USE OF THE ADA LANGUAGE SYSTEM
IN CONFIGURATION CONTROL OF
FORTRAN BASED SOFTWARE

Naval Training System Center
University of Central Florida

Orlande, FL

The Configuration Control and Management of Trainer Systems Software has been recognized

as a significant problem for many years.

Many software tools are being developed for yse as

aids in this task. The efforts of the Department of Defense in the development of Ad and
Ada Programming Support Environment (APSE) have strongly addressed the problems of
Configuration Control and Management. Howaver, these efforts have been targeted for Ada
based software as it is anticipated that this will be the primary language of the 00D. The
author feels that FORTRAN based software will require maintenance for many years even after
the acceptance of Ada, and that the features of the APSE couid be applicable to this task.

The Ada Language System (ALS) which will soon be availabie, is the Army's implementation

of the Ada Programming Support Environment.

ALS has also been accepted by the Navy. This

paper discusses the applicability of the ALS to the problem of FORTRAN based software
Configuration Control and Management. A basic demonstration tool will be developed and

analyzed.
Introduction

Computer software represents the
majority of the cost of training
equipment. In the Naval Training System
Center's COG. *20' inventory alone, there
are hundreds of computer programs and
many millions lines of code representing
close to a biilion dollars of)
investment, While the need for effective
configuration management of this
investment has been recognized for many
vears, only recently have automated
software tools been applied to the task.
Software tools such as NTSC's Training
Equipment Software Configuration Control
System {TESCCS), the UNIX Source Code
Control System (SCCS), Softool‘'s Change
and Configuration Control (CCC), and
Digital Equipment Coarporation's Code -
Management System {CM5) have been
utilized on a singie device basis; but a
standard automated tool applied to a
targe number of projects is far from a
reality. Other tools are or will shortly
be available as well.

These numerous tools represent a wide
variety of implementations on a variety
of computer models and operating o
systems. Portability of Trainer System
Software from a contractor utilized _.
configuration control tool system to a
different tool system in use by the
post-deployment software support activity
is a lengthy manual process requiring a
"cold start" verification of the
baseiine. It is unlikely that any of the
potentially useful information contained
in one tool's project data base could be
utilized by another tool at all.

While the proliferation of
programming languages was one of the key
catalysts for the DOD initiative to adapt

Ada as a standard language, the
proliferation of operating systems and
tools as mentioned above prompted
STONEMAN [1] and a DOD initiative for an
integrated Ada Program Support
Environment (APSE). Configuration
contrel and management was a key concern
in STONEMAN and in the development of
APSE's which are now being made
available. While a single standard is
not yet available, much effort is being
expended to ensure portability of tools,
files and data bases between different _
APSEs. The work of the Kernel Ada

_Programming Suppart Environment {KAPSE)

Interface Team [2] is an example of this
effort. The Ada Language System (ALS),
developed by Softech for the Army (and
will be used by the Navy), has many
features designed for configuration
control and management.

Why an APSE for Configuration Control
and Managemeni of Trainer System Software
written primarily FORTRAN and Assembler
languages? .. .

-These Ada environments were designed
with configuration control and
management as a prime concern. The ALS
is one of the first programming
environments to inciude native rather _
than "facked on" support for
configuration management of program _
families [3]. "

-The ALS is Tlikely to be widely
avajlable. It is owned by the DOD and
- will probably be Government Furnished
Equipment £o0 contractors.]

-The ALS is open-ended and
expandable. Many new tools such as the
Army's Software Management and Control
System (SMCS) can be expected to be

Ada is a registered trademark of the U.S5. Government (Ada Joint Program Qffice).

available in the near future.

-FORTRAN-based Trainer System
Software is still being specified on
new trainer systems. Thus life-cycle
management of FORTRAN programs will be
required for at least 15 years.

