MANAGEMENT OF THE SOFTWARE PROBLEM

. Edward L.Averill
Staff Engineer to the Software Department

Larry K.Rude
Associate Director Software Engineering
Training & Control System Operations
Honeywell Aerospace & Defense
West, Cavina, California

ABSTRACT

Two conceptual notions are identified as controlling the current system/software development operations.
Both greatly impact the development process. The first concerns requirements, while the second concerns
pProgram management responsibility.

The experience of practitioners is reported to be quite different than t.hese notions would lead us to expect.
The paper examines the implications of changing the conceptual notions bringing them into consistency with
the practical experience.

Requirements according to these notions should be deﬁned with complete rigor, a.nd design must be exactly
25 specified (no more and no less than). Practice shows us that requirements not only mature slowly, but also
change through the development and also the life-cycle.

A development project, according to the second notion, needs to be treated (to optimize schedule &
dollars for this project) as if both the product and the process, by which the product is built, are new work
unqualified by previous work. However practitioners, carrying out the development, feel the work is more
similar to maintenance business than ft Is to new work (i.e. that it is gualified by previous work). This is
because requirements are interpretied in terms of previous experience. Old designs and implementations are
adapted to the “new” project. And old code (at least the executive part and/or application framework) is
used as a springboard o create the new code. In fact reusability occurs naturally to the degree that it is able.
But under current notions the reusability that is able to oceur makes little impact on development cost.

The paper explores a product line approach to project development, in which only very specific preduct fine
t¥pe requirements are expected io be fixed, and in which the umque pro;ect. requirements atre 1mplemem.ed by

a product line development process. - -

This approach is shown to be consistent net only with practical experience, but also with the current
technological advances which make the new concepts practical in to-day’s environment.

INTRODUCTION

The context of this paper is management of system/software devel-
opment for training equipment [even though many of the concepts
and ideas expressed apply to a much wider set of equipment).

The thought is that the software problem {as seen in our collective
cash and time flow experience witl the life-cycle of system software} is a
result of our management paradigm. This thought focuses on the
difficulty software engineer practitioners frather than menagers}
have over creating an effective descriptton by which to accurately
define the scftware development process. With only an informal
process to manage, managers have had to relie on the proven man-
agement experience with hardware development, and to apply this
to the software product scene. With a hardware product a solu-
tion is the requirement for a product, 2nd the specification is 2
blueprint.

This hardware background leads us to the two conceptual no-
tions that are identified as controlling current system/software de-
velopment operations, and identified as setting the stage for our
adverse cash and time flow experiences. They are summarily stated
ta be:

+ I} Requirements must be defined with complete rigor, and
the design must be exact to that specification {in the same
sense as a hardware blueprint).

* 11) A project is best served by managing with objectives for
this single project only (which acts as a barrier to improve-
ments in the technology for the software process due to the
cost of making changes).

280

At a recent Honeywell Software Engineering Council we ob-
served that a pgreater than two-thirds majority of the atiendees
held views that were essentially contrary to these. This paper is
about alternate ways of locking at system/software developments,
and the implication that these could have on how we manage the
development process.

SOFTWARE ENGINEERING VIEWPOINT

From a top level viewpoint, the software development process

may be represented by the phases shown in Figure 1. In terms of

this figure, 75% of the above Software Engineering Council iden-
tified Requirement Specification as the phase causing the major-
ity of unmanageable schedule and cost difficulties. Purther it was
recognized that the quality of the Software Requirement Specifica-
tion was totally dependent on the preceeding System Requirement
Specification.

Another view of this Software Engineering Council was that the
vast majority of software development was more like maintenance
work than original development from seratch. Even divisions that
respond to DoD RFPs for new systems very rarely break open
virgin ground. For the great majority previous developments were
in some way reorganized to become part of the new product, Hence
the identification with ‘maintenance business’. {The risks involved in
developing totally new software within a fixed price contract are probably
an order of magnitude great.er than for developmg in 2 a]ready known
area.)

Discussion

Figure 1 is accurate in the serial relation between requirement
(the what), design (the organization of resources), implementation
({the Row), and test. No matter what methodology is used, or
what environment exists, it is not possible to start work on one
part of a phase until the carresponding part in the previous phase
is completed. If any part of a phase is started before at least
the corresponding part of the previous phase is completed then
assumptions chout that correspending parl khave io be made. If
these assumptions turn oul to be untrue then the work has to be
changed. .

