o twelve months. The
most significant detriment to
transporting UNIX is +the <c¢ellection of
physical diffarences in the base
hardware. Becauss of hardware
differences, commands and utilities may
vary between systems.

of equal
“"enhancements"

concern arae the
to the system gfach vendor
is free to make,. If & computer vandor is
to remain competitiver he must have
samathing to separate him from "the other
guy . System programmers may innocently
use commands and utilities they believe
to be common to all UNIX based systems
only to find later +these commands and
utilities were unigque to a certain
vandor. Just as vendor enhancments made
FORTRAN code non—transportable, so will
UNIX anyironments and tools be
non=transportable great care is not
exercised.

if

One other factor must be considered
portability is discussed. ATEY is
now a competiter in ths computer market
place. No one is certain how this will
affect the distributian 2nd compatability

of subseguent releases of UNIX [Whit84].

when

User Ercigngdly? It is said that
beauty is in the eye of the beholder. Sc
it is with computer systems and software.
The friandliness of &2 system is a
function of who you are and what you're
trying t¢ asccomplish. To the gompultsr
professienal- the UNIX environment
provides toals and facilities second to
none when developing system software. In
facts the UNIX environment is not only
usar friendlys but user helpful. To the
non=-professional, howevers the UNIX
ehvironment has been described as user
hostiles This disparity leads to many 2
heated debate [BeseB84, Gall84, Hold24,
Litt84, Metz843].

An environment can be created that
will be "friendly" to the maost nzive user
of a UNIX system. This will require
resoeurces for the development of 2 shield
product. For the manager committed to
investinz in such a productivity tool,
careful control must be exercised over
its development +to prevent portability
prablems when meoeving from cne vandor’s
system teo ancther.

logrgasey Broguciivity. 5y and
largas the single most important factor
in turning to ‘a UNIX environment is the
promise of increased productivity.
Indeeds by all accounts, the productivity
gain is there. One merely has to keep in
mind that there is no free lunch. There
is a 1large learning curve for those
coming from\traditional systems to a UNIX
systam. By corparison, documentation is

peor and error messages
cryptic or non-existant. With proper
planning and training the transitien to
& UNIX system can be accomplished with
satisfactory results [Kaola841,

are generally

dda and fhe Develgppent Enyirooment

Ads is upeon us with a preomise ofs
not only a language, but a programming
gnvironment that is standard. Problems
solved? I think not. While Ada will ge
further than any system has gone to dater
by necessity it will still centain many
pitfalls discussed in the previous
section.

One of the great powers of Ada rests
in the fact that it is 2 clesed language
in an open ended systema. The Ada
language 1is "closed” because, unlike
FORTRAN, the specification gives pgaximun
as wazll as minimum syntax reguiremanis.
This meanss with the exception of
hardware limitations, any program uwritten
in Ada will rum an any machine after
recompilation. To take advantage of this
portability and ancourage tool kit
building, Ada also supports packages.

A package can be thought of
library of common, logiczlly related
routines. These routines are self
contained entities of both instructions
and data. The ability to have s tool kit

as a

full of packages +that may be Joined
together t¢ perform different functions
is what gives Ada its open endedness. It
is in this open endedness that

portability problems may occura

Just as in the UNIX werld vendars
had to develop a competitive edge, so an
edge must be found in the 4da world.
This edge may be in vendor supplied
packages. Portions of a vendor supplied
package may contain vendor hardware or
software specifie¢ routines. Thus, as
with the UNIX environment, these vendor
packages may be innocently used to build
a useful taol which now becoamesg
non=portable.

Qiner Eaglors Affscling Brodyctiviiy

Sysien zugport. The linkers,
compilerss, and packages discussed in the
previoys secticon form what is known as
the APSE Ada Programming Support
Envircnment. If you haven't reslised how
big this system will be, let me assure
yoeuw large amounts of resources will be
needed to support the Ada system. In a
tongue=-in=-cheek article, W. E, Drissel
of Cyberscribe Associates observed "Every

IBM 370 APSE will require the wusual
complement of 08 system programmers plus
a small army of APSE specislists to
support applications programmers"
[Orisd32]. He may not be far from +he
truthe)

The current trend is to build Ads on
top of a UNIX system, and UNIX is well
known for its need of resident gurus.
Whether this trend continues or nots the
software development anvironment needs
suppert not enly for problem resclutions
but to enhance the system uwith teols for
the engineering user., Desplte what
appears to be an increase in overheadsr a

cocherent +tool kitr, and timely problem
resolution will yield consistant leng
term bonefits,

2hysigal Eagdilities. While not
germaneg to rating computers., it is
important to mention +that +the most

neglected area for improving nreductivity
is the physical environment in which the
programmer works, An engineer whe
produces software and documentation needs
a larger uncluttered work area, guiet and
pleasant surroundingse., sufficiaent
storager and easy access to terminals and
small meeting areas [McCu?81.

Guidelipes for Ewalusting Enoviceomepnts

Teday s programming staff is being
asked to provide more softuware to fmaet
the demands of higher fidelity +training
and increasad functionality. Further,
increased emphasis is teing placed on
structured design, rigorous design
ravieus and detailed documentation.
There is a great need to track the design
and provide configuration control of both
software and documentation.

Bafore evaluating any vendors
development environment, the wise manager
asks:

Te What are the tasks to be
performead?

2. What are the skills of the people
who perform these tasks?

3+ What tools have been producad in
the past? Which are still being used
and why?

4a What other tools are commercially
available and what is their cost in
dollars, computer resources, and
training?

