MODULAR, FUNCTIONALLY-DISTRIBUTED, MICROPROCESSOR-BASED SIMULATION:
ONCE A CONCEPT -- NOW A FACT
By Michael B. Ash
Link Flight Simulation Division of The Singer Co.
Binghamton, New York

Summary L

YLSI and ULSI technologies can support par-—
attel, finformation-processing methods that only a
few years back were models that generated jnterest
among & handful of theoretical mathematicians, phy-
sicists, neurophysiologists, cyberneticists, and
science-fictfon writers.

Increasing performance simply by adding func-
tion-producing parts 1s so fundamental in nature
and in human endeavors that ft inevitably had to be
addressed in computing applications. When speciw
alized as well as replicative functions are per-
formed 1in parallel, the result s a distributed
process. Applying this principle to computfng,
where system parts are called modules, facilitates
solving very complex problems using a divide-and-
conquer method. An apparently wmonoTithic entity
1ike a flight simulator, for instance, can be
partitioned into small, discrete, manageable
modutes. AlT distributed systems are Timited by the
size of the entire system and also by that of their
Individual components. Functional complexity is
1imited by the system's ability to communicate
timely information between the various parts. Be-
cause of the disparity in the number of specialized
wodules, the primary dffference between function-
ally distributed General Aviation Trainers and
large-scale WST's is in their information-flow re-
quirements. The factors that constrain the system
are computer buses, bus networks, and I/0 paths.

this paper, which examfnes the conceptual and
philoscphical approach that Jed to the first gen-
eration of modular, functionally-distributed, mic-
roprocessor-based simulators, deals primarily with
technical, computaticnal, and motivaticnal perspec-
tives and with general systems solutions that have
been formulated over the last eight years. It gives
dimension to, and lends insight into, the reasons
for taking the critical, evolutionary Teap that is
necessary for economic and technological progress.

* Introduction

State-of-the-art vehicle simulation technology
does not take full advantage of state-of-the-art
VLSI computer technology. The two industries are
nonaligned with respect to technology, and the
sTtuation does not seem to be improving. Computer-
product market life-cycles continue to shrink; with
the most modern development techniques, the gesta-
tion period for a product exceeds its peak market
activity. When a product's functionality depends
Targely upon its embedded computational capability,
this discrepancy can be very damaging. This is true
in simutation, where the actual product is many
times more complex than the computer and where a
much larger and tonger commitment must be under-
taken when a new baseline product is introduced.

This paper, which is intended to mitigate the
skepticism and perceived risk that is always, and
sometimes justifiably, associated with technolegi-
cal advancement, addresses the fmpact of the compu-
ter revolution on trainer design. It discusses
some of the most important technical issues that
apply to the entire range of Artificial Reality

179

. sumption),

(AR} and provides an informatfonal backdrop against

which the technical direction of the past eifght
years can be seen in perspective.

We will view the problems of the simulator in-
dustry from a computer systems perspective, as a
special case in a group of phenomena called Artifi-
cial Reality. Essential dimensional translation
{mimicking) of a phenomenon like a jet fighter by a
distinctly different one Tike a simulator, in such
a way that the sensory inputs of a third phenomencn
Tike me, you, or another machine cannot distinguish
between them, is the characteristic challenge of
all AR problems. More and more actual simulator
functions are being controlled hy digital compu-
ters, and the optimum approach to solving specific
problems and integrating the entire product has
emerged from Computer and Systems Science theory
and practice. -

Computational Perspective

Are Microprocessors Tiny Mimicomputers?

i Computer components are getting smaller, but,
with a few exceptions there may be 1ittle other-
than-size difference between the VLSI microcom-
puters and the minicomputers now used on most simu-
lators. Although the most powerful microcomputers
occupy tess than a thousandth of the space of their
minicomputer predecessors, they use the same basic
programming models.

A visual comparison of micro- and minicomputers
is startling, and the economic advantage is easy to
see. There are no wmimicomputer precursors for
microprocessors 1ike the 16-bit Intel 80286's,
32-bit Motorola 68020's, or ZiTog Z-80000's, but we
can compare the DEC PDP 11-70 and 32-bit VAX CPU
with their silicon equivalents, the J-11 and the
Mfc_nl"oVax II, to show the staggering reduction Tin
scale.

Although scale has been reduced in crucfal ways
{size, price, external complexity, and power con-
function 1{s either d{dentical or im-

proved: N S .

o Programming is easier and software more
efficient because of expanded address space,
coprocessor interfaces, orthogonal instruc-
tion sets, more or equivalent numbers of
general-purpose registers, and memory -mapped
I/0. The newest 32-bit MiCroprocessors
optimize high-level language compilation.

