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SUMMARY

The complexity of modern simulators _has
overwhelmed the capacity of conventional approaches
to maintain effective cognizance and configuration
control. The problem is intensified by the emergence
of system engineering techniques which stress
functional analysis, requirements allocation, and
traceability of design features to requirements. A
Software Engineering Management_ System (SEMS) is
described which uses the technology of a relational
data base to overcome previous limitations on
visibility of software structure and design, Its
principles are applicable to the much broader but
similar probTems of overall simulator development and
life cycle management, The principal components of
SEMS are:

a) A comprehensive project data base capable of
praviding multiple user-oriented project
views,

b) A suite of processors and protocols to allow
production of project-germane information and
documentation.

c) Supervisory and monitoring capability for the
integration of pre-existing software
development facilities into the system.

d} Links to dinterface geographically separated
sites into a unified project control system.

The conceptual development and organization of the
system are described and examples of its operation
are provided.

Introduction.

The Software Engineering Management System (SEMS)_
described in this paper had its genesis in a study
funded several years ago by a large manufacturer of
flight simulators. That effort, called the
MicroSimulation Technology {MST) Study, was intended
to tdentify problems which might arise as the industry
converted from centralized computer complexes to
distributed computation based on microprocessors,
Its major finding was that the distributed
architecture in itself was quite compatible with the
natural organization of flight simulator software;
the problems anticipated were essentially the same
problems which had caused inefficiency, lost time,
and sgmetimes almost chaos in conventional fiight
simatator software development. The investigation
had been intended to provide simply a go/no-go signatl
for the conversion to microcomputation, with perhaps
recommendations for modest tool development

activities, Instead, it became the foundation for a
fundamental revision of software engineering
concepts, practices and environment within that

contractor's facilities.

Furthermore, it is a major theme of this paper
that the SEMS, originally conceived and generated for
the limited task of simuTator software management,
contained within itself all the elements reguired for
solution of the far broader and far more compiex

283

probTem of the management of the total simulator
througheut its Tlife cycle, beginning with the
proposal stage and continuing throughout its useful

career. The same information storage and accessing
structures which were found necessary for the
original  task of software management  and

configuration control were re-examined and found to

be adaptable, with practically no structural change
and only a small addition in complexity, to the
manifold operations of hardware design, fabrication
and test, spares and logistics support, cost and
schedule control, etc.

In this paper we shall attempt to show the
common problem core which underlies and justifies the
expansion of the original system concept to this much
broader application. UWe shall iT1lustrate by specific
cases the flexibility with which SEMS_addresses the
various facets of this common problem.

éEbbe OF Problem.

Few visitors to the site of a modern large-
scale simulator leave unimpressed by the complexity
of the equipment they have abserved in operation.
Even the technically naive quickly observe that the
equipment they are viewing contains within 1tself
most of the complexity associated with a highly
sophisticated aircraft crammed with every manner of
electronic sensing, signal processing, and avionics
equipment in the arsenal of modern weaponry. Upon

this has been superimposed, first, a complete
representation. of an entire world of external
environment, including not only the physical

surroundings, but the perceivable effects of myltiple
friendly and hostile activities and, second, an
elaborate training system whose purpose s to
stimulate, observe, react. to, and record the
trainee's responses during missions which may last
for many hours. -

The more  sophisticated observer, who
recognizes the dependence of the operation upon
information processing, J.e., computation, may
perhaps mentally estimate the
instructions per second being carried out to drive
the system, His technical background will lead him
to check these observations against the amount and
type of hardware which he finds within the computer
complex., He will be able to verify that he is indeed
observing in operation a real-time computation system
as elaborate as any to be found in a single isolated
functional operation.

However, only the observer who is famiTiar with
the world of flight training simulators will
penetrate beyond the reality of the equipment he sees
in its full operational form to the events and
activities which occurred over prior years in order

to bring the simulator into existence. It is this
observer who wWill appreciate that, unlike
installations = approaching the simuiator _in

complexity which may be in use in other industries,
this installation is barely, if at all, one stage
beyond prototype, that most of the eguipment had to
operate properly on the first trial, that its design
was begun with missing and incorrect data, that the
specifications for its use were incomplete in

millions of _ .



defining the design and were probably subject to
change after a series of reviews, that these reviews
were sometimes conducted by a customer still
attempting to reconcile conflicting factions within
his own ranks, and that major decisions regarding the
use of and selection of important subcontractors were
required and executed in the course of the pre-
delivery contract years, This last, knowledgeable,
observer will hardly need to be reminded that the
schedule time allowable for the effort turned out to
be inadequate, and that the original cost estimate
may have appeared to be naive as the contract
unfolded.

The Approach To A Solution.

ATl of the above factors were well-kngwn to the
team of engineers who conducted the MST study. Their
recommendations contained three major points. When
considered together, these points amount to a
restatement of the principle that a very complex and
almost ungraspable problem can often best be solved
by dividing it into an appropriate number of
appropriately related tasks, each of which is in
itself amenable to disciplined and effective effort.
The three recommendat ions, only sTightly
paraphrased, were as follows:

1 Hierarchical Structure. A Togical structure
must be imposed upon the simulator design,
regardiless of how many elements might
eventually be incTuded in that design. For
this purpose, a functional tree was proposed,
to be organized along strictly hierarchical
principles. The hierarchical organization, in
which each node of the tree communicates anly
upward to a parent node or downward to one or
more subsidiary child nodes, was selected as
the most effective means of maintaining clean
interfaces between the functtons allocated to
each element of the tree.

2) Source files. Each node in the hierarchical
tree was to have associated with it a source
file which would contain all the information
relevant to the hardware/software product
associated with that node. These Tiles would

contain not only source code, but
“...everything needed to -use, interface,
document, test and control that source

code...", and all such information would be
represented once and only once within the
hierarchical tree,

k)] Message system, A message system was
recommended as the means for transferring data
between software modules, with the goal of
establishing stable, valid, and coherent
computation regardless of changes in simulator
Toad allocations or the occurrence of
sequential computations in different computing
centers within the simuiator. Rigorous
scheduling was recommended as the means by
which chanrges in configuration or in computer
load allocations could be prevented fram
introducing unfareseen and somet imes
catastrophic side effects, in either the mini-
computer or the multi-microcomputer environ-
ment .,

These recomnendations became the basts for the
initial attempt to design an effective software
engineering management system.

Evolution Of SEMS Concept.

