e me T

AN EMULATION METHODOLOGY FOR THE DEVELOPMENT
OF ELECTRONIC SYSTEMS FOR TRAINING

Roy Latham

Scientific Staff
The Singer Company, Link Flight Simulation Division
Sunnyvale, California 94088-3484

ABSTRACT

The traditional method

especially complex low-production systems, has been to do a
and then build and refine a hardware prototype.
level
flight simulatjon have clearly passed, this method of

design
certain level of complexity, a
generators for

hardware refinement is not practical, and a
a much greater
The method proposed comprises high level language software
algorithms, gate level verification of logic designs, a

that 1leads to
adopted.
emulation of

of

developing electronic systems,
careful
But beyond a
digital

which, for exanmple,

development methodology

level of design certainty should be

staged system build up that couples emulations with real hardware, and

a comprehensive system of diagnostics.

The diagnostic system supports

both hardware design verification and system maintenance.

A DESIGN PROBLEM

Bvery designer of electronic systems
works within constraints of schedule,
budget, and product performance. For
each product there will be particular
aspects of the product performance that

prove especially challenging, and the
methods of designing the product are
driven accordingly. There is a class of

electronic systems for training where the
predominate concerns are the complexity

of the system and the tight schedules
imposed for completion of the designs.
This paper deals with a software
emulation methodology that holds promise

of improving our
this problem.

ability to cope with

The driving force that makes
training systenms
recreate an inherently rich and
complicated environment to present a
usefully complex situation to a trainee,
For example, a complex acoustical
environment must be created to train a
sonar operator, or detailed radar imagery
must be c¢reated and continually updated
for aircraft <¢rew training. The case
examined here 1s the construction of
systems for the generation of
out-the-window scene imagery for crew
training in such detail-intensive tasks
as low altitude flight in helicopters.

some

For digital

. image generation, the
most complex

electronics systems
presently practical are still not
adequate to produce a visual scene
indistinguishable from the real world,
One limit to system complexity is
reliability of large numbers of
electronic components, about one hundred
thousand integrated circuits being the
practical limit in systems of the recent
past. However, with VLSI technology that
is available now, the real limitation is

complex is the need to.

the.

157

the ability to design systems of great
complexity within schedule constraints.

The reason that schedule constraints
are g0 important te¢ training systen
design is that _ the procurement of
training systems follows the procurement
of the actual system £for which the
training system is sought. But ideally.,
the training system should be made
available before the real system. The
situation would be impossible were there
not a great deal of commonality from one’
system to the next in the systems of high
complexity. Nonetheless, the overall
effect. is a design intensive process;
production runs are rarely large enough
+o significantly amortize the cost of
design, and design costs are limited by
the schedule,

This means that the key to the
important problens of conplexity,
schedule, and cost is the efficlency of
design. Consequently, the methods used

in designing complex systems
considerable interest.

are of

THE ROLE OF DESIGN METHODOLOGY
Simple electronic c¢ircults can be
designed satisfacterily with
methods: sketch the circuit, build it
up, and test it. If the circuit is not
very complicated, it may work exactly as
intended or just take a £few hours to
debug., For more
formal design methodologies <¢ome into
play. At some level of complexity, there’
will be a hierarchy of design, with a
top-level system design, individual
subsystem specifications, circuit card
specifications, and circuit card detailed
designs. We are forced to hierarchical
design methodologies by the mind's
iimited capacity for the comprehension of

informal

complex systems, more

detail; as systems become more complex we

are forced to higher and higher levels of °

abstraction.

then, can we be sure that the
envisioned at the highest level

accurately in the
of design? It is more
than just correctly implementing a
circuit block diagram, The most abstract
level of system specification is now
usually in the form of mathematical
algorithms. There are two major
contending schools of thought as to how
bring an electronic system implementation
into correspondence with its system
conception, I shall call these two
approaches "hardware prototyping™ and
"software prototyping”.

How,
concepts
are implemented
detailed level

The hardware prototyping school of
thought has evolved directly from
informal design methodologies and
anticipates extensive debug of prototype
hardware. The key to timely system
development is seen as the very rapid
construction of a prototype system using
flexible construction technigues (like
wire-wrapping) so that subsystem and
system level problems can be met and
conguered from as early a point as
possible in the design c¢ycle. Project
success hinges upon a very few key
individuals who <c¢an quickly preduce a
system design that is nearly correct, and
upon a lengthy debug cycle. The ~essence
of the hardware prototyping approach,
especially the debugging effort of heroic
proportions, was captured in a popular
book a few years ago [1].