This paper describes an attempt to
apply the ALS to the task of providing an
environment for post-deployment sofiware
support of FORTRAN-based trainer system
software. Some ohstacles which could
hinder such an attempt were obvious in
the early stages of this project and are
noted here:

-The ALS is in its infant stage .
{released February 1985) and thus the
realization of its full potential will
require years of debug, optimization,
enhancement and experimentation.

-The ALS was designed for Ada and
assembler programming language
requirements as the use of other
languages was not encouraged by the DOD
initiative.

ALS Features for Configuration Control
and Management

The ALS file system is sophisticated
enough that it can be viewed as a data
base management system. It is 2
collection of objects called nades. _The
three varieties of nodes are files,
directories and variation headers. The
file and directory nodes are quite
similar to those found in hierarchical
operating systems such as UNIX and VMS,
As each file in the ALS is actually a
member of a revision set (similar to
¥MS), it is possible to track changes
made to a file over time., "The variation
header object is used to represent
families of programs.

Members of variation sets are
functionally similar software components
that differ in their implementation .
details. Members of variation sets are
different from revision sets in that they
de not supersede each other. Thus they
are named, not numbered. A variation set
header can occur anywhere a directory
node can occur except at the root of the
database. The members can be revision
sets (files), directories, other
variation sets, or any combinatian of
these. There is also a provision for
node sharing between revision sets,
allowing for reduced storage where
different variation sets contain many
identical components. This concept of
variation sets could prove very useful
for cases where multiple configurations
of a trainer program are required by
staggered modifications, or if a unique
requirement exists at a single site.

Each node in the ALS data base is
automatically assigned a unigue
identifier consisting of the following
three fields:

136

~asscciations.

-Object serial number (10 bytes).
-ALS data base identifier (7 bytes).
-Organization identifier (10 bytes}).

This identifier provides absolute
identification of all objects, a
capability basic to all configuration
management requirements.

A%l nodes in the data base can
possess descriptors called attributes and
An attribute is a named
character string that describes the node
which possesses it. Associations -
establish relationships between nodes “in

* additien to the relatiaonships established

by virtue of the groupings under
divectories and variation headers.

Associations are represented by a list of

valid ALS path names.

A derivation is a special combination
of attributes and associations used in

the generation of detailed histories of _

objects required by STONEMAN. The
derivation is used to document the
circumstances under which a file was
created or modified. A derivation
consists of the attribute derivation_text
and the associations logged_inputs,
derived_from, and other_ inputs.
Derivations are controlled by the Kernel
Ada Programming Support Environment
{KAPSE) and cannot be modified except by
the creating tocl. Ffiles which are named
in the logged inputs association will
possess a cited_by association and a
derivation_count attribute which are used
to prevent deletion of any file which was
used to derive another. This feature ,
prevents deletion of a source file while
any executable derived from it is still
in use. - -

The ALS also contains a sophisticated
access control system hased on a lock and
key mechanism. Users and programs have
keys and data base objects have Tocks.
The mechanism allows for project teams as
well as individual users. A more -~
detailed explanation of ALS capabitities
for configuration management can be found
in Thall f3].

implementation Approach

.. While the ALS is designed with Ada’
and Assembler programs in mind, most

configuration control mechanisms within
the ALS were designed to be used for

specifications, documentation, test data,

etc.; in addition ta the Ada source and
the associated Ada compiler/linker
outputs. Thus, these mechanisws are

versatile enough to serve as a saurce 7 7

code control environment for FORTRAN
programs with 1ittle effort. However, an
obviaus requirement for FORTRAN code
maintenance is access Lo the FORTRAN
compiler and this is not provided for in
the ALS. 1In fact the STONEMAN
requirements for tool portability
discourages the use of the host system
(in this case VYMS} which would be needed

-- PACKAGE SPEC FOR HOST_ESCAPE

-- This package is the non-shareable KAPSE implementation for the

-- ALS host escape facility

procedure issue_host_command

{command_Tine : in out string util.var_string_rec;

Tog_name
command_status
completTon_proc
completion_arg

.

in kapse_defs.short id str;

in out prog_defs.,call_Status_rec;

in kapse_defs.address_int;
in kapse_defs.address_int

-- A VAX/VMS sub-process is c¢reated with the VAX/VMS DCL command B
== finterpreter and the contents of command-line are passed to DCL to

-- execute. The size of command_1line must be less than 133 characters

== long. MNo initijalization of the sub-process is performed and, in

-- particular, LOGIN.COM is not executed.