The MST recommendations were heavily oriented
toward the problem of making a simulator "work". They
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jdentified steps to be taken in order to bring the
software content of the simulator inte a ratioma
form which would permit efficient design, debug, and
performance verification. Above all, they emphasized
the need for each software engineer to work on his
tasks within a well-defined and stable environment.
It was thought that the source file and hierarchical
structure would lead to the ciearest definition of
the functions to be performed by each software module.
This same structure would provide the basis by which
clean interfaces could be defined to estabifsh
reliable boundaries within which each engineer could
salve his problem. The message system would provide
the means by which the stability of these boundaries
would bhe guaranteed regardless of changes in mgdeie
allocation within the computer complex, timing of
frame cycles, ete. . —— -

These same principles are directly applicable
to the problem of software configuration management,
The hierarchical organization of software in itself
provides the basis Tor such management since, by
definition, 1t includes every component of the total
simulator software computation Joad. Furthermore,
the interface definitions and message-passing
technique provide the means by which the impact of
changes made to any software module on other parts
of the computation system can be quickly identified.
When these are combined with the recommendation for
single source files as the repository for all
infaormation pertinent to any node of the software
hierarchy, the applicability of these concepts as the
basis for an effective configuration management
system becomes evident. If a way could be devised
by which the source files could be guaranteed to
contain the _appropriate material, and if this
information could be kept current with the actual
status of the simulator, then the problem of
documenting and tracking configuration _changes
throughout a single simulator's 1ife could be brought
under control, Equally important, just as source
files and computer loads could change serially in
time as d given simulator evolved, muitiple
implementations could be conceived and maintained in
concurrency with a multiplicity of similar but non-

identical simuTators at various training
installations. n
Interpretation of MST Recommendations.

The MST study was convincing in its case

 histories and in its analysis of the simulator design

problem, and its recommendations were fully in accord
with recognized sound engineering practices. It was
considered imperative that they be put into practice.
However, early attempts to implement these
recommendations disciosed a huge gap between their
fundamental simplicity and the complexities inherent
in the simulator environment. The bridging of this
gap required the conceptual development which is the
basis of the SEMS configuration.

... For the purposes of this paper, we will treat
the third MST recommendation -- the use of a message
system technique to control transactions between

computing units - as a problem in scheduling,
accompanied perhaps by special hardware
considerations, This is not a trivial problem, and

if carried out thoroughly will in itseif make a
significant contribution to proper distribution of
software among computing faciiities, and eliminate
many mysteries which presently plague simulator
debug, checkout, and modification activities.
However, its implementation i3 outside the scope of
the SEMS.

Let us turn now to the recommendations at the
very core of SEMS: a functional hierarchical



structure for the entire simulator, and a single
source file for each node of the hierarchy, containing
all information relevant to that node.

Hierarchical Structure(s) If we are to
organize the simulator -- and especially the
simulator software -~ as a hierarchy, it is necessary
to ask, "Upon what basis?", and the answer turns out
to be, "It depends on what you want to use it for."
Although this paper is principally about software and
its attendant problems of development and management,
we may find some conclusions about software
hierarchies less surprising if we first Took at the
principle as it applies to general simulator design.

The upper part of Figure 1 shows a sequence of
stages through which any simulator must pass. Of
course, each of these activities may be done well or
poorly. In the past they have not generally been
carried out with the clear defimition shown in the
figure. But the 1logic of the progression is
indisputable, so we may well ask why this logical
sequence has not been a standard practice in
simulation. The answer suggested in this paper is
that standard data manipulation techniques have been
incapable of effectively translating the results of
each design stage so that they could serve as useful
inputs to the succeeding stages. Whenever
fdentification between successive design phases has
even been attempted, the mechanism has been
inadequate. First, it has Tailed to correlate the
findings, decisions, or designs established in ope
phase with the information needed in succeeding
phases, Second, it has not been possible to maintain
anything like concurrency of working information
available to the various stages, It is these failures
which SEMS had to address in order to promote. and
support the logical sequence of the figure.

Now Tet us concentrate on hierarchies, starting
at the input to the system process in Figure 1. By
its formal structure, a Prime Item Development

MAJOR INVOLVEMENT

Spacification, for example, is automatically a
hierarchy. Its numbered paragraphs will provide the
form for the hierarchical tree regardless of its
contents, So, in turn, are the MIL-Specs, Contractar
Standards, the Statement of Work, and other typical
Input documents. Aircraft Data and Mission and
Training Data are 1ikely to be collections of parallel
_ data packages. i

. The first task fn a systems approach consists
of the evaluation of the requirements expressed in
these defining documents and their transTatfon into
a set of functions which must be supported by the
systeim, This process produces a functional
hierarchy; the tree structure reflects the
progressively finer decomposition of functions until
their implementation is both apparent and assignable
to a specific element of the system being synthesized.
To make this possible, we must generate a system
hierarchy in parallel with the generation of the
functional hierarchy. This system hierarchy will not
be simply an dverlay on the functional hierarchy with
different captions in the boxes. For example, suppose
that our system synthesis creates a node whose purpose
is to interface, say, a 1553 avionics bus with a
simulator computer, Thereafter we will assign to
that node all_relevant bus communication resulting
from trainee and simulator behavior identified in
many parts of the functional hierarchy. Note that
by this process, as well as by the interpretation of
the defining documents to form the Functienal
description of the system, we experience a Toss of
cohesion, or congruence, betwsen the st¥uctures of
the input documents and the organized hierarchies of
the functional and system trees,

This same loss of cohesion occurs in the next
stage, in which the system tree s decomposed further.
For the sake of simplicity, we discuss only two
further decomposition trees, devoted respectively to
the simulator hardware hierarchy and the software
hierarchy. In practice, the complete system will
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Figure 1. Simulator Life Cycle Stages
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include many other aspects of the total contract,
including lagistics, installation, documentation,
training, etc. However, even limiting ourselves to
the two trees named, we again face the_ problems we
saw Tn the creation of the system tiierarchy (and these
problems would appear in any of the other trees which
must be generated in an actual simulator contract).
In general, neither the software nor hardware
hierarchies will map one-to-one with the system
hierarchy.