The software prototyping school of
thought has emerged in part £from the
advance of integrated circuits
technology, where the cost of design

errors in remaking integrated circuits is
so high that alternatives are essential.
The concept is to exercise a software
model of the design prior to the
construction of the device. Originally,
the concept was restricted to the
verification of a circuit design,
something expressable in gates rather
than mathematical algorithms. But
subsequently the tools have evolved into
forms more suitable for system level
application.

Another origin of software
prototyping concepts on a broad systems®
level was the space program, perhaps the
most clear cut example of a reguirement
that could not be met entirely by
hardware prototyping. But applications
like the space program and VLSI design
were treated with specialized tools that
were rarely applicable to other contexts.
Only in the past three or four years have

software prototyping methodologies
appeared as a possible alternative to
hardware prototyping in general
applicatiohs,

153

"in a computer,

Because software prototyping is done
its use presuppeses an
array of " programs and expertise not
traditionally associated with hardware
design, and this circumstance poses many
problems., For example, who would wish to
be the first to exercise, and presumably

debug, a new methodology with a new set
of toocls? On a complex and time critical
project?

Before addressing the problems of
software prototyping, and making further
comparisons with hardware prototyping, it
is best to f£irst describe in more detail
what is involved in a scftware emulation
methodelogy.

A SOFTWARE PROTOTYPING METHODOLOGY

Overview

There are four basic steps in the
software prototyping methodology proposed
here. These steps are outlined as
follows,
1) Emulation of algorithms is done by
writing programs on a general purpose
computer in a high level language like
Fortran, This is done to verify that the
algorithms are designed correctly and to

determine the arithmetic accuracy
regquired for hardware implementation.

design, and

on a

System
the high
used to
designs.
the design
and timing

2} Circuit specification,
verification is performed
computer—aided degsign system.
specifications derived from
level language emulations are
prepare gate-level circuit
Schematics are entered on
system, and the logic
verifications are performed.

3} Circuit construction and test are
performed for each card independently,

with test performed ¢n a micro-computer

driven test station, Test data derived

in the previous design phases is used to

find errors in manufacturing, and other

design problems, if any.

4) System build-up and test uses the

individually tested cards in the system

packaging. Data from the high level

language emulations is used to test the
cards in functional groups. Cards are

added until the system is complete.

The design methodologies being
developed for VEST circuit design
concentrate heavily upcon the second phase
of the system development methodology.
Only recently has the level of
integration become large enough to permit
system—level complexity on a single chip,
and this is still rare., Consequently,
guestions related to algorithmic design
and system build-up could be previously
considered separately from chip design.
With the advent of user-designed

integrated circuits that encompass
system—level complexity, design
methodology issues will be forced upon

users as well as chip design specialists.
The systen development methodology
described in this paper is a step towards
entry into that arena of development.

Another characteristic of emulation
methodologies is that data interfaces
abound, We expect high 1level language
software to drive functional groups of
¢ircuit cards, and we expect test vectors
used in logic verification software to be
applied to actual cards, Design data
must be transfered to circuit card and
backplane manufacturing processes. These
interfaces must bhe considered from the
earliest stages of system development if
the development methodology is to be used
successfully.

High-Level-Landuage Emulations

The purpose of high-level-language
emulation is to prove the key concepts of
a system before building it. In the
early stages this means programming and
testing the equations and algorithms to
be embodied in the system hardware.
Later, the emulations are used to verify
the accuracy requirements, processing
speed requirements, buffer memory sizes
and other implementation sensitive
congiderations,

The main.sense of "verification" in
these contexts 1is that the system
produces results that are consistent with
the expectations of the design. The
design expectations may be gquantifiable.
For example, B8ystem sSpecification may
directly establish that a guantity must
be computed with total error less than a
gpecified value. With complex training
systems, however, the specifications
often have important reguirements that
are not directly guantified.
example, a vwvisual scene for
training may be required to have "no

distracting visual anomalies", i.e. no
distracting artifacts of digital
construction like stair-stepped edges on

objects depicted in the scene. Even less

specifically, the system may be required
to be "adequate for any training purpose
of the simulation™ or words to that
effect.