Even if a microprocessor is not so fast as a
superminicomputer or mainframe, it may pro-
vide greater function because it provides
the user with exclusivity at much Tower
cost. If the user is a simulation software
module, this is true if these users can do
their specific functions fast enough and §f
they can communicate fast enough to provide:
o Necessary f{nformation for similar coordi-
nated units

o Process sequence-control information

A minicomputer on a chip has the advantages of:

0

$ize ~-- Hundreds of identical CPU's can
replace urique analog and digital hardware.

Price -- A CPU costs a few hundred doltars,
and an entire module a few thousand dollars.
Many applications never considered before
for digitization are now cost-effective.

Expandab{ 11:3\[-~ Any part of a system can be
expanded at very small cost. This greatly
reduces risk in original procurements and
configuratfon alterations during service.
less spare computational capability and
memory need be designed for the original
configuration.

Reduced System CornE'Iexitg -- YLSI technology
makes 7t possible to reduce physical scale.
Many more functions are digital, and they
can be controlled with a small group of
single-board modules (e.g., CPU, Memory,
Intelligent I/0, and Communications). A much
larger portion of the entire system comes
under a single extended system.

Reliability -- Fewer components and Tower
energy consumption mean longer uninterrupted
operation.

Maintenance and Repair -- Since intelligence
and software capabllity can be provided
cost-effectively throughout the system, most
diagnostics can be performed automatically.
Fault isolation is no longer a time-consum-—
ing, schedule—crippling fnevitability, and
it no longer demands the undivided attention
of a full-time subsystem expert. Most hard-
ware failures can be isolated and identified
as they happen, and a technician can replace
the failed unit in & few minutes.

Automated Self-Correction -- Since the sys-
Tem 1s homogeneous, i1t lends itself to re-
dundancy and rehosting of functionality
{i.e., fault tolerance} -- that would be fm-
practical with targe computers because of
cost.

Inexpensive Parallelism, More Power - Al-
though & system that appears concatenable
may have endless aggregate computing power,
the 1fmits of useful power in a time-
dependent system 1ike a simulator depend
upon the maximum permissible duration of any
temporally sequential group of events. Opti-
mzl use of replicated processors requires:

-— Amalysis of problems as parallel, dimen-
sionally manipulatable phenomena

In time, serial systems will no longer be
competitive. Analyzing problems in this way
ijs a matter of practice. We already have
suitable distributed executives for network
control and creation. Large-grained paral-
1eVism is already being used fr most simula-
tors. The actual performance of the newest
32-bit microprocessor (MC68020) s close
enough to that of the SEL 32/77 we have been
using that porting the software requires
Tittle alteration of basic flight math
models and virtually no change in other
areas, including the executive. We can use
the hardware system before we have the soft-
ware to optimize the use of its architec-
ture. This is having a favorable effect on:

180

o Programming (s‘implter) -- With miny finexpen-
sive s, high-level computer Tlanguages
are used throughout the system. This reduces
software englneering and maintenance costs
and facilitates software transfer between
systems that have different processors. If a
processor upgrade becomes necessary, this
can have a large positive impact.

o User Envirorment -- Networked micropro-
cessor-workstations generally offer a rich
array of software and more sophisticated
human interface than time-sharing systems.
Using portable operating systems like UNIX
permits choosing permanent engineering work-
stations independent of the microprocessors
used on the simulator and also permits using
the microprocessors on the simulator in the
same way.

Buses -— Information Highways That Hold the Key
to an Architecture's Success

A virtually unlimited supply of timy little
minicomputers at bargain rates, which perform every
imaginable function with symphonic harmony at
Tightning speed, has numerous advantages; but an
effective computing system s not quite that sim-
ple. Buses are necessary to transfer Information
from one part of a system to another.

In VYon Neumann computers, programs and data are
stored in memory, using a program counter with an
address. At some time in the execution cycle, the
address is used to read the next instruction from
memory. The processor puts the address on the bus,
and the memory, recognizing that this address 1is
contained within 1ts particular preconfigured ad-
dress range, places the appropriate data on the bus.

Most buses can support only one transaction at
one time. (One exception is the Broadband bus,
which simultaneously carries signals of different
frequencies between various Tlocations. This method
of multiplexing information has been used success-
fully in local area networks, but it has not yet
shown any potential for the much higher data rates
computers need to execute programs.) Most compu-
ters have a main bus, through which all the pro-
cessors communicate with each other and with
rﬁmory; only one processor can use the bus at =z

me.