This 95 most obviously seen . jin the case of
hardware (Fig. 2). Me realize intuitively (more
accurately, by knowledge of its use) that the hardware
hierarchy, if it is to be meaningful, must be based
upon a packaging concept which has been designed to
permit ratiomal procurement, kitting, fabrication,
assembly, test, maintenance, etc., and must promote
the efficiency of these operations without an
excessive penalty in hardware component cost. 1In
Fig. 2 the dotted boxes show some of the hardware
elements in which a single system element, such as
"Laser Transceiver", would appear. Like it or not,
the hardware hierarchy must support and document the
simulator package concept, and would require &
complex network to map to the functional system tree.
It 15 a separate and unique hierarchical structure.

But does the same thing needs to be said about
the software tree? After all, the software is there
to execute functions that implement the simulation
requirements and these functions have been logically
arranged in the system hierarchy. If the software
tree is not homologous with the system tree (allowing
nuil software functions if necessary), where have we
gone wrong? The answer, of course, is in the use of
information within the system hierarchy. Any number
of functions within that hierarchy may be users of a
single piece of information generated within the
software tree, and we are not 50 foolish as to require
that such information be generated redundantly at
many places within the computing system, just so that
the software hierarchy can be a faithful shadow of
its functional system counterpart. Instead, we
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Figure 2. Hardware Hierarchy
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indicate the need for appropriate software inputs
{specifying their ranges and accuracies) in the
system tree, and leave to the software design the
problem of organ1z1ng the computing functians for
optimum speed and efficienrcy. A software tree derived
from a functionally-oriented system h1erarchy will

mimic the structure of that hierar'ch_y more closely

than the hardware tree, but in general will not be

homoiogous with it (Fig, 3).
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Figure 3. Software Hierarchy

Dnce it becomes clear that the software tree
does not emerge automatically from the painstakingly
constructed (and all-important} functional system

- hierarchy, we must find a rational basis for its

construction. It may as well be stated here that
many & simulator has been developed with a software
“tree" consisting of a top level identified as the
Computer Program Configuration Item, a bottom Tevel
consisting of, say, 3,000 software modules, and
nothing in between of semantic significance. It is
suggested that this may have been a "default solution®
arrived at because of inability to choose between
more useful,

structures. For example (see Fiqure 4):

a) We could associate software with well-defined
functional entities within the simulator: a
specific navigation system, a particular
version of a flight control or autopilot
system, a functional bus structure, etc. This
would map closely to parts of the general system
hierarchy and be almost identical to parts of
the hardware hierarchy. It would have the great
merit of identifying chunks of software modules
which could be reused whenever a particular
system was to be simuiated, or which had to be
revised whenever the system was updated, and
would have very little use otherwise.

b) We could arganize a software tree to minimize
interfaces. This would provide the most
efficient computation (and is, to a great
extent, the state to which present design has
evolved), but would degrade identification
with aircraft system entities and would present
great  difficulties when  tracking and
maintaining control over system modifications.
It would have 1ittle direct use in securing or
maintaining stable computing environments,
singe 1t s not primarily time- or sequence-
oriented, .

c) We could attempt to emphasize computational
stability and clarity of input and output

but seemingly_ incompatible, software
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Figure 4, Some Possible Software Organizations

conditions by organizing the software in sets
of serially operating modules. This attempt
will quickly break down in a tangled web of
interconnecting networks rather than the clean
hierarchical structure we are seeking, but it
is worth mentioning because it 1is the
organfzation which software engineers are
finally forced to derive, ad hoc, when
confronted with the most timeconsuming and
frustrating problems of simulator integration
and debug.

We are left with the conclusion that in
software, as in ail else in the simulator, a single
simple hierarchy cannot do the job. I this concept
breaks down, what becomes of the source file concept
intended ta contain all data about each hierarchical
node? And how then do we solve our problems of
management and control?

Conceptual Development of SEMS.

It seemed clear that achieving the SEMS
objectives would require the use in some manner of a
massive data base which would form the core of the
system, The mere size of the data base was not a
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major <oncern - gwen the magnitude and criticaiity
of the problem being addressed, the cost of disc and
tape drives and the computers to run them was a very
secondary consideration,  The real problem was that
the data base was to be the sole source of informafien
for all inguiries about entities under system
control. We have seen some of the difficulifes
inherent in this simple-sounding proviso. It implies
access to the information in ways almost as varied
as the number of users., Not only would the users'
needs differ greatly, they would change continually
during the life cycle of the simulator.

The key step in the SEMS development was the
conversion of the problem elements which have heen
illuminated 1in the foregoing analysis into a
meaningful statement of requirements to be placed on

" the data base subsystem, These requirements amounted

to a summarization and clarification of the problem:

1. The data base had to be capable of storing
information which would be accrued from a
number of sdurces., Some of this information |
would be relatively stable, such as customer .
specifications., Some would be highly volatile,
especially at critical stages of a simulator's
1ife: software interfaces, data, test results,
etc. The data base would have to be capable
of accepting additions, deletions, and changes
at arbitrary times. These could affect not
only the information contents, but the
information categories. Moreover, in the
wseful Tife of the data base an undeterminable
number of branches and alternate versions of
the information stored would have to be
accepted and preserved in a traceable manner.

z. Information from the data base had to be
“retrievable in a wide variety of arbitrary
combinations and contexts. The number of these
contexts was not predictable in advance; the
philosophy was that since all the information
was to be in the data base, it must be possible
to use that information for any purpase that
would come to hand.

3. The date base had to function in "real time
for both the insertion and retrieval of
information. By this was meant that it was not
to be considered simply as an archival record,
but as_a readily accessible store and source
of information needed in the day-to-day
development and operation of the simulater.
Certain gperations involving the data base were
to be conducted from cn-1ine terminals and its
ability to perform its functions was to be
commensurate with the timing implied .thereby.

These requirements are extremely demanding,
and in some cases almost contradictory. Conventional
data base systems were entirely inadequate to meet
the SEMS requirement. The soTution was found in the
emerging technology of the relational data base (RDB)
concept. This concept has been widely discussed for
a number of years, but only recently have systems
appeared which support its practi ca'l application to
complex cases,

The selection of the approprizte type of data
base has been crucial to the success of the SEMS
system and it s worth reviewing the alternatives
which were considered prior to that selection.

Conventignal data bases depend upon fixed file
systems. They are classified according to their file
structures, which may have either a hierarchical or
network topology. In the hierarchical structure each



node communicates only to the node above it or the
nodes directly below, so that an inverted tree-like
patiern emerges. A variation of this allows for less
rigidly structured communication paths, including
those which communicate between elements at the same
level and to elements at higher or lower levels of
the data base structure which are not on the same
branch of the tree. Such topologies lead to the
network form of data base architecture.