There may be preconceptions of the
quantitative regquirements needed to meet

non-specific objectives, but it is often
not possible to verify the assumptions
without the subjective opinions of human

subjects, After all, the ultimate test
of whether or not an effect is
distracting i1s to show it to people and

ask them if they find it distracting.

For .
flight”

159

Conseguently, one important
implication of emulation development is
the need for specialized hardware f£for
sutput of the emulation results. For
visual systems a "frame buffer" can be
used to store the picture elements of an
image as they are computed, and to read
out the picture elements and convert them
for display on a monitor, Video disc or
tape can then be used to build animated

sequences from individual frames that
each require many minutes to compute by
emulation. Moving sequences show

temporal effects and serve to run through
many different cases of data and
parameters,

In a practical work environment,
users of the emulation environment work
with computer terminals through a data
switch with any one of several computers.
Prame buffer, video disc, and video tape
outputs are converted to standard
television formats and routed back to the
user offices over a sort of cable
television system (Fig. 1}. This allows
users to develop and test emulation
software in an office setting, (Fig. 2)
while sharing the use of expensive video
peripherals. The limitations of the
standard television format reguire
critical evaluations of c¢olor or edge
sharpness to be done with direct
connection to calibrated laboratory
displays, however,

1

TUNER |

[tuner | |

MONITOR MONITOR | » + -

]
i}

TERMINAL

™
RF RF
MODULATOR MODULATOR

1 1

FRAME VIDEO
BUFFER TAPE

TERMINAL |- + +

A

B

DATA
SWITCH

..er

COMPUTER

Elements of a
of

Pigure 1.
the emulation
generation systems.

laboratory for
real~time ‘image

workstation with
computer terminal and monitor.

Figure 2. Office

Even with the best
emulations cannot
analytical work and careful engineering,
An obvious limitation is the
non-interactive nature of the
presentations; computer emulations run so
much slower than actual training system
hardware that true training systen
interaction is ruled out. An additional
conseguence of lengthy computation times
is that emulation sequences must be
carefully planned to try to encompass all
of the worst case conditions of data and

equipment,

parameters, A separate engineering
analysis 1is required to indicate the
circumstances 1likely to show problems,

Finally, the emulation sequences must be
critically evaluated. A seguence may
seem perfectly acceptable to an untrained
eye, when in fact it <contains subtle
artifacts wholly unacceptable in a
training system.

non-real-time
tool in the
system

Used properly,
emulations are a powerful
development and testing of

concepts and algerithms. Despite the
limitations c¢ited, the enulations are
extremely effective in providing a solid

basis for hardware design. Thorough
emulation will ensure that errors in
system algorithms will be minor or at
least confined to rare circumstances,

o . imulat

As the system algorithms become
defined, research workers interact with
the systems engineering staff that
prepares circuit card specifications.
Questions of accuracy requirements emerge
along with the design specifications, and
additional analysis and emulaticn is
required to resolve the issues, A
typical example in image generator
development is the data format and
accuracy required for distance
computations associated with the creation
of texture and atmospheric fading effects
in the imagery. At one point, nearly two
dozen such 1issues were under active

substitute for

evaluation in a recent image generator
design.

As the issues become resolved,
circuit card specifications emerge and

the implementation phase of development
begins. Having used high level language
emulations to build confidence in the
system algorithms, the next emulation
task is to ensure that the system and
circuit designs correctly embody the
algorithms.

This is done through gate—level
logic and timing wverification of the
circuit designs. It is only within the
past few years that design systems have _
emerged that feature gate-~level circuit
simulation as a part of a more general
computer aided design process. There . are
now a number of vendors meeting the needs
of an expanding community of users who
must cope with systems of complexity that
challenge traditional methodology [2].

Use of the design system begins with

schematic capture, the entry of
components and interconnections onto the
system through an interactive graphics
terminal. The logic’ and timing
properties of each component must be
described separately, and are kept in a
library on the system. The design
engineer wust also define "test vectors"
for the circuit: these are input

combinations o¢f ones and zeroes along
with the expected cutputs,.)

Test vectors are put into the design
system, which uses the modeled components
with the circuit interconnects to
evaluate the logical operations. The
engineer compares the computed outputs
with those he has prepared separately.
If the results do not agree, the most
likely possibilities are that there was
an error in inputing the schematic, an
error in the circuit design, or an error
in the construction of the test wvectors,
The error must be corrected, regardless
of source, because the schematic will be
used to drive the automated manufacture
of the circuit card, and the test vectors
will be used as part of the test of the
fabricated card.