5. Will +the current or progposed
eanvironment accept these tools?

6. What support staff is reguirasd to
intagrate, maintain, and assist in
utilization of these tools?

7« What future reguirements will be
placed on the corporation as 3 result

of new languages and environments such
as Ada?

With these guestions in mind, the manager
can now begin to examine the various
proposed solutions in the quest to
improve productivity and reduce cost.

190

Sgciion Sumpary

The need to improve productivity has
been recognized for many years. UNIX and
Ada are broad attempts at an asnswer o
this need. Yetr they are not without
problems. UNIX has +the potential far
being wunsteble and unfriendly. Ada is
$till in its infancy with what currently
appears to be little DOD standardization
on APSEs and only recent attempts to
standardize Ada“"s interface to any vendor
supplied operating systam.

Buts, we must still produce trainerss
and to that end, the manager should have
a vendor"s program davelopment
eavironment evaluated as closely as the
real time environment. The computer
selection board should choose a system
that is tailored to the development staff
and their skills, rather than trying +to
tailor the staff to the environment.

Finally, if this section has seemed
negative towards any particular solutions
it was not measnt %o be so. Rather, it is
hoped that it has brought to the surface
that noe supplied enviromment has aver
been or ever will be the +total solutian
ta a particular development problem,
Therefore, management must be willing +to
devote resources to develop +tools and
technigques to solve current and long term
problems. The selected vendar should
have market stability and a track record
for supplying high quality socftware +that
adheres to known standards thus helping
toe assure long term sclutions.

CONCLUSIONS

The evaluation of a computer system
should not be left in the hands of agne or

two randomly selected individuals,
Rathar, the selection should be
accomplished by a committen of
knowledgable individuals fraom RED»
marketing, preogram office, engineering.,
and purchasing.

This committee stiould be a8
permanantly fundad effort with the
resourses to develop and maintain the
tools necessary to evaluate computar

vendor’s offerings either as new hardware
is marketed or
and production requirements change.

1. The technical membars of the
committee should evaluate the proposad
computer system in light of existing
production and development noeds.

2. R0 should evaluate the vendor and
the proposed system in light of future
production and development goals.

look faor
the system

Office should
advantages

3. Proagram
competitive

as internal development

would create when incorporated in the Jali83 Jalies, Paul . snd Heines,

training system. Thomas Sa.r "Transporting A
Portable Operating System,"
4, Marketing should be invelved ta Comounicatiops of iha 2aLM,
make known to the committee the December 1983, Volume 24, Issue
customer‘s desires and to be prepared 12, Page 1066—1072. : :
to redirect the customer 1if his
] desires are not consistent with the
. best technical solution. Kola8s Kolanskys, Michael S., "UNIX in
' Research: A Plus But No
5. Purchasing needs to be invelved to Panacear" Micrce Managers
evaluate the business relationships Fairchild Publications, New
that accompany a computar selaction. Yorks May 1984, Page 12-135.
Finally., a perfect solution will Litt84 Littler John, TUNIX: What's
never be found. If given clear corporate wreng with it?," EQN, May 17,
directionrs the committee should be able 1984, Volume 2%, Issue 10, Page
to choose acceptable systems and create 109.
a stable environment that will enhance
programmer productivity., improve the McCur3 MeCues Gerald M., "IBM's Santa
overall gquality of 2 systems, and allow Teresa Laborztory -
for highly coempatitive and product Architectural . Design far
offerings. Program Development." Igm

Sysieuws Jeputnals 1978, Volume
17, Number 1.

LIST OF REFERENCES

Metz84 Metz, Arthurr, "A Rebuttal -

Besel4 Basemer, Jims, TUNIX: What's UNIX Realities," Ibe REC
good about it7?.," EDN. May 17, Prefessiepal- January 1984,
1984, Volume 29, Issue 10, Page Volume 3, Number 1, Page 30.
106.

Pulc83 Pulcini~ Jeffreysr "Computer

Cho84 Chor CuKsr Lins EoKar Jens Colasr Performance Evaluation for
"On Performance Etvaluation of Real~Time Simulation,"
Multiprocessaor Systems for Proceedings of +the IEEE 1983
Real=time Simulation," Annual National Aarospace and
Simulation Symposiumes IEEE Electronics Cenference NAECON,
Computer Societyr, May., 1984. May 1983,

Dris8?2 Drissel, WaEar “Some Tils83 Tilson, Michaels, '"Moving UNIX
Gbservations, Predictionss, to New Machines," 3YIE
Praejudices, and Impressions Publicatigns- Octoher 1983,
About Ada," Gomputerr TIEEE Volumae 8, Issue 10, Page
Computer Societyr, January 1982, 266=276.

Volume 15, Issue 1, Page 120.
Wall82 Wallis, Peter J« L.r "ada and

Gallgs Gallantr John, "Big Systems Portable Programming," Bgriable
Users Discovering the Strengths Prgsrommings Halsted Presss
of UNIX," (Compuierworld, May 2. John Wiley & Sons 1982,
1984, Volume 18, Issue 22, Page 11:89-93.

1.
Whit84 White, £« E£.r "Battle of the

Hold84 Holdans Steves "More UNIX Units.”
Opinions?.," The DEC Ielecommunications, May 1984/
Professiopnal~ January 1984, Volume 18+ Issue 5, Page 113.

Volume 3, Number 1, Page 24.

ABOUT THE AUTHOR

Mr. Jeffrey Pulecini is & National Systems Specialist for the
Perkin=Elmer Corporation in Binghamton, NY. He holds a Bachelor of Science
in Aeronautical Sciencer has authored several papers on computer perfeormance
and evaluation and has been involved in the simulation commurity for ten
yearsa.

191

192