In considering the appropriate form of data

hase for the SEMS application three points weighed .

heavily against either of the above structures.

1, Repeated attempts had been made to dissect a
typical simulator system and software package
into a single hierarchical form. In each case
it was foumd that the appropriate structure
differed, depending upon the point of view and
neads of a given user. Thus, different

fiierarchies were dndicated, depending upon _
whether one was interested . in tracking
specification requirements, development or

readiness status of modules. within a full
simylator Tload, allocations of software
modules within. simuilator CPU's, I/0 and
simulator hardware complements, minimization
of interfaces across major camputing modules
for frequently used math_ model terms,
documentation of status according to varying
customer requirements or formats, etc. What
emerged from these considerations was the
appreciation that not one, but a number of,
hierarchical (and other) arrangements of data
were needed if all of the hopes for the SEMS
system were to be realized,

2. Conventional file structures tend to be rigid
in their organization and file arrangements.
Typically, an addition of a new category of
information and the establishment of new files

requires major reorganization of the entire .

system. In the case of SEMS, it was recognized
from the beginning that the system must be
capable of growth beyond its initial software
implementation because it was hoped to form the
nucleus of a total systems engineering approach
- a hope which is now being implemented.

3. In either the hierarchical or network data base
models users are required to navigate along
fixed access paths to reach data, and in some
cases these paths can bHe of considerable
complexity. These paths are built into the
file structure.
are within the files and file records
themseives. The result is that response time
of the system may be affected seriously and

unpredictably by adjustments to the structure.

of the data base system as user needs evolve,
with 1ittle recourse except sweeping redesign.

A relaticnal data base solves these problems
by providing for the creation and storage of data
base "relations". These relations are, in effect,
easily constructed paths,
necessary, by which items stored in the data base can
be accessed, The concept and implementation of the
"relation" does significantly more than this, since
in addition to providing the path between segments
of the data base it also provides ddentification of
the particular items which are available at each end
of the path. The data base designer can establish
any combination of paths which might be appropriate
to the initfal user needs and then modify or add paths
as system applications emerge.

Pointers defining these paths

reconfigurab]e as.
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Relational Data Base. The relational data base
has superficial resembTance to a conventional system
of files, records, and fields in which information
is stored, but it is equipped with processors which
can Tocate and retrieve information corrasponding te
logical combinations of the contents of the fields,

. Figure b5a illustrates the nomenclature
involved. The entire two-dimensional array is known
a5 the "relation", Each successive Tine within the
array constitutes an "instance® of the relation. The
number of lines is arbitrary, and, since an indexing
and search mechanism is provided within the system,
there is no requirement that instances be inserted
in any particular order., The columns of the array
are known as “attributes”, Their selection s a
matter of the use to which the system will be put,
as we will see in spec1f1c examp]es. The number of
attributes in any given relation is arbitrary. An
attr;bute of one reTation may appear as an attribute
in another relation. If this is permitted within the
particular. relational data base, means should be =
provided to ensure that the aftribute's contents are
consistent in each appearance.

We will first consider relations in which we
use only the information stored within the relation
itself. The cases selected for i1lustration are taken
from the actual set of relations provided with SEMS.

If we Took First at the relation called
"softwarg-hierarchy" (Figure 5b), we see immediately

" the possibility of searching the entire file and.
_ detecting all node connections.

We could start with
either identification_attribute at any instance and
use the adjoining attribute as the pointer to the
next instance. The. processors provided with the
system make it possible to perform this operation,
and thus, for example, reconstruct the entire
software hierarchy of Figure 3. )

Suppose now that we look at the software-

“hierarchy relation in conjunction with the soffware-~

software relation (Figure 5c}. If our task were to
completely remove a functional system element (nodé)
from the hierarchy of Figure 3, we could search the
relational data base to see what software units are
called by the deleted system.element, and we could
find out whether or not these are used by any other
element. This is information completely lacking in
the hierarchical structure itself, and yet it is vital

. to the functioning of the hierarchy, By reference to

the task-Tibrary and Tlibrary-software relations
(Figures 5d and 5e), we can immediately discover the
means and effect of deleting the system from computer
Toads.

Furthermore, we are, of course, interested in

. the inputs and ouiputs fo any given software unit,

Another set of relations is provided which are devoted
to the symbols used in software. One of these is
shown as Figure 5f. By reference to its attributes,
lagically combined with the software-hierarchy
attributes, we can determine which software units
contribute terms to the system being deleted (and .
perhaps may now also be deletable} and which units
expect output from the system being deleted (and
therefore probably require modification in turn).

It is apparent that the powerful processing
techniques associated with the relational data base
concept allow us to interrcgate a data base in
precisely those varied contexts for whch we must be .
prepared. .

One mare step'must be provided to arrive at the
final SEMS _data base concept. The examples given
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Figure 5. Relation Examples

thus far have shown cases in which the information
of immediate interest is contained in the relational
data base itself. However, we are concerned with
huge masses of information which will be required to
fully describe the simulator, or even its software
aspects, throughout its 1ife cycle. Much of this
information tends to be used and reused as bulk
entities, such as software source code modules, or
is relatively stable and fixed in structure, such as
Prime Item Development Specifications and Statements
of Work.

In theory it would be possible to include such
information within the relational data base, simply
calling out whole blocks of text as attributes.
However, this would be extremely inefficient. It
would increase storage vrequirements immensely,
reduce flexibility, reduce the possibiTity of finding
relevant query-related information in concurrent
immediate storage, and in general be a misuse of a
very elegant capability. The solution is to provide
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a second data base, devoted entirely to mass storage
of all project-related information. in conventignal
file structures. We can then use attributes of the
relational data hase as pointers to these files. In

the SEMS, this function is fulfilled by a file system.

operating under the UNIX* ‘operating system, and

therefore designated as the UNIX Data Base.

One examplie of this usage is provided in Figure
bg: it is the obvious one of identifying the Tocation
in the mass storage system of _the actual  code
represented by a software unit identification.

The unification of the two data bases completed
the essential conceptual development of the SEMS.
The operation of the system is sumrarized graphically
in Figure 6, which illustrates the capability that
has been provided to supply the many types of

information which we have seen necessary for the

effective development of the _system
subseguent life cycle management.

and its

*UNIX is a registered trademark of Bell Laboratories.
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Figure 6. SEMS Database Functions

Definition 0f Software Engineering Management
System.