The first conceptual notion (I) wants exact design, which plays
into managing each project as something different inspite of simi-
larities. From this position it is easy to extend into a belief that all
different products need different processes to develap them. Hence
there is no choice but to subscribe to notion II.

We believe most software engineers engaged in developing soft-
ware for system products (such as for Training Equipment) find
that requirements cannot be fixed. They change constantly and
regularly, not only during development but also during the whole
life-cycle. Clearly this experience and notion I are incompatible.
We will make the case that if this is true then notion II is also
incompatible.

The other soltware engineering practitioner’s viewpoint is that
development is more like maintenance than original first time new
development (i.e. ezperience shows thal the similarilies with pre-
vious prajects make themselves felt inspite of notion II).

This maintenance attitude to the development engineering pro-
cess means that the Design phase does not use the specified soft-
ware requirements only, but uses also design ideas and thinking
from previous products. Similarly the specified design is taken
from the ideas, thinking, and modules, used in previous implemen~
tations. The requirements are interpreted in terms of the design
and implementation concepts with which we are familiar.

REQUIREMENT DESIGN IMPLEMENTATION TEST &
(1) > (2) > (3 > (43}
SPECIFICATION DEFINITION REPRESENTATION VALIDATION

Figure I: The Essential Serial Nature of the Software Development Process.

Software Cost Estimation Viewpoint

R.W Jensen’s work (1, & 2) indicates there are real constraints
concerning software cost (which he expresses in terms of person
months and schedule time). These costraints are based upon:

1. An Initicl Staffing Rate which relates person months to sched-
ule time. Jensen's analysis shows there is an upper staffing
rate limit above which people will adversely interact to the
detriment. of the project {(Brocks Myth of the Man-month

()

2. A Complezity Faetor of the application, and which relates the
system/software product’s complexity to schedule and cost.
The complexity factor places an upper bound on the number
of people that can be placed upon the job, Above this limit
is where the application is treated as being simpler than it is.
Cornplexity is reduced by breaking the application into sepa-
rate pieces with fully defined interfaces (both horizentally for
example using a properly layered cperating system such as
Hunter & Ready's VRTX or Ironics PSOS, and horizontally
for example effective modularization and drivers): this is the
activity that introduces simplicity and enables more people
to work on the problem.

281

3. A Size Facter which relates size of the software to be devel-
oped to schedule time and cost. This sets a lower bound of
people time to be placed on the project in order to make the
schedule acceptable, and should prevent “sending 2 boy to do
a man’s job” thereby considerably extending the schedule.

4. A Technology Constant which relates size, schedule time, and
life-cycle effort. A large number of factors, around twenty,
are taken into consideration to evaluate this constant of pro-
portionality which reduces or increases the number of people
years required for the project.

What this analysis indicates is that the largest cost factors come
from the process technology and not so much from the product

‘technology. The process by which the product is built starting

from the inception of the need through analysis of requirerents
into development and into configuration management is the real
determinant of cost and problem. This supports the view of the
paper that the most critical task facing industry today, as far as
the “software problem” is concerned is to relook at our conceptual
notions about how a system product should be developed.

" WHAT I5 BEING MANAGED, CONCEPIS &
DECISIONS

A main objective of the paper is to show the relationship be-
tween the schedule and cost performance we experience
when managing a program on the one hand and the percep-
tions about the process used in the whole system devel-
opment process on the other, Management decisions cannot be
better than these perceptions. i o

We suggest that most cost overruns and schedule slipsin a tech-

nical development area are the result of how the technical realities

of the pracess are perceived by those making both the explicit man-
agement decisions, as well as the implicit management decisions.

One of the concepts used by management is “re-
quirements have to be fixed and stable, and design must
be based cn the requirements”. This concept comes
from a perception of the Figure 1 reality, The concept
is used when there are schedules that have milestones
such as:_ :

+ System Requirements Specification accepted,

« Software Requirement Document accepted,
» Detailed Design Document accepted.

Under this concept management concenirates on
managing the resources, staffing and progress to com-
plete the project on time and in budgel.