If a CPU has to share such a single-access bus
with other CPU's, it spends much of ts time wait-
jng to get its dinstructions and data (which are
stored in memory and are accessible only though the
bus}. If all the CPU's rely on the bus alone for
all 4instructions and data, adding a CPU does not
increase computational power. None of the many
existing ways to ‘¢circumvent bus contention achieves
the Tinear vs. exponential degradation needed to
use the large number of computers (microcomputer or
other) needed in simulation. For large simuiation
applications, the method most commonly used is to
have a section of memory, with multiple ports to
different buses, act as a communications buffer
between the CPU's that reside on the various buses.
The problems of this type of solution include the
following: ’

o Cost

o The shared memory has a limited number of_
ports (typically 4 to 16}.

o Each bus that feeds jinto memory can still
support only a few processors efficiently.

o Even when the system uses techniques for
simultanecus access of different address
locations within the memory, there is con-
tention for shared memory.

Figure 1 -~ 01d Bus Layouts

Adding a Bus for Each Added CPU -- In nost
advanced microprocessor modules, Tocal bus conten-
tion has been alleviated to some extent hy provid-
ing each processor with its own Tocal bus and also
with access to a global, backplane bus, such as
VMEbus or Multibus {I or II). The CPU has on-board
memory, a local bus extension to one or more adja-
cent memory cards (e.g., VMX, VYMX32, Rambus, LBYX,
LBX II), which can presently host up to 4 million
bytes per card, or both.

Since this local memory almost always has two
ports, one to the local and one to the global bus,
other processors can access it without interfering
with the owner CPU's local bus operation. The num-
ber of CPU's that can operate on any global bus has
increased dramatically, mainly because another hys
is added for each added CPU.

Global Backplane Bus Extension =-- If there fis
no more room on the global backpTane bus, or 1f we
want to Isolate a cluster of processors, yet still
maintain direct addressability between them (j.e.,
have communication not threugh some I/0 device but
through a normal bus read or write), we can use a
bus extender or repeater. This effectively extends
the size of the computer and permits having more
than one global bus. These global buses join dy-
namically during transactions between points that
reside on both buses and operate independently at
ai1 other times. This technique is not limited to
global buses of the same type; for example, WMEbus
can be conpected to Multibus.

To obtain better system organization and per-
formance, the bus extension concept is used on a

“intercluster

much larger scaTe. Many clusters of processors,
each with a specific function, can be operated in
total isolation or can be hooked up with any other
¢luster dynamically when necessary, as a function
of the address that is placed on the global bus.

Although the architecture here is distributed,
the effect is that of a single, extended multi-
processing machine. The 1logical ordering of the
entire system is very flexible; the place a program
is executing 1s less crucial than when variocus
forms of I/0 (e.g., Block Direct Memory Access,
Local Area Networks) are used for interprocessor or
communication. I/0 methods alwavs
exact a large time overhead, and these overheads
cause latencies that cannot be tolerated in high-
speed applications. (The time penalties are not
caused by the speed of the media that eventualily
pass the information but by the fact that these
devices usually require programming and/or complex
protocols to operate. Even when Block DMA's are
automated, s¢ that they move large groups of data
synchronously between various units, to be shared,
they become pondercus. Most of the information
being transferred is unchanged, and software in-
volves synchronizing the transfers rather than
internal or extermal (I/0) needs.) When a program
in one locatfon accesses a variable in the memory
of another cluster 30 feet awdy, t s addressed
directly by 7linking the buses of both Tocations.
With this technique, the only deiay is caused by
the hardware and by signal propagation, and no ex-
tra software is needed.)

Even without the inherent overheads, if the in-
tercluster bus were used only for point-to-point
reads and writes, 1inked systems would soon degrade
with the amount of crosstalk Tincurred in large
simulation applications. A1l the ?rou s or their
subsets need common Tnformation. To increase the
efficiency of such an extended memory-mapped sys-
tem, we have combined some conrcepts used in other
computing areas:

MEMORY MEMORY

" M M
BUS >
< \/ LV -

A. SINGLE-ACCESS BUS WHERE
CODE AND DATA ARE STORED
IN GLOBAL MEMOAY

MENORY MEMORY

' A NN

<

D

&8 INTERFAGE cPU

—— — — —| snaRee —_——— .
™ MULTl- C
—— PORT _———— -

MEMORY MEMORY

INTERFACE

N A VN

<

\/ AV

CPUY Py

E. GROUP {A) JOINED TRROUGH
SHARED MULTIPORTED MEMORY

Figure 1. Old Bus Layouts

181

1) The private bus. We have mentioned this
above as significant in fsclating the acti-
vities of processors on the same global bus.

2) Write-through memory ({used in high-speed
cache memory systems}. Data in the high-
speed cache are copies of data in the slower
main memory. When the high-speed cache data
are changed, the new values are passed back
to main memory so that it reflects the most

up-to-date value, for access by another
processor.
3) Broadcast, multi-target writes. A single

write transaction can be received simul-
tanecusly by all or some subset (then termed
multi-cast) of the devices that reside on
the global interconnect bus.