If the operation is

-- initiated successfully, request_status is set to PS_0K,
-- result_status contains a VAX/VMY 3Z bit status value, and
-~ result_string contains the message test that represents this

-- status.

If the operation does not initiate successfully,

-- request_status indicates the nature of the error condition, and
-- result_status and result siring contain further diagnostic status
-- information. The status returned from the sub-process §is that of

-- the Tast gperation which can be the

“EXIT vaiue® OCL.command.

-- Command_1line can contain the DCL command "@" {for command

-- procedures).

Figure 1.

to access VMS FORTRAN. (The methods to
be discussed could easily be applied to
accessing compilers on other distributed
processors, as proposed in Hargrove [4],
provided that required communication
Tinks existed.) Similar problems exist
in accessing the appropriate linker which
resides outside the ALS environment. A
mechanism also should be provided for
contrelled execution of test programs
written in FORTRAN and the passing of
data to and from the executing program.

The implementation described in this
paper concentrates on accessing the
FORTRAN compiler of the host and bringing
the appropriate object and listing files
into the ALS environment for
configuration control and management.
Existing ALS mechanisms and tools {as
well as future tools to be developed} can
then be used for this task. The same ’
principles will apply for accessing a
linker, outside the ALS and executing
exported FORTRAN programs.

An early version of ALS system .
specification [56] indicated that an ALS
service called Host_Escape would_ be B
available to tool writers by calling the
KAPSE from programs written in Ada. This
service would provide for fthe execution
of host operating system (VMS) commands.
When the ALS arrived, an Ada subprogram
specification called Issue Host Command
was found in the KAPSE BODY of The
pragram library. This specification is
shown in Figure 1.

After many experimental attempts to
use this service, it was found te be
"hidden" from the general tool developer

137

Issue_Host Command Specificdation

and available only within the KAPSE
itseif. The final ALS system
specification [6] does not mention the
Host_Escape capability, which could be
quite useful in this appliication.

Another method of issuing a VYMS
command frem within the ALS was found
which is somewhat cumbersome but
effective. This method involves creation
of a YMS process which continually checks
faor the existence of a particular file.
If that file exists, then it is executed
as a DCL command procedure. Submission
of the DCL Command Procedure shown in
Figure 2 on the VMS Batch queue creates
such a process, _

$' DCL proéedure to create process which:
5! {1} checks for existence of a Ffile
$. {2) executes file as a DCL procedure
$! (3) deletes the file after execution
5.
$set default dr2:[dan.ada.als]
$:
$start: .
$exist alscom.com;l
$if jstatus.eq.l1 then goto invoke
$wait 0:00:03 - T oL
ggoto start
1
finvoke:
$Calscom.com;1

$delete alscom.com;l
$gote start_ .
fexit

Figure 2. DCL Procedurelto Execute Fi1e-

-- command procedure to access VYMS FORTRAN compiler from
-- the ALS - pl1 is first parameter of procedure call,
- the file to be compiled ,in this case,

-- object file will be copied to
.- listing file will be copied to

--cgpying FORTRAN source VMS file

pl _obj
pl_Tis

cpydata p! {{vms)})dr2:[dan.ada.als}p]

-- create VMS command procedure file

edt alscom.com in=)inline

delete whole .
insert 1 ; SFORTRAN/LIST
exit

Pi.