The relational data base concept as a powerful
tool for information storage and structured retrieval
was applied as the nucleus of an éngineering
management system oriented initially toward the
problems of software development and configuration
contral. The domain of the system was taken to
include the following capabilities:

1. Management of software development in
accordance with requirements allocated to
software from a functional system tree,

2. Verification that the products of development
(source code) function to requirements.

3. Maintenance of test criteria, traceable _to
allocated requirements, to accomplish
performance verification.

4. Establishment and maintenance of software
configuration contral oriented toward single
simulators or miltiple simujator
installations.
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5. Maintenance of archival records of software
history. ’ '

6. Management of change activity in accordance
with standard protocols. —

7. Management of software-related schedules,
resource commitment and resource expenditure.

.8, Production of reports to document status and
results of above activities. ’

These broad objectives 'led 0  the
identification of particular capabilities which were
to be embodied in SEMS:

1. Internal maintenance of the
structural hierarchy.

software

2. Internal maintenance of interface definitions
and symbol usage.

3. Internal checks for the integrity and
consistency of computer modules at each level
of the software tree (symhols, scaling, etc.}.
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4, Rejection of auxiliary finformation chamnels
having no reference within SEMS.

5. Integration with a Software Development
Facility including a supervisory capability
over SDF activities.

6. Maintenance of status information regarding
every module under SEMS control.

7. Internal maintenance of schedule, task, and
responsibility data.

8. Capacity to serve as a permanent repository for
all released software.

9. Capability to produce standardi zed
documentation from internally stored data.

10. Capability to produce specialized reporis in
response to arbitrary queries,

11. Incorporation of audit, trace, and recovery
capability for a1l configurations and revision
levels of any program under SEMS control.

It was a requirement of the SEMS development that not
only would all of the above capabilities be provided
in SEMS, but that they would automatically be
operational without reliance upon the diligence,
responsibility, or familiarity of the _using
personnel, In order to ensure this, input/output
processors and file manipulation processors were
required which would provide the sole finterface
available between SEMS and users. These processors
facilitate the organization of information and the
manipulation of the system by users; they alse
automatically maintain cognizance of the operations

being. performed on. .all

ing. objects  under SEMS
Jjurisdiction. T

SEMS Configuration.

A SEMS configuration consists of:
1) A project data base.
2)7 A supporting computer facility. .
K} A software development facility.
4) SEMS processors. -

The following sections describe the major

components of SEMS in sufficient detail to provide .

an understanding of its operation.

SEMS Data base. The SEMS Project Data Base is
comprised of the two separate structurés known as the
UNIX Data Base and the Relational Data Base.  From
the broadest point of view, the UNIX Data Base is a
mass storage sysiem and the ReTational Data Base
contains the intelligence which permits the SEMS to
function efficiently with respect to user demands.
The Relatiognal Data Base may be thought of as a
collection of reconfigurable pointers to the varipus

_items stored in the UNIX Data Base. However, it also

is a store of information in its own right.

UNIX Data Base Description. Table 1 Tists the

top Tevels of the UNIX Data Base directory. -

" The "global  segfent contains those documents
which are primary references for software and systems
deveiopment engineering, It contains, first, all
specifications and standards applicable to simulator

Table 1. Major UNIX Database Directories

GLOBAL DIRECTORIES

PROJECT-SPECIFIC DIRECTORIES

GENERAL AND SELF-DESCRIPTIVE

REQ*TS, SYSTEM DEVELOPMEKT .

SOFTWARE-SPECIFIC

DOCUMENT LISRARY
LUSTOMER-GENERATED
STANDARDS
SPECIFICATIONS

COMPANY-GENERATED
STANDARDS
PROCEDURES
REPORTS

UTILITY PROBGRAMS
DEVICE LIBRARIES

GEMERAL USER'S
DIRECTORIES

SYSTEM SOURCE CCDE
GENERAL~PURPOSE

USER UTILITIES
USER DATA
UNIX ADMINISTRATION
UNIX ADMINISTRATION UTILITIES
PROJECT ARCHIVE
RELATIONAL DB ACMIRISTRATION
RELATIONAL DB DESCRIPTION
PROJECT DB SOURCE CODE
SYSTEM
SCREEK
REPORT
RELATIONAL DB

TABLE DEFIRITION
TABLE INPUTS

CUSTOMER-GENERATED REQ'TS
PRIME ITEM DEVELOPMENT SPEL
DATA LTEM DESCRIPTION
STATEMENT OF WORK

Rl
CONTRACT WORK BREAKDCWN STRUCTURE

0
o
Q

SUPPLIER-GENERATED REQ'TS
REQUIREMENTS ANALYSLS
PROG/FUNCTIONAL ALLOCATICN
INTERFACE DESIGN SPECS
INTERFACE CONTROL LOC
UNIT DEVELOPMENT FOLDERS
MM REFORTS
TRADE STUDIES
SUBCONTRACTOR/PURCHASE

SOH'S

SPECS
PART 1 SPECS
PART 2 SPECS
TECHNICAL PERFORMANCE MEASUREMENT
RISK ASSESSMENT

PLANS
ENGINEERING
LONFIGURATION MANAGEMENT
QUALLTY COKTROL
INTEGRATED LOSISTICS
MANUFACTURING
&
0
[:]

TEST AND VERIFY SOURCE CODE

MATH MODEL TEST SOURCE REAL-TIME SOURCE CODE
RIVER NAY-COM

T D
HAY-COM FLIGHT
FLIGHT ~ . o
[+] ]
a ]
-] DRLMS
FIRMWARE

MMT DIRECTIVES
& PROM SOURCE CODE

o PROM F IRMWARE
] PAL SOURCE CODE
° PAL FIRMWARE
MMT RESULTS - VENDOR SOURCE CODE
-4
a SUBROUTINE/FUHCTIONAL SOURCE
]
Q
REAL-TIME DATA FILES
]
0
o
o

SEND TD TARGET OVERBRIDGE
INCLUDE FILES
CONSTANTS FILES |
SYMBOL DICTIONARY
SDURCE FILES
CRT PAGE FILES
MISC. BATA FILES

RECEIVED FROM TARGET
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design and fabrication. These arise from two sources:
major customers such as the Department of Defense,
and the contractor engineering division.

The remaining files within the global segment
of the UNIX data base are devoted to software which
defines the system operation ftself, the device
drivers which provide access to_the SEMS peripheral
facilities, the software related to the target
computers {(operating systems, utilities, etc.) for
which SEMS-controlled programs are intended, and
general utility programs for operation of the SEMS
system.