Each bus extender module has its own private
bus, which has local memory that resides either on
the extender, on adjacent memory cards, or on both
— just 1ike a microprocessor card. The Tocal
memory can be accessed either from the local, glo-
bal backplane bus or from the external connecting
bus through the extender's Jocal bus. Depending
upon the memory address for which it is targeted, a
write will:

o Stay on the processor's local bus
o Access the global backplane bus

o Be routed directly to a target locatfon on

o0 Be written simultaneously to the extender’s
Tocal memory and broadcast to the memories
of all other preselected extenders

This technique makes the datapool dynamically
changeable and replicative. Since 1t uses the
local-bus concept, most transactions do not involve
the global backplane buses of the targets. It re-
duces bus activity between clusters, because most
of the writes are broadcast and because all reads
from the replicated datapool are 1local. Inter-
cluster activity is also reduced, since the only
data that need involve the interconnect bus to
ensure complete replication are those actually
written to in the datapool.

In a simulator, almost all reads are Jocal,
except those that involve point-to-point diagnos-
tic, fault-tolerant checks and occasional remote
memory-mapped 1/0. The writes are also mostly Tocal
or to datapool, except in the last circumstances
mentioned for reads. An added capability is direct
program loading anywhere within the entire system.
This makes the loading procedure direct and ailso
makes dynamically rehosting and reconfiguring soft-
ware for fault-tolerance a less complex procedure.

The global backplane bus for a given extender
can vary. (The back-end is always the same, and the
global interconnect bus is always the same for a
given generation of these boards, but the front end
can be different from one bus to another.} The
actual nature of the interconnect bus, however, is

another local global bus not ijmportant, just so there {s a memory-mapped
< GLOBAL BACKPLANE BUS >
\J U | U]
LOCALS LOCAL/
ARS GLOBAL GLOBAL
REMORY MEMORY
DUAL-ACCESS
WEMORY
("]
LOCAL L
EXTENSION H
c
A 5 A m
L
—
BUS EXTENSIOM
,>
TYPIGAL USE OF LOCAL BUSES ON MICRGCOMPUTER MODULES:
A. CPUWITH MEMORY ACCEXEIBLE bY ROTH CMJ AND 8. SAME AS {(A) WITH AN OFF-CARD EXTENSION OF THE
OTHER DEVICEE ON THE GLOBAL BUS LOCAL BUE TO FACILITATE MEMORY AND/UA DTHER TYPES OF
“PRIVATE" INVERFACES
Figure 2, Microbus Layout
EXTENDER 5LOBAL INTERCONNELY BUS ¥ EXTENDER
INTERFACE INTERFACE

(GLOBAL BACKPLANE BUS (FUBLIC}

—

U U

cPu MEMORY kU

| LACAL BUS EXTENSION

< GLOBAL BACKPLANE BUS(PUBLIC)

_ M,
Jg U

(=] MEMORY ey

LOCAL BUS EXTENSION

\/

Figure 3. Bus Extenders

182

interface for ail the industry-standard buses used
throughout the entire extended system. For practi-
cal reasons, the bus is fast enough to achieve as
ctose an approximation of global backplane bus
speeds between points in the system as logic and
propagation delays permit. (Expansion of physical
address space to 4 gigabytes (32 bits) in the new-
est microprocessors and buses, e.g., MC68020, the
forthcoming IAPX80386, VMEbus, and MULTIBUS II, s
timed perfectly for implementing, such extended
memory-mapped systems.)

1/0-bound methods of interfacing many pro-
cessors limit the solutions of “computational
problems to serial and large-grained parallel
techniques. Any large-grained solutions attempted
under these conditions are still extremely depen-
dent upon the serial-processing speed of the CPU's
used. With extended memory-mapped systems, there
are the same logic and physical-signal propagation
deTays, but host-to-controller overhead is elimin-
ated. To alleviate contention, we can add addi-
tional intercluster buses selected specifically for
their address content or by hardware detection of
the first Tnactive pathway.

Public Buses

The minicomputers used now in many simulators
are not very prolific, and they have their own pro-
grietar:y buses. The number of vendor sources for
ardware modules is severely Timited. Usually the
sources are the computer manufacturer and a few
specialty houses.

Using public buses makes it possible for de-
signers to choose processors that suit the needs of
their applications and to make changes without dis-
astrous impact. Most vendor micro-CPU's already run
or are planned to run on public buses.

When custom modules are designed to perform
specfal functions for any application, they are
also being designed to operate on our industry-
standard bus, This eliminates one of the major dis-
advantages in their use, since these modules may
now be multi-sourced throughout industry.

Microcomputers Enable State-of-the-Art Technology

Because it has no common denominator with the
computer industry's mainstream, the sfimulation
industry has largely been bypassed by the massive
proliferation of microcomputing devices and the
resultant innovation revoiution. Making innovations
with the esoteric devices now used would mean mas-
sive Tmplementation costs, because there is a non-
competitive situation among only a few vendors. Few.
third-party manufacturers will put themselves jinto
the high-risk sftuation of designing a bus extender
for the superminicomputers we use so extensively.