This schedule concept is totally inconsistent with the reality
thal requirements cannot in fact be fixed. What happens is the
requirements invariably change part way through the development
cycle. When the impact is too big for a work around, as is fre-

quently the case, the schedule slips. Sometimes it is possible to

reduce functionality in place of lenghtening the schedule. But ex-
perience shows that requirements continue to change through the
life-cycle of the product. If our management concept is that re-
guirements must or even should be fixed then all our management
energy can be lost in keeping up with these changing requirements.

" When requirements change it is frequently necessary to mod-
ify the architectural structure of the implernentation, especially if
the implementation has been especially fitted to the detail of the
requirements for reasons of performance. This is often an underly-
ing cause of a “software problem”. This experience tells software
engineers that great care must be taken to separate out the re-
quirements that may change, and to make sure the implementation
assumes no change only where there will be no chanpge. However,
software engineers frequently find that they do not have the data
necessary to distinguish the requirements which will change from
those that will not.

The second conceptual notion (II) is that “this”

project has no connection to other projects. This con-
cept Is true for many aspects of the project, but in
relation to system software development it is not re-
ally irue, And It is not consistent with the fact that
software development of every type is either totally or
partially a maintenance type development.

By limiting our management focus to one program we prohibit
explicit and formal re-use of any work products from previous de-

velopment engineering.

The reality is that reusability has to be

designed in and cannof be refrafitted. Reusability can be achieved
if the management perspective is able to

take advantage of the “maintenance business’ nature of soft-
ware development, and

integrate the limited program view with the wider product
line view.

This prohibition will be just as strongly in force when Ada ¥is
the language we are using, inspite of Ada's capabilities to facilitate
reusability via its generic package mechanism.

A CHANGE IN VIEWPOINT C el

There is an ongoing number of activities that are changing the
realities of our development world, and this provides us with new
options. To natne a few of these activities:

DoD STARS (Software Technelogy for Adaptable, Reliable
Systems) shows their recognition that systems need to be
adaptable to requirements change.

Hardware, is providing many more options to software, and
software engineering is growing up fast; we are learning by
effective hardware and software design to have our “high level
cake” and to enjoy the performance that is necessary in the
system product.

Suppliers of Computer Aided Engineering resources are be-
ginning to produce cost effective toocls, and there is hope that
the third party suppliers are in sight of making these talk to
each other and be integratable into real antomation support
systems for system and software engineering use.

When we accept that requirements change thoughout the life-
eycle of a product, we are not saying that all requirements will
change equally. We believe the reality is that some requirements
are fixed while others are variable. All requirements can be
fitted into an hierarchical structure. The higher levels are fixed (if
present) and the likelihood of vartabilily increases with every step
down the hierarchy. The top level in the hierarchy is occup:ed by
a nede for each user of the required system.

Exaraple of Requirements in an Hierarchical Structure

For example the initial hierarchy for maintenance trainers is in
Figure 2.

For each user at the next level there will be a node for each ser-
vice required. The services associated with each node are mutually
exclusive, but may have data interdependencies.

For the Instructor there will be such things as a service ¢o:

capture a lesson plan for each Trainee,”
maodify an existing lesson,

capture the performance record of a Trainee's lesson a2nd
make available for review, o

present a Trainee’s current lesson situation, with the a.blhty
for message interchange.

t«Ada” is o registered trademark of the u.s. Department uf Defense

282

For the Trainee such things as:

» present a step within a lesson and to respond to trainee input
according to the requirements of the step, (which will depend
on the malfunctions specified in the lesson plan),

» presgent help information on demand,
» return to an earlier step,

control & assistance when the trainer detecis an error in the
Trainee’s response.

Such a h:erarchy needs to be supported by a data dictionary to
define the meaning at every level of each noun and each verb used
in the service descriptions.

Designing with Common Resources :

If we take the Tnstructor services for an example, we see that t.he
design can use common resources to support each specific service.
For instance, commeon protocol (rules by which the service is
obtained, and rules governing the interaction), comynon presen-
tation support such as editor, and windowing or menu control),
common data base (how the file data is manipulated, stored,
controlled and presented).

Comimon resources can also be designed 1o work together in any
combination that is appropriate. In fact there are basic common
software resources appearing in the market for third party suppliers
(and this trend will really get a boost as Ada becomes mature and
widely used). These basic resources will be able to be used as the
foundation for building the common product resource set.