The project-applicable segment contains
directories and files whose contents are unique to a

given project. It is a self-contained, self-
supporting record of current . and archival
information. For example, the permanent record of

all real-time software, including code definitions,
symbol directories, interface  conditions, data
instructions, and all revisions or applicability
lavels ever generated in the course of a simulator
life are maintained permanently within the UNIX Data
Base. project segments. The classifications of the
project-specific directories shown in Table 1 are
purely for convenience im summarizing functions,
There is no distinction made in the actual data base
between the various directories. Much of the table
is self-explanatory, but
noting. In the column headed "General and Self-
Descriptive™ it can be seen that some directories are
devoted to the relational data base associated with
the project. It has already been pointed out that
this is5 an evolving system. As more capabilities are
added to SEMS, the relational data base will change.
It is defined within each project's UNIX Data Base
so that the process of elaboration and expansion can
be carried out as opportunity and need arise, without
disturbing simulator projects which are already under
current Tevels of SEMS control.

In the column headed "Requirements,
Development™,
not part of the baseline software engineering
management function for which SEMS was originally
intended, These directories are in varying states
of development at the present time. Those assaciated
with requirements and functional allocations were
added at the beginning of 1985 and are currently being
implemented as SEMS capabilities.
associated with subcontractor relationships and
planning activities are future capabiiities which
have not yet been implemented or integrated within
SEMS.

System

The collection of directories identified as
"test and verify" are essential in fulfilling the
original objective of SEMS to provide effective
software management and configuration contral. Each
of the directories shown can and does contain files
at  various revision levels and configuration
identifications to match varying site and faciTittes
pecuTiarities, The relational data base contains the
information which identifies the correct version of
any file which is to be used for particular purposes
of test, verification, change control, etc. The
relational data base operates upon the directories
identified in this column of the UNIX Data Base fo
assure that all software activity takes place in the
correct environment with respect to symbols, data
files, constants, dinitial conditions, - interface
timing, etc. A similar provision is wade to accept
source code or other software-related data from a
SEMS-controlled facility with assurance that the
conditions under which the information was generated
or validated are documented.

a few points are worth

some directories are shown which are.

Those directories

The remaining columm deals with directories
which store source code itself. This source code is
aTways stored as ‘individual modules; task and load-
building are functions of the relational data base
and the UNIX Data Base retains only the software
units, with archival records of their revision levels
as they occur.

Relational Data Base. The effectiveness of the
Relational Data Base 1s measured Targely by the rate
&t which it can process dqueries to retrieve
jnformation. For a given system this is heavily
dependent on the structure of the data model, and in
designing this structure some compromise is necessary

~ between conflicting ideals.

From the point of view of system compactness
and immunity to_accidental corruption (by internal
inconsistency) of the data base, it is desirable to
minimize the number of appearances of any given
attribute (such as & software unit identification_
number) in the data base. In principle, this 1is
passible, sincg in principle 1t is possible to obtain
information related to an attribute from_any_number
of other relations by a properly constructed query
which will specify a Jogical chain of joins, unions,
negations, etc., with the rest of the data base
relations until the desired set of attributes is
retrieved. The price we would have to pay is the
time required for compiex processing, and time is at
a premium in data base operation.

) In practice, we know in advance most of the
queries in which we will be interested. It s
possible to shorten greatly the chain of inferences
required, and thereby improve system throughput
capacity, if we design relations so that most queries
- and perhaps all "standard" queries - need to operate
on only a few relations. The system ~can be
preconditioned to behave in this way if we allow
selected attributes to appear identically in several
relations. Then, when we make a query which concerns
such an attribute, we enter the data base in the
relation which has been designated as efficient for
the purpose of that query. O0f course, this does not
preclude "non-standard® interrogation of the data
base by means of any correctiy formulated query; in
those cases response time is not an important
congideration.

In the SEMS Relational Data Base attributes are
allowed to exist in multiple relations. Optimizing
the system consists Tlargely of identifying cases

. where this is advisable, in conjunction with the =
general problem of designing system-effective
relations,
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When the decision to permit this practice was
made, the possibility of conflicting versions of the
same attribute was recognized. Every effort has been
made to prevent this before occyrrence, e.q., by
giving the system knowiedge of_all such redundancies,
with automatic multiple entries on change, etc, As
a back-up, however, the system runs a background
processar  whose function  is .to endlessly scan
multiple insertions and flag any discrepancies which
are detected.

The entities of greatest dinterest in the
haseline Relational Data Base, devoted primarily to
software management, are identified as software’
units. These are such things as modules, subroutines,
functions, data files, directives for compi]ing, math
mode] drivers, initialization files, etc. Each is
identified by a unit identification number (ID).

Although software symbols are not in themselves
configuration units, many of the attributes needed



to describe the nature of the symbol and its usage
are the same as those for software units, so symbol
relationships are a part of the Relational Data Base.
0f course, cross-reference relations exist between
symbols and software units.

In the initial baseline SEMS, relations were
provided for activities related to the placement of
a new software unit under configuration control, for
the contro! and management of change of controlled
software, and to support and facilitate processes of
load-building, configuration management, development
and verification of modules, site support, etc. The
vergatility of the system is shown by the relative
ease with which an entire requirements tracking data
made ! was daveloped at the beginning of 1985, building
upon the experience gained in the earlier software
management design. The requirements tracking system
became operational for practical test in slightly
more than four months, The remaining effort has been
concentrated on integrating its data model into the
baseline SEMS and beginning the process of tuning the
combined Relational Data Base for efficient
throughput. This experience provided confidence upon
which to plan the expansion of SEMS inté an overall
simuTator management capability.

Supporting Computer Facility.

During the SEMS development, and through at
least mid-1985, the selection of a supporting
computer was contingent wupon the particular
relational data base system used (and vice versa),
because of vendor compatibility considerations. Both
hardware and software relational data base systems
have been evaluated and exercised successfully. The
baseline SEMS installatfon uses a SEL 32/87 computer
supporting the Mistress/32, Version 1.3, relational
Data Base System,

Improvements in data pase processing rates are
a continuing goal and are expected to materialize as
data base systems evolve, Therefore, the baseline
configuration is subject to change. To allow for

this, the SEMS processors, which are the key to

efficient convertability, have been written to

maximize their portability.

Software Development Facility. (SDF}

Software Development Facilities had been in use
for several years prior to the undertaking of the
SEMS project.