_Although one vendor might design or license someone

to design such a device to gain a competitive edge
over another, the price would be exorbitant. Even
though these companies design some new devices at
our request, so long as we base our simulators. upen
mini- or superminicomputers, we can never dip into
the vast pool of technology from the hundreds of
independent manufacturers who are specializing in

EXTENRED GLODAL INTERCONNELT BUS

e

T T T oo =1 r=—"J--—=
E
| i | : ¥ | ! % 1
| CLUSTER 5 I 0 E I ! H I
] | B i b
I FEi INTERFACE l l & INTERFACE | I El INTERFACE 1
| M | | I I !
| LOCAL GLORAL BUS [PUALIC) yeree | [I I
|
- -
i | | . | | .]
Cru I I
| chy EWOnY AND/OR I | * | * I
e N I] |]
1 f | I ! |
! g i GLUSTER | GLUSTER
, L orRuD wee : i i | i
LDCAL EXTERSION
e . —— L. ______ ..J L e e e = J
Figure 4. Extended Memory-Mapped System
. = " -
<' ~ ETENDED GLOBALTNT oS ene
S I ey | i —U
E | BROADCAST] l E | BRCADCAST I l E BROADCAST l
! % | DATAPODL ¥ | caTaroot X | patarnol,
] CLUSTER £l ooea | ! 5] St I | ; oA I
B | MEWORY 1 t E MEMORY | : ;ﬁ HEMDRY
I R INTERFALE 1 l R INTERFACE l E INTEAFACE l
| (L : | I l
[<—LJ LOCAL GLOBAL BUS (PUBLIC] > sese | | i ! |
|
- -
S U ¥ VA A SR Y
I or i ! I . [[. |
110 1 | I
I l
!] r! | |
i T | CLUSTER | CLUSTER
| LOEALE =2 i : ! ! ! I
XTENSION

Figura 5. Extended Memory-Mapped System With Broadcast Datapool

183

making both mundane and exotic devices for a few
standard buses such as VME and MULTIBUS.

However, with microcomputers we can make more
frequent use of state-of-the-art technology. During
our Microsimulation Technology (MST) research and
development effort, we often discovered solutions
to complex and costly problems in trade-magazine
advertisements. In one case, we were going to con-
figure an early prototype system with a certain
company's graphics subsystem. To interface the pub-
1ic-bus system to the graphics system, it seemed
necessary to design the interface ourselves or ask
the subsystem manufacturer to produce a custom
interface at a cost of $250,000. How fortunate it
was that ancther employee discovered a usable
$2,000 interface card while "wasting time" reading
a trade magazine! This serend{pity has become a
frequent occurrence. With this technology, we no
longer have to depend upon proprietary product
Tines, ard we now take our "time wasting" more
seriously.

Serial vs. Parallel Computing

The Speed of Light and Serial

Processing --
Nature's Bottleneck N

So far as we know, information can move no faster
than the speed at which electromagnetic radiation
propagates in a vacuum, i.e., about 1 foot every
bi11ionth of a second. For phenomena such as elec-
tions and people, which have mass, speed is re-
stricted even further to a domain always some frac-
tjon of, but never equivalent to, that of their
photonic coresidents of space and time (Special
Theory of Relativity). Because information cannot
travel instantaneously in space from point to point
{i.e., much faster than Tlight), parailelism fis
probably not even verifiable as a physical
phenomena.

Devices currently in development can process
information in trillionths of a second, far Tless
than the time for current to move between chips.
1f, when optoelectronic logic is available, photons
are substituted for electrons, and the distances
between chips are replaced with submicron dis-
tances, there is still an I/0 delay. Matural bar-
riers imposed by known relativistic and quantum
mechanical physics with respect to velocity and

spatial proximity are now becoming appreciable.
Devices and their information are 1ight-speed
limited. As these barriers are approached with

teraHertz frequency devices, the distances between
which are measured in tens of atoms, serial infor-
mation processing will approach a natural barrier.
When we reach this barrier, the only way to in-
crease computation throughput substantially for a
given period of time fs by using many computing
devices simultaneously. Even then, the entire sys-
tem can exist as an identifiable phenomena only
within the 1imits that information cam propagate
between various cells. This explains the preoccu-
pation with buses.

Single, Sequential Instruction Stream Machines

No matter how instructions are accessed, they
are usually executed in a Tinear, sometimes over-
Tapping sequence, This has driven the evolution of
our present computer language, and habitual use has
led most of us to believe it makes software sense.
This linear execution has limited the way we ap-
proach problems ard generate algorithms. Our cur-
rent structured programming practices are heavily
influenced by a sequential approach to problem
solution. This mindset is the result of a particu-

184

lar computing method, but with our present replica-
tive microcomputational capabilities, there is no
reason why we should not seek uniquely parallel
sotutfons.