Maintenance Trainer Product .

Instructor Trainee Test & Diagnostics

Figure 2: An Initial Roquirement Hierarchy

The Software Content of a Maintenance Trainer

Figure 3 analyzes the software content of a Maintenance Trainer
breaking it dewn into operational software (that provides the re-
qufred functionality), and support software (which is required to
create the operational software and o enzble it to run cn its un-
derlying hardware resources).

Even the new software in the Figure 2 organization has strong
links to the reusable software. For instance the Simulation Software
breaks down into

» Courseware: this is generated using a high level courseware
autharing language for specifying the lesson contefit of the
Trainer. Software of this type (called AETRAN and CALGEN)
was created and used for Honeywell procedural maintenance
trainers to create the courseware.

+ Simulation Programs: These will be supported by a soft-
ware package by means of which application source code is
generated. For Trainers the system or modelling engineers
warking the specification process, which defines the simula-
tion software required, use this package interactively to rep-
resent the required simulation in a graphical language. This
representation is translated into the simulation software in a
source code form. The software package is called “the model
builder”. The relationship of these generated programs to
the rest of the software is a standardized relationship which
is independent of the simulation specifics.)

s Common Data Tables: these can all be defined as part of
the system engineering specification, (with some ass:st.ance
from special software tools).

The really new items at the lower levels need only be the new
Instructional Features, and the new types of Simulation Data Base
Translators.

Currently all rensablitity is achieved by taking an existing prod-
uct and making changes to the source level code, This means that
only the coding phase which represents some 20% of the develop-
ment costs has been impacted so far. The cost to implement 2
design, so that the result can have its own configuaration man-
agement and documentation with support specifically to permit
reuse, probably represents an escalation of 2 to 10 times the cost
(depending on the specifics such as langeage and operating system
environment etc.}. However if it was designed to be reusable then
some 80% of the development cost and time could be eliminated
on later contracts. Bul components will not be designed to be
reusable while conceptual notion II rules and therefore prohibits
any expenditure not directly useable by the current project.

Maintenance Trainer Software

[mmwmm oo [=-msmmnmmman [
Operaticnal S/W Suppor:t 5/W
t |

e [frommmmmmmeas f-mmmmee -]
Common Simulation Operating File Computer
g/ S/ System Maintenance Diagnostics

I 5 |

| |-File Maintenance

) J Control

!-Procedure Monitor [-Sereen Editor

[I

[-Trainer Panel S/W [~Courseware

| Generation
|-Piagnostics & Readiness via

! >AETRAN(Autonated

Event Table
& Translatorl

t
[
|
* |=Instructional Features H
| 1
;
|
I
§

| -Executive Operating >GALGEN
Systen
-1/0 Data Base
wE L. Totally HEW S/W Translater
*.. .. 5CY% to 90% Reusable w##|-§imulator Data
Rest......... 90% Reusable Bage Translator

Figure 3: Reusable and New Maintenance Frainer Spftware

Significance of a Product Line Requirements Hierarchy

it is our experience that requirements do not change in the top
levels of the requirements hierarchy. We have found requirements
for similar products belong to a common hierarchical structure.
Different producta will select differently from the common struc-
ture. However at the lower functionality levels there will be many
changes due to differences in requirement. If the design architec-
ture for a new product uses the fixed requirements, then the imple-
mentation architecture for the product can be designed to zllow the
lower requirement levels to change. This Figure 4 type of 2pproach
makes it easier to respond to changes in the requirements.

The experience of using a very similar architecture for a variety
of products reveals that one common architecture exists. Further,
the way to discover this common architecture is to formally create
a common hierarchy of fixed requirements for the product type.
Once this relationship is digested and seen to be real then it is
possible to see how to deal with varying requirements and software
productivity issues,

If the common implementation architecture is made into a vir-
tual machine then i is possible to create a special product-type
requirements specification language. This specification language

283

can be supported by a compiler which creates “object” code for
the virtual machine (which is the common implementation archi-
tecture), Figure 5 shows thai the variable requirements can be
accommodated by writing requirements specification statements
in this preduct type language. In this form the cost of a change in
the varying requirements is made acceptable to all parties.