end_inline |

cpydata alscom.com ({vms))dr2:[dan.ada.aislalscom.com

--Y¥MS process should now execute alscom.com

waiting_1is : while

waiting_ob} while

cpydata {({vms)}dr2:[dan.ada.2als]pl.obj
end Toop waiting_obj

ile RSTATUS /= 1 loop
cpydata {{vms})dr2:[dan.ada.als]pl.lis
end loop waiting_lis

pl_1is

RSTATUS /= 1 Toop

pl_obj

-- write applicabie derivations and assaciations

-— Ada program tool to write derivations to new object

- --and listing files and associations to FORTRAN saource

write fortran_deriv

Figure 3. ALS Command Procedure to Access ¥MS FORTRAN Compiler

Thus, when the ALS copies an ALS data
base file containing one or more DCL
commands to this particular VMS file, it
is executed. The ALS command procedure
which copied the DCL command file ta YMS
then checks for existence of output files
from the compilation {object and 1isting
files) and copies these back to the ALS
data base. Appropriate derivation
information is then added to the
attributes and assocfations af the
FORTRAN source, object and listing
files. The ALS Command Procedure used
for this purpose 1s shown in Figure 3,

Conclusions -
The implementation described above is.
a very basic¢ approach to prove the _
feasibility of FORTRAN-based software
maintenance in the ALS. Execution of the
command procedures described above has }
proved that a FORTRAN compiler outside of
the ALS environment can be accessed, and
that resultant filtes can be brought into
the ALS_for configuration control and
management using the wealth of tools
presently available in the ALS, as well
as those expected in the future.
Extension of these procedures could
provide for linking via an outside linker
and would involve copying the appropriate
object files to VMS, changing the DCL

138

command to be executed, and returning the
executable image and map to ALS. Similar
techniques would be applied to copying
the executable image and input test files
to YMS, executing the image, and
returning output test data.

Although this concept has proved
feasible, it is noted that a working
system as described is far from a)
reality. Some of the problems which may
hinder the development of this working
system are Tisted below:

-The ALS is large, therefore it is
quite slow and resource intensive.
Optimization will most likely occur,
but it will come slowly and user
acceptance will suffer as Jong as
delays exist in system throughout and
equipment costs are high.

-There are not yet enough tools (for
configuration control ar otherwise)
available to make the effort described
here cost effective. Required T
portability constraints will prevent
immediate availability ef new tools,
especially those for configuration
control in distributed environments.

In summary, the ALS could provide a
"standard"” environment for software ~

maintenance of all Trainer System
Software in the fyture. Research and
experimentation with the ALS in this area
should continue as the Department of
Defense Ada initiatives will soon force
the use of APSEs for software systems
{assuming acceptance of the Ada
language). However, the fuyll
jmplementation described in this paper
should be considered a tong term goal.

List of References

1. Requirements for Ada Programmin
Su or% Environments “SIONEMEN“, US Dept.
of E T

etense, Feb. 1980,

2. KAPSE Interface Team: Public Report,
Volumas J1-3, NOSC Technical Document 500

3. Thall, R.M. 1984, Configuration
Management with the Ada Language System,
Proc. of the 2nd Annual Conference onrn Ada

TechnoTagy.

4, Hargrove, M. 1983. Baselined
Software Configuration Management: An
Automated Approach, Proc. of the 5th
Interservice/Industry Training Equipment
Conference.

5. Ada Language System Specification
Prelimanary, 1983, CECOM %ontract No.
DAAK80-80-¢c-0507, CDRL Iltem BO10Q.

6. Ada Language S%stem Specification
FinaTl, Jan. i§§3, OM Tontract No.

DAAK8Q-80-c-0507, CORL Item BOOG.

139 °

Dan Dyke is an Electronics Engineer in
the Software Engineering Division of the
Naval Training Systems Center. Mr. Dyke
holds a B8achelor of Science in Electrical
Engineering degree from the University of

_Florida, is pursuing post graduate

studies in Computer Engineering at the
University of Central Florida, and is a
registered Professional Engineer in the
State of Florida. He joined the Naval
Training Equipment Center in 1979, and
has been involved primarily with Trainer
System Software support and modification.