Multiple Sequential Instruction Streams,

Very Large-Grained Parallelism i
{What HWWT?E’:TWCP‘UWM Time)

In the simulation industry, we used Tlarge-
grained simulation first when sequential applica-
tion could not execute fast enough. Since the ori-
ginal software was comprised of many parts that had
Tittle or nothing to do with each other, we could
build two or more programs that ran simultaneously
in synchronized processors and use some method. of
sharing mutual data in as timely a fashion as pos-
sible. Only when any single, serial sequence of
code could not be executed by a CPU, or when it
could not be divided into parallel programs that
overlapped enough to meet the time constraints, did
we look for a faster CPU.

With a serial frame of reference, where jt is

natural to optimize algorithms sequentially, we

beiieved that a specific sequence of events must
take place. For example, in flight simulation, we
have solved multidimensional equations of motion
sequentially, forcing the mathematical approach. In
reality, the differential equations of motion and
dynamics of a rigid body in space can be expressed
in terms of three translational and three rota-
tional equations, which can be solved in paraliel.
(In addition to this gross parallelism, each of
these equations is actually a set of arithmetic
manipulations and operations, which are factorable
into simpler expressions that can be executed in
parailel by many computers.) -

From a software perspective, current supermini-
computer programming for simulators, using multiple
CPU's, is not true parallelism but a form of spill-
over serial processing, made to fit imn a parallel
environment through complex manual positioning of
modules running in multiple CPU's.

True Large-Grained Parallelism

an
Functional Distribution

One of the reasons for the spillover serial
design phenomenon was and still is the cost of
minicomputer technology. In the past, it has been
an objective to use as few of these monetary be-
hemoths as possible, because of the large cost of
hardware expansion and the software upheavals that
ensue when a load that is balanced (i.e., sequenced
properly) for nCPU's must then be rebalanced for
n+l CPU's.

YLSI technology economics and performance can
virtually eliminate these difficulties, Applica-
tions engineers work on parallel solutions to
application problems without considering the more
demanding design techniques required by small-
graired parallelism. When tradeoffs favor paraliel
solutions, they are desfgned that way from the
start. This reflects a subtle, important change.
The hardware configuration now reflects the ori-
ginal “intent of the software design. From the
beginning of the process, optimizing the software
function is a major influence in designing the
overall system hardware. The applicatfon can use
many CPU's that process simultaneously and take
full advantage of even the grossest, large-grained
techniques. Spillover is a rarity instead of an
occurrence so highly probable that we must
guarantee 50 percent spare.

Large-grained systems risk spillover because
large portions of algorithms are executed serially.
They are more vulnerabie.to the finitude of a pro-
cessor's instruction bandwidth. However, the impact
of this deficiency is far Tess costly if the physi-
cal architecture is not overburdened significantly
by data cross-talk when extra processors are added.
Two large-grained multi-microprocessing architec-
tures that have different methods of interfacing
internal processors are the hypercube and extended-
memory system under discussion. The interface
methodology can have dramatic impact when high data
communication rates are necessary:

o In hypercube architecture, the only way
CPU's exchange data is through dedicated
ETHERNET channels, processes that require
moderate-to~-high amounts of data exchange
can easily become I/0-bound.

o In the extended memory model, there is only
a slight increase in bus degradation.

Functional Distribution

In functional distribution, when hardware fis
aliocated specificaily for a subsystem, such as
F1ight, Navigation, Instruments, or Aural Cues, an
entire cluster of computers is availabie from the
very beginning of implementation, and there is
greater freedom for software design optimization
and system development and maintainability. Each
module is a small-size computer system with intel-
Tigent I1/0. It can host an entire subsystem
throughout the product's 1ife-cycle and permit de-
veloping and testing real-time subsystems or blend-
ing them fntoe a single supercomputing complex,
through bus extension, for fully integrated func-
tionaiity. In such a system, development 1is also
parallel, and schedules can be reduced.

Smaller-Grained Parallelism

With the same hardware configuration as that in
Figure 5, a different software approach for real-
time application can produce immediate, recogni-
zable advantages.

In a given subsystem, if a real-time module
execution 1s 1imited, for example, to 1 milli-
second, if every CPU's Tocal memory has the same
code, and if the static data (data that wust not
change over an iterative (frame) boundary) for all
modules are in a node's global location, any CPU
can execute any module. Time usage can be optimized
with respect to sequencing and scheduled hy prede-
termined, structured manual methods or by software.
Such methods are currently used for flight con-
trols, where fault-tolerance is a key objective.
{See CRMmMFCS.) Spare CPU’s can be assigned to
modules as soon as there is any sign of trouble.
There 1is no central executive mainly for fault
tolerance. For simulation:

o 3Spillover can be almost eliminated. A dis-
tributed scheduler for parallel processing
permits sizing the system dynamically in
terms of the number of processors, If time
runs out, a CPU can be added with no soft-
ware redesign or load rebuilding.

o Only a single, structured task must be built
for the entire subsystem. This eliminates
much development and maintenance overhead
and maintains the advantages of functional
distribution.