Timing verification is conducted
along with logic verification to ensure
that propagation delays do not result in
failing or erratic performance. The
design system c¢hecks timing over the
component tolerances and the temperature
extremes of operation, Signal delays due
te interconnecting wires can be modelled
with nominal values, and, if the
situation is critical, rechecked with
values derived from +he manufacturing
layouts., T .

To minimize fabrication errors, the
list of compenents and interconnections
used in the logic verification should be
transferred without manual intervention
to the manufacturing system, This must

165

avoid errors in
but to ensure that
reflected 1in *“te
base. The circult
by wire-wrappings

be done
manual

net only *to
transcription,
all corrections are
logic simulation data
card may be fabricated

printed circuitry, or other automated
wiring techniques, but a camputer
interface will be reguired for each
process.
Card Testing

Cards are tested individually to
verify their functionality prior to
incorporation in the new system.
Conventional card testing eguipment has

the advantage of being adaptable to a
wide variety of circuit card formats, but

frequently lacks features useful in thé
debugging of new systems. For our image
generation system, we wanted an approach

inexpensive enough to permit construction
of multiple test stands, capable of
operating at the full clock rate (up to
40 MHz.,) of the system, and compatible
with the final implementation of
diagnostics in the completed systen.
These reguirements could be met only by
working out the diagnosis and test
philosophy well in advance of detailed
design of the circuit cards.

The system under consideration here
pipelined logic. On edch clock
data 1is transfered out of a
pipeline register, through combinational
logi¢, and inteo the next pipeline
register. By making each pipeline
register a shift register, a technigue
sometimes called level-sensitive—-scan
design [3], it is possible to introduce

uses
signal,

data serijally into any pipeline segment
for test purposes. The results can be
extracted from any later register by

similar serial-operation of the registers
in shift-register mode (Figure 3)}.

¥

PIPELINE REGISTER

C

¥

)

COMBINATIONAL

LOGIC
_ |piaGnosTIC
CONTROL
C| PIPELINE REGISTER |/' T *
¢ COMPUTER
Figure 3. Diagnostics access every
system register.
For uniformity of operation, a
semi-custom logic chip was built to
handle the diagnostic control. The

161

designer incorporates one or more control
chips on each board to interface the
board with the system diagnostic card.
The system diagnostic card, in turn,
provides synchronization of " the _
diagnostic functions, computations used
for digital signatures, and interface to
a computer that supplies test vectors.

For the test of individual boards,
a microcomputer is used to . provide the
test vectors and to analyze the results.
The board test station thus comprises the

microcomputer, a system diagnostic card,
and the card under test (Figyre 4j}.
Provision is made for the mounting of a
second card underx test, 50 that

comparisens can be made between two cards
of the same type. However, +the _initial
source of test vector data will usually
be from the circuit simulations used to
validate the design prior to fabrication.

Microcomputer controlled test

Figure 4.
station.

The first experience with the test
station was to check out the diagnostic
card itself; this is possible because the
card is designed for such self-diagnosis.
Only five errors were found during the

test of the four hundred chip card,
Interestingly, three of the five errors
were in the manufacturing software and

its interface to the design system. One
error was a mistake in the manual of one
of the components that was incorporated
in the design library. The remaining
error was a genuine design error, in a
parct of the c¢ircuit "too simple to
require verification™; so it had never
been simulated,

check~out time
three weeks,

the test station, the
microcomputer interface, and the
diagnostic software. The diagnostic card
in a previous system developed Wwith
traditional methodology reguired seven
weeks to check out, despite its having
only half the number of chips. Rapid
test helps make up for extra time spent
in design verification, but the real
pavoff is expected in system test.

The total
board was under
the debug of

for the
including

System Test

Circuit cards emerge from test over
a period of time, s0 that the final
system must be built up gradually, Since
the same diagnhostic techniques are used
in the firnal system as the test stand, it
is possible to test cards in functionally
related pairs or groups. Ideally, it is
best to complete the ocutput cards of a
digital image generator £irst, because it
will then be possible to observe the

image as an additional diagnostic aid.

The
back away from

system may then be completed working
the display.

vector data will be
each card, although rather
microcomputer of the test
stand, testing will eventuvally transition
to the system minicomputer. The
diagnostic card interface is designed to
be interfaced to either computer, and the
diagnostic software, written in Fortran,
1s transportable.