The original function of the SDF was to provide
an off-1ine enviromment in which simulator real-time
programs could be developed
stage of development or construction of the actual
simulator. Associated with the SDF computers
themselves are a number of local and remote terminals
and peripherals such as disc systems, and tape units,
all linked by a central MICOM switch. With this
arrangement, a software development engineer can
perform his functions in a real-time interactive
manner at any of the system terminals.

The key to the effectiveness of the 3DF is in
the assortment of development tools which have been
provided to facilitate the work. These tools allow
the generation of new software source code, or the
modification of saurce cade in an old program, and
pravide for compilation and running of such modules.
A Math Model Test program then allows the engineer
to test these programs prior te their integration
with a simulator., Equipped with these tools, the
software engineer finds it convenient and effective

independently of the .

 self-contained facilities, The

to accomplish both alpha testing, on single software = _ _ _ _
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modules, and beta testing, on muTtiple modules 1inked
to perform a larger function.

"The SDF's had been developed as indepeadent,

specifications,
interface definition, and reference data for use in
each module were all made available for the software
engineer working in the SDF by manual and essentially
uncontrolled means. Therefore, the validity of the
development effort was dependent upon the diligence
with which the software engineer assured himself of
the accuracy of his information, and the consistency
with which changes and updates of information,
possibly originating in totally different areas of
development, were reflected dinto ~his working
documents. Furthermore, there was no assurance of
consistency and coherence between multiple parallel
efforts 1n terms of the interface understandings and,
indeed, of the actual symbol consistency of vartables
crossing software module boundaries. Although tools
were available within the SDF for checking symbol

~validity, consistency, finterface specifications,
etc., such tools could be bypassed at will and,
therefore, heavy reliance was placed on the judgment
and thoroughness of individual software engineers.
In addition, any results which had been verified under
conditions equivalent to partial load testing could
not take into account contingencies which might
result from full Toad operation and could not
demonstrate the validity of the software under the
actual conditions of memory and time allocations
which would occur in the complete simulator.

SDF Integration inte SEMS. Integration was
accomplished by means of a software bridge
constructed between the SEMS itself and the existing
Software Development Facilities. It was determined
that SEMS should not replace the Software Development
Facilities, which were functioning very effactively
within their narrow domain, What was needed was the
superposition of a supervisory layer upon activities
taking place within the SDFs, Moreover, this did not
have to be applicable to every conceivable activity
which could be engaged in at the SDFs, but only those
which had an intended or potential impact upon the
software under SEMS conirol.

Thus, there is no restriction whatever upon a
—software engineer requesting, from his SDF terminal,
a copy of any configuration unit which is stored
within the data base for any simulator under
configuration control. (Passwords and special secure
factlities are provided and enforced in order to
maintain security in those cases where sensitive data
js involved in the information reguested.) Having
obtained a copy of the SEMS file, an engineer has
complete froadom t0 experiment in any way he wishes,
and may run any variation of math model testing that
he wishes to, choosing interfaces and variables at
wiTl. _ If his activity is essentially “scratchpad"
in nature, he may gbserve and obtain copy of resuits
according to his individual preferences.’

- The SEMS control over software configuration
comes into play if, for example, the user is complying
with an officially approved software change request
or discrepancy report. In these cases, he would
normally have indicated his intention at the time_of
asking for a copy of. the configuration unit in
question, ‘ !
would have been locked against Ffurther attempts at =
change, and official records would be in the file -
cancerning his objective, activity, and the document
to which he is responding. In the event that he
failed to do saq, he will be prevented by the SEMS_
protocols from entering whatever changes he may have
decided upon into the system.

Had he done so, the configuration unit

That 1s, he will be



unable to insert the changed configuration unit into
the official SEMS data base. Retroactively, he must
now apply for approval and permission to make the
change. As a conseguence of this approval, the SEMS
protoco] then requires that before he can execute an
official test procedure to verify that the changed

CU meets the requirements spelled out in the change .

document, he must access and employ the symbols,
variable ranges, and interface conditions which are
available in the SEMS data base as applicable to the
CU in question. When his change is completed {in his
view) and submitted for approval to the data base
manager of configuration contrel, it is automatically
accompanied by verification that the CU has actually
been tested according to the conditions which are
defined within the data base as valid for the
application in question. Since there is no way to
build an effective simulator Toad except by using
canfiguration units which are maintained within the
approved SEMS data base, arbitrary, undocumented, or
improperly tested real-time software programs cannot
be. used to bypass the SEMS control system.

SEMS Processors.

The processors provide the internal system
software by which SEMS functions. Their operation
is, in general, transparent to the user, who is
required only to know the functional capability of
the system and to T1dentify what service he is
requesting. Utilities used to create and modify these
processors are available only to the SEMS operating
personnel, and are not discussed here,

Data Base Processors., These consist of the
Configlratidn Unit IdentiTication Processor and the
Configuration Unit Control Processor. When a
configuration unit 1is first placed under SEMS
control, the Identification Processor opens all files
and relations necessary for basiec identification;
specific relations defining the CU with respect to
the functional system tree, etc,, are expected and
their absence is recorded within SEMS until the
deficiency is corrected. The Control Processor
manages and records all subsequent activity with
respect to the CU,

Document Processors. These consist of three
processors which are used to prepare the formats,
relation paths, relation logic and output channel
commands used to provide screen or hard copy displays
of standard SEMS reports, They are used primarily
by SEMS operating personnel to create reports beyond
those already in the standard report library as SEMS
usage expands, or in response to particular project
needs.

SEMS Report Processors. The SEMS data base
frcludés management and status information regarding
a1l realtime software within a given simulator, in
all of that simufator's possible configurations. It
has already been indicated that this information
constitutes the only valid source for both the content
and the status of individual software efforts.
Therefore, SEMS can be the source of all reports and
ather documentat1on which may have to be generated
in connection with development or maintenance
activity.

The structure of the relational data base is
amenable to this usage. Indeed, ane of the criteria
by which the data model for the relational data base
is constructed is that efficient pathways be provided
for the chaining of information in the forms which
are required for the various report and documentation
functions. To assist in the preparation of reports,
a set of report processors has been provided in SEMS,
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By means of these processors a user, when he addresses
the system and indicates the type of report he is
preparing, 1is provided with prompting and help
screens (to the extepnt that his participation 1Is
necessary). Upon his answering these prompis, the
SEMS processors automatically execute the necessary
search, retrieval, formatting, and print functions
to prepare the report in question,

It should be emphasized that these report
processors are fully automated for the preparation
of any of a sizable list of reports and documents
which are recognized as standard requiremenfs for the
development and management of the simulator.  In
addition, of course, the relational data base makes
possible the reitieva1 of information in any
arbitrary form for special purposes, via a standard
query language processar.,

SEMS In Operation.