185

o If there is a CPU failure, N=-1 processors
can take up the slack immediatély, and if
necassary, fTideTity can be stightly de-
graded, temporarily, by decreasing the syn-
chronous iteration rate, or a spare CPU can
immediately take over. For a new, faster
microcomputer upgrade, requiring fewer pro-
cessors, software need not be redesigned,
although it may be desirable to rebuild the
sequencing network for scheduling optimiza-
tion.

o Software configuration is then as flexible
as the hardware.

Modularity

Modularity means different things fin different
disciplines. In simulation, definitions differ
among Tnstructors, system designers, and elec-
trical, mechanical, software, and aerospace en-
gineers. In a given field, there are different per-
spectives, and interdisciplinary projects invoive a
variety of perceptions of a module. Here we define
a moduie recursively as a self-contained unit that
implements a specific function {or c¢lass of Tunc-
tions} that constitutes a subset of another larger
unit or complete system.

A system comprises well-defined subsystems, and
these may also be divided into discrete building
blocks down to primitives. All intermoduTar con-
nections {mechanical, electrical, parametric, or
logical) use specialized modules. This encourages
designing standardized interfaces; these can cause
great performance Tnefficiencies, which may be off-
set by Targe compensations in other areas. _.

"In many systems, the primitives are numerous
and way alsoc be microscopic. Design that manipu-
lates these directly 1s extremely complex and
time-consuming. This +type can approach maximum
optimization, and this may make the product too
complex to copy.

In sacrificing optimization of various per-
formance and component-cost-related design elements
(to increase it in other areas), we can use, as
design building blocks for even higher‘ order func-
tions, Tlogical groups comprised of relationally
ordered physical primitives that define some
higher-order function.

Although we want to decrease the number of
operational primitives as much as possiblie, we want
to do this without making the system modules so
general-purpose that we need too many, so that the,y
are Targely wasted. This can happen if:

o Modules are overgeneral. (Single modules
with many capabiiities are used too often
for only a small capability subset, and much
functional capability is wasted.)

o A system with fewer degrees of freedom
(primitives) makes excessive manipulation
necessary to express a complex pattern that
possesses a natural set of descriptive and
functional parameters,

Complexity can be reduced both Tlogically and
physically, but any stem that has even a few
primitives has ordering permutations that vary
factoriaily. We can prevent chaos by making further
riules of structuring. This approach reduces com-
plexity and 1impacts design, procurement, wmain-
tenance, and wmanufacturing costs positively and

makes it possible to handle previously unsolvable
design and research probiems.

The Tevel at which a targeted system or sub-
system becomes overburdened depends upon price and
performance expectations. For computational sys-
tems, this Tevel depends upon the availabiiity of
hardware and software technology. Different sub-
systems based on different technologies often have
optimization and modularity cutoff points at hier-
archical levels that are not parallel. For example,
current software technology permits much more
modularity than that permitted by the technology of
the computer hardware it. normally runs on. The
reason is that extremely modular software requires
more processing, bus, and memory overhead, which
require very powerful minicomputer or mainframe
computer resources, and these are much less modular
and far more costly to acquire or to design, main-
tain, expand, and interface to custom hardware. To
produce modular, functionally-distributed systems,
we must match the modularity levels of software and
hardware so that we can combine the advantages of
dedicated hardware and general-purpose devices.

ATl our simulation processes still represent
multidimensional events serially. Defining modules,
determining where they will reside within a finite
array of sequential processors (partitioming), and
sequencing them 1s a Togical process rather than
one that is constrained naturally. This causes ab-
stractions that optimize some but never all problem
aspects.

if we sacrifice the traditional view of seri-
ally oriented modularity, 2 module can reside on a
group of processors in a way that mirrors space and
time more accurately, and what we saw earlier as
fragmentation, or spillover, may really be the
optimum solution to a specific problem. It may
rasult in parallel processes that compute and send
data to adjacent processors while they simultane-
ously receive information from other adjacent pro-
cessors. Such a solution may require more than one
information path, and it may seem complicated or

convoluted to people conditioned to sequential
problem soTving.
Some existing computer architectures share

linear instruction streams on a limited basis among
more than one processor. In such systems, nondepen-
dent finstructions from a traditionally Tinear
stream can be executed in parallel. With more in-
telligent compilers, we can optimize code for this
kind of environment, but, unless we change the
basic approach to process definitien and the re-
sultant algorithm definition to encompass parallel-
ism at the fundamental Togical level, we will have
accompTished only multiple linearity, and a great
deal of capability will be unused because of be-
tween-process waiting for sequential events. The
new algorithms must be modular in their own right.