The test
available for
than uvsing the

Additional test vectors are prepared
by the design engineers to test larger
portions of the system, and experience
indicates that relatively simple test
patterns are usually sufficient for mest
testing. Nonetheless, it is possible to
return to the system high-level-language

emulations to extract test data of great
variety and complexity. The most simple
example is the display of an image from

stored values of the color components of
each pixel. &An image may be downloaded
pixel-by-pixel from the high-level-
language emulations through the
diagnostic <channels to the output buffer
of the image generator., The performance
of the image generator's buffer, digital
to analog conversion, and display
interface can then be evaluated with a
complex scene prior to completion of the
whole image generator.

HARDWARE VS. SOFTWARE PROTOTYPING

this emulation and
neccessary? Do

Is all of
verification really
designers really make a lot of errors?
In fact, designers make very few errors
as a percentage of the design decisions
they make, The problem is that as
systems become more complex, that small
percentage becomes more and more costly
to fix, Moreover, there are many more
possibilities for misconceptions rather
than ordinary errors. As a system
becomes larger, it 1is much easier to
overlook all the implications of a design
decision made in one small part of the

system. The designer may well correctly
implement the wrong function.

The potential for error rises at
least geometrically with the number of
elements in the system because of the
multiple interactions involved. The
situation seems worse in a special

purpose device like an image generator

than it does in a device like a general
purpose computer, because all of the
functions are coupled s0 closely.
Moreover, the coupling makes it more

Gifficult to isolate a particular error,
so it tends to take Jlonger to. identify
and f£ix each problem.

On top of the general complexity,
the use of advanced packaging techniques
makes traditional methods of hardware
debugging more difficult. The extreme
case is circuitry embedded in a custom or
semi-custom integrated circuit, in which
it is not only impossible to access all
the signals, but any redesign of which,
nc matter how slight, regquires _ an
expensive and lengthy manufacturing
process. OQutside of custom chips, high
speed logic requires centrolled impedance
circuit boards and attention to . lead
lengths, requirements that do not adapt
well to easy redesign.

The net effect is that complexity
increases do not dramatically affect the

time it takes to build a traditicnal
hardware prototype, assuming manpower 1is
scaled according to the size of the

project, but it very dramatically affects
the time it takes to debug the prototype.

At some point, the debug time becomes
completely unthinkable and a software
prototyping methodoleogy is the only
approach practical. ’
PROBLEM AREAS
The emulation methodology as
described, with elements of
high-level-language emulation, design
verification, board test, and system
build-up, has proved to be every bit as
powerful as it sounds. But

implementation of the methodology has not
always been easy, and there are some
special difficulties worth noting.

The high-level emulation system is
totally new, and took several years to

develop and perfect in house. The most
serious limitation of the system is the
long computation time (10 minutes per

reguired to make an image, which
number of sequences

frame)
in turn limits the

that can be examined for anomalies. This
leaves open the possibility that
algorithms will later prove to

have
shortc¢omings in obscure circumstances, :

of the logic
now commercially
still some of the

Although many
verification tools are
available, there are
aspects of a pioneering effort, For
example, the available Jlogic design
systems do not provide complete component
libraries or standard manufacturing
interfaces, so these are left to the user
to implement., In addition, the speed of
execution of moderately priced systems
limits their wuse, both in terms of

RULL LR

circuit size and number of test cases.
New products are continually being
introduced, however, that promise to
improve the price to performance ratio.

A significant drawback of the
schematic capture entry of design data is
that it potentially shifts
performed by support groups to the design
engineer, It seems best to share use of
the system so that support personnel
absorb the bulk of data entry work, while
the design engineers use the system for
design verification.,

In addition to schematic capture,
fest wvector generation and input in &
tedious task. One avenue towards easing
the test wvector problem is to write
higher level language programs that
reflects the function of the circuitry on
a must higher level than the gate level
emulation. If this can be done
efficiently, test vectors may be prepared
in greater guantities and with much less
tedium than manual methods.

To be successful, the methedology
tequires a lot of attention to interfaces
and "tool-building” in general. The
whole emulation activity tends to
front-load the project by adding tasks
prior to the actual construction of
hardware. Because building hardware is
such a tangible sign of progress, there
is additional pressure to pass over the
unaccustomed tool-building and emulation
tasks to get things built more guickly.
Conseguently, it takes a lot of
self-discipline to stick to the
methodology in the early phases of the
project.

the self-discipline
It is possible

Application of
is not always clear-cut.
to spend too long on emulation work,
trying more and more cases in order to
fully test the design. The tendency, of
course, is quite the contrary.
Nonetheless, it makes the guestion of how
nuch
debatable issue.