The SEMS s installed in a facility which is
managed and maintained by trained personnel as would
be the case in any computation center. Data base
administrators and software engineers/programmers
are responsible for the design and maintenance of
utilities, data base processars, screens, etc, Their
Jntervention is not required for normal access to the
system by its end users. .

Several communication channels are provided
for user_ access to SEMS:

a. Local terminals within the SEMS facility for
access to the SEMS data bases via the interface
‘processors, and peripheral equipment for
generation of hard copy printouts.

b. Remote facilities similar to the above, which
can be Tocated within a project or project
control area.

€. - The software bridge between the SEMS and the
SOF, for wusers working 1in the software
development facility.

d. Secure mpdems and standard communication Tines

to  permit communication  between  SEMS

- facilities at different geographical
Tocations.

The first three of these communication channels_
were made available in the inft{al SEMS deveIcpment.
The fourth is a part of the planned SEMS expansion.
Its purpose is to allow SEMS installations_at the
various contractor facilities to interact
cooperatively in the development and maintenance of
large systems. It can provide the same service
between the contractor's facility and field
installations under a simulator user's control.

Initialization of SEMS Project Data Base, When
a simulator 1s placed under the 3SE system, 2
descriptive code number is issued to be identified
with a1l entries and operations associated with that
project. In additien, the project manager provides
the data base administrator with an initial Tisting
of authorized personnel! and their functions within
the project. Identifying codes are then issued hy
the data base administrator, and these
identifications are kept current throughout the life
of the project.

The process of entering data can start at any
time after initialization of project access to the
system. For projects which begin after the first
instalTation of SEMS, it is recommended that this



start during the preproposail cycle where possible.
Modern  proposal activities for Targe-scale
simulators are so extensive that a comprehensive
management system such as SEMS can greatly facilitate
much of the data organization and scheduling which
is a key part of the proposal cycle. It is then
available for immediate use at the beginning of a
contract. Typically, this data entrywould be carried
out at dedicated stations within the proposal or
project work areas, at terminals Tlinked to the SEMS
system,

During initfal implementation it is assumed

that the “standard" relational data base structure_ .

would be used, Therefore, no additional effort is
needed to develop or establish the system; the
software used for its operation and management as
well as the Full structure of software files which
have been described above are simply copied over into
the disc storage which will be private te the
particular simulator project.

Typical SEMS Procedure. For the purposes of
this paper, only a simple configuration unit

development and subsequent change cycle will be

summarized to illustrate the operation of SEMS.

It is a characteristic of the system that any
item of information, once officially accepted into
the UNIX Dataz Base or the Relational Data Base, is
made a part of a permanent archival record. Thus,
the historical development of systems and their
correlary infarmation packages are always
retriavabie and reconstruction of a prier state is
always possible regardless of any activity which may
have taken place with respect to a project. However,
scratch pad files are provided in SEMS for use during
the preliminary phases of any project activity, §f
desired. These allow software engineers to
experiment with solutions to a problem without
inhibition, but make the vresults immediately
available for error-free entry inta the . formal
project data base when the SEMS conditions have been
satisfied.

The process of archiving begins with the

assignment of a wvalid identification number and’

revision level to the data item. Thereafter, the
only cperation which can take place without setting
flags and initiating other evidence. of on-going
activity is the simple extraction of a copy of the
file for purposes which need not be further elaborated
or explained, Any software _engineer having an
interest in the CU may receive a copy by transmittal
over the SEMS-SDF bridge. Such copies have ro effect
on the SEMS directories. If the purpose of extracting
a copy. of the (U was to madify it and reinsert it
into the data base, the software engineer will find
that SEMS refuses to accept the revised CU unless
proper procedures have been followed.

An engineer responsible for the development of
a given configuration unit is likely to be aware of
past practice in producing sTmilar units and may elect
to modify or use directly an existing verified and
tested software unit to satisfy his requirement. (In
a future extension of the SEMS, it is anticipated
that such cases of *standard" requirements will be
identified by the systems engineering process and
Tikely candidates will be offered automatically to
the development engineer.) If he elects to begin
with a previously tested and verified module, he may

"~ time directaory.

have this copied to his work station by requesting a

_copy of ihe module from the software 1ibrary.

. MWhen the software unit under consideration is
ready for test, the Relational Data Base is used fo
search for and copy over to the work station its
previousTy defined test procedure. The test
procedure will have been inserted into the UNIX Data
Base by means of the same system conirol procedures
which were exercised over the creation of the CO
itself. If these procedures are used by the
development engineer to exercise the CU for which he
is responsible, the resuits can automatically be

" “compared with the standard value and tolerance, and

the performance of the CU thereby verified. At the
conclusion of this effort, therefore; the development

- engineer is ready to submit the CU for acceptance and

for incorporation inte the simulator software real-

Revision of a CU already under SEMS control
must begin with notification to the system that such
modification is required. For SEMS to accept such
notification, it must be given the Tdentification of
the formal cause for the change activity. This might
be in the form of a discrepancy report, a
specification revision, ete, Furthermore, the system
will not accept the validity of change processing
being undertaken on a CU because of the existence of
such a document unless it has also been notified of.

.the individual to whom responsibility for the change

has been assfgned. Under these conditions, the
responsible software engineer may request a copy of
the CU, this time indicating that his purpose is to
accomplish the indicated problem correction. In
response to this condition, the SEMS will transmit
copies of the CU, and will also flag the data item
so that other possible users of the CU will be made
aware of the change activity then in process, Only
one such withdrawal-for-change activity can take

place at any time with respect to any given data item,

At this point SEMS expects that a modified.

version of the data item within its directories will

be submitted at a future time. In fact, such

_resubmittal will not occur until the revised data

item has been processed through the same acceptance
procedures as accompanied the initial submittal of
the original CU., At such fime as the authorized and
accepted resubmittal is made, the preceding versiom
of the data item is archived, a new revision level

is assigned to the changed version, and it becomes. = _ .

the working copy within the directory system, A% the

same time, users who had requested copies of the €U

while it was in the change process are automatically
addressed via the UNIX mail system and informed that

the change process of which they had previaously been

warned has now been complated,
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