Copmon Hierarchy Integrating
Fixed Requirements
" Fox A Product type
!
i
!
Pirectly Supported by
!
!
t
Implementation Architecture
Common to all Products within Product type

Figure 4: Relationship of Fixed Requirements to
Implementation Architecture

Commen Hierarchy Integrating
Fixed Requirements

For A Preduct type Variable
| Requirements
[g=mmmmrne——- Specified in a
| Product-Type
| Languege

Directly Supported by

| Seftware Engineering
| e Builds a Virtual
| Machine Interface

- Inplementation Architecture
Common to all Products within Product type

Figure 5: Relationship of Variable Requirements to
Implementation Architecture

Roles & Responsibilities in the Development Process

There is significance in how management views the relationship
between the skills being employed in the Figure 1 development
process. The current view js of 2 relay race in which each skill is
passed documented data and then told to run with that to play the
part demanded by the phase itself. This is invariably the scenaria
leading into Phase (1), and between Phases (1} and (2).

However with the reality of a specification language Tor 2 prod-
uct type it is possible to redefine the relationship between the
Phases (1) and (2). It becomes possible to take the seftware engi-
neers cut of the application programming business. Instead they
develop the software environment that allows the systein engineer
to fully specify the application by using the special product type
specification language. There are potentially large savings associ-
ated with just one engineer being responsible inplace of two.

SUMMARY

What we are saying is that there is 2 strong commonality be-
tween the different requirement hierarchies for a set of products
that belong to one product type (such as maintenance trainers or
operatur trainers), We have also said that for 2 particular preduct
type we have been able to use a common implementation architec-
ture for a number of products within that type.

In general we relate the fixed set of requirements, for a product
type, to a common implementation archiiecture for that product
type. Figure 4 expresses this relationship. Pigure 5 illustrates that,
variable requnrements can be handled by creating a specification
language organizéd to deal specifically with the variable require-
ment set. The variable requirement set can not only vary within
the life-cycle of one product, but can vary between products of the
same type.

The benefit of this approach to product development is that the
software engineer does not have to write application code from a
software requirements document. Instead s/he maintains the sup-
port software by means of which the application code is generated
from the system engineer’s specification statements.

The customer also gets a benefit. Their system can be modified
after delivery for a vastly reduced cost, schedule, and risk.

REFERENCES

(1} R.W.Jensen, “An Improved Macrulevel Software Development
Resource Estimation Model”, Proceedings of the Fifth International So-
ciety of Parametric Analysts Conference. St. Louis, MO, April 26-28,
1983.

(2) R.W.Jensen and 5.Lucas, “Sensitivity Analysis of the Jensen Soft-
ware Model”, Proceedings of the Fifth International Society of Parametric
Analysts Conference, St. Louis, MO, April 26-28, 1983.

(3) F.P.Brooks, Jr., “The Mythical Man Month”, Add:snn-wes!ey,
Reading, MA, 1975.

284

ABOUT THE AUTHORS

Edward Averill started his sofiware career in 1955 working with ma-
chine langunge and paper input and cutput. For many years he interfaced
directly witly the users, and to satisfy their needs, werked all parts of the
life-cycle; requirements, design, production, sell-ofl, and follow-up main-
tenance.

His current challenge is leveraging the on-going hardware and soft-
ware support system advances to enable competitive software engineering
development within the prodnction of real-time sysiem products. The
target is the application software within the Training and Naval Combat
System products made at the T&CSO operation w1(hm Honeywell Inc.’s
Aerospace Defense Group.

Larry Raude is an Associate Director in charge of Software Engi-
neering with Honeywell Inc.’s Training and Control Systems Operations
{T&CS0). He is responsible for the software development for T&('SO
system products, which include Training and Naval Combat Systems, He
has a Bachelor’s Degree in Applied Mathematics from the University of
Idaho. He was formerly the Maintenance Trainer Software Section Head
for T&CSO, where he was responsible for the software development on
the F-16, F-15 and AWACS-Radar Maintenance Trainers. Prior to join-
ing T&CS0, he was a Staff Engineer for HoneywelP’s Avionics Division.
Before coming to Honeywell, Mr Rude was a Captain in the Air Force
involved in the development of real time soféware for checkout and launch
of Air Force Satellites,