Most of these problems derive from
the newness of the methodology, and are

likely to be resolved as a backloyg of
experience builds up the regquired tools
and a track record of advantages that

outweigh problems.

Finally, it is
out that
substitute
or creativity.

important to point
methodology is never a
for basic skills, experience,
There is nothing in the
methodology that helps define what the
function of a product should be, how to
structure it, or how to make a practical
design. The methcdology only helps
ensure that the system conforms to the
concepts of it implementers. A poorly
conceived product may be engineered with

a thoroughgoing emulation methodology and’

objectives
fail to

with great
meet the

meet its design
facility, but

work best’

emualation is enough a very real and

‘have

marketplaces needs because of function or
cost. WNonetheless, the methodology can
bring a well-conceived product to a
timely fruition, and that is encugh to
justify the approach,

SUMMARY AND CONCLUSIONS

Increasing system complexity will
forece the adoption of rigorous,
software-based design methodologies. The
trend in that direction is evident,
emerging in part from the needs of the
semiconductor industry to design
integrated circuits with very large
numbers ef components. The
characteristics of extreme complexity,
short schedunles, and imprecise
specification involving subjective
judgements that are associated with
digital image generators and other 1large
training systems all combine to make an
emulation methodology especially wuseful
for system development. :

The method presented in this paper
inciudes four steps in the development of
a system. PFirst, system algorithms are
conceived and emul ated in a

high-level~language to produce, in the
case of an image generator, still
pictures and animated sequences that

the output of the product as
In the next _srep, algorithms

demonstrate
conceived.

are converted = to circuit card.
specifications which are designed and
verified with a logic. and timing

simulator. Then, cards are fabricated
and tested independently using simulation
data fed to the card through a
microcomputer in a test stand. Finally,
the system is built up incrementally with
additional test data derived (from the
original emulation used to test major
functions.

Our experience with the methodology
is incomplete; it will take a few yeéars
of having a completed system in service
to tell 4if the design is really as
thoroughly proven as we intend it to be.
However, I believe that designs would
had to have been substantially
simplified, with accompanying compromises

in performance, hadé a less rigorous
development approach been used. It would
have been virtually impossible with
traditional methods of prototype
refinement,

Despite increased complexity, a
thoroughgoing methodology makes it

practical te _make increased use of
semi-custom integrated circultry, B0 that
the size and cost of the system is
reduced as well. My best estimaté is
that the system will use about half as
mahy comnponents as competitive systems
having fewer features. :

The continuned use of empulation
methodologies will require an increased

understanding from all those involwved.
General management must understand the
capital requirements and benefits of new
emulation and circuit design equipment,
Project management must set its sights on
a longer term view of scheduling; early
fabrication of hardware no longer equates
to earlier completion of the project,
Design engineers must learn and adapt to
the new tools. And customers must learn
new measures of progress in the
completion of design work,

REFERENCES

l. Kidder, Tracy, IThe Soul of 2 HNew
Machine, Little, Brown, and Co., 1981

2, Evanczuk, E.p "Integrating the
Engineer's Enviromment", Electronics,
May 17, 1984, p. 121)

3., Gutfreund, K., "Integrating the
Approaches to Btructured Design for
Testability®™, VLSI Design, vol. iv,
no. 6, October 1983, p. 34

ABQUT THE AUTHOR

Roy Latham is a member of the
Scientific Staff at the Link Flight

Simulation Division of the Singer .

Company, specializing in digital image
generation. He received B,S5.E.E. and
B.S. Aeronautics and Astronautics
degrees from M,I.T. in 1970, an M.S. in
Applied Mathematics £from Stony Breook in
1974, and an M.S. in Computer Science
from the University of Santa Clara in
1983. Prior to joining Singer in 1978,
he worked on the development and testing
of aircraft navigation systems at Grumman
Aerospace Corporaticn., At Singer, he has
worked on image generation systems as a
project engineer and in R&D. The author
is a licensed professional engineer, is
a TU.S. Patent Agent, has authored six
previous papers, and holds a patent in
the field of mawvigation.

16h