Motivational Perspective, Goals, and Some History

A modular, functionally-distributed, memory-
mapped system is one of two functioning alterna-
tives. However, one leads to an eventual perfor-
mance and economic impasse and the other to the
rapid, extended growth we need. Flight simulation
will always be performance-driven. We must continue
to devise various methods to achieve required per-
formance levels and will seek more economical ways
of doing so that do not sacrifice performance.
Parallel computation is the answer.

186

Basic Challenges: The Digital Feedback Syndrome
{Simulation Performance and
Computational Performance}

Simulator functionality channeled into intelli-
gent digital devices fs related directly to the
simulator's requirements and alsoc to those of the
devices being emulated. There is a feedback rela-
tionship, largely because our dependence upon digi-
tal technology continues to fincrease and because
the vehicles and systems simulated are so complex.

The performance of training systems 1is also
increasing because of the advances 1in software
technology, and these same advances make target
vehicles intelligent, another feedback situation.
The 1increased automation and machine-thinking
{artificial 1intelligence {AI)} used on vehicles
must be reproduced on simulators, and this automa-
tion and Al must also be hosted by an intelligent
training systenm.

There will be an increased requirement for com-
putational horsepower. The development enviromment
and 1ts control systems are driven by the market-
place. Autcomated engineering techniques are com-
monplace. If we do not use them, we will not
achieve at break-even cost the techmical
sophistication that our increasing product per-
formance specifications require.

The Problem Eight Years Ago
{The Hardware Years) ’

Eight years ago, we viewed and dealt with this
problem largely from a hardware perspective. In
establishing performance specifications, hardware
designers and software engineers communicated
Tittle, except for requests 1ike, "Make it fast
enough £0 run FORTRAN instead of assembly
Tanguage.” MWe designed the hardware first, and
software was generated to fit the system. In this
situation:

o Although various forms of replicated, paral-
181 processing seemed possible as solutions
to high-speed applications through aggrega-
tion of inexpensive VLSI computers, there
were no buses available that supported this
environment. It appeared that it would be
necessary to invent special-purpose pro-
prietary buses.

¢ LSI and VLSI precessors at this time did not
have enough serial processing power to sup-
- port large-grained parallelism. We concep-
tuatized hardware schemes with too many
precessors, and the mostly serial software
was unsuited for distributed processing.

o Experimentation with distributed processing
software management theory was usually in
areas where many small, unrelated, or self-
contained processes were distributed over a
network. This resulted in a migration from
centralized time-sharing systems %o net-

_ worked intelligent workstations.

¢ Insufficient attention and funding were
given to implementing very large, tightly-
coupled, real-time software applications on
many microprocessors.

o Supposedly, the Industrial Revolution re-
vealed the value of having interchangeable
parts. However, eight years ago in simula-
tion, the use of custom analog and digital
portions of the product was still economi-

cally viable, and general-purpose dinter-
changeable parts did not seem so important.
We realized that most custom analog and

digital functions would eventually be im-
plemented with general-purpose digital
logic, but it was still feasible to build

systems from elecironic components. Now that
Multibus, Qbus, VMEbus, etc., have emerged,
this 15 no Tonger true.

Today —- Software is the Key Issue

Major design emphasis has shifted from hardware
to software; many systems designers now have soft-
ware backgrounds, because:

o Software requirements are greater -- A
growing number of functions now use micro-
computer-controlled systems. This provides
numerols advantages in all areas, but it
also creates more software. A function
formerly implemented with an analog circuit
or & digital combinational legic sequence
may now use a high-order-language computer
program that runs on a general-purpose pro-
cessor, which stimulates target devices,
servos, or transducers through direct inter-
facing over a standard digital bus or
general -purpose [/0 system module. We sud-
deniy have new, unprecedented concerns about
design, development, and documentation for
software and firmware. With all other soft-
ware, the new software requirement causes
more monetary outlay than all non-software
areas combined. The sheer volume of software
and its proportionate cost {is growing, not
only because software s replacing hardware,
but also because of new digitally
implemented functions.

¢ Software functionality is imcreasing -- Be-
cause the range of function computers now
perform is so great and because the software
design to provide these services is so com-
plex, the performance expectation levels in
competitive products are very high and will
continue to rise. There has been a wmajor
shift in the areas where engineering dollars
are spent. "Magic" is now commonplace. This
will continue to affect all human inter-
faces, especially training.

o Increased software functionality will cause
direct exponential performance demands upon
hardware systems -- When Al technology
produces subcognitive software intelligent
enough to produce code from specifications,
there will be a software explosion that will
dwarf our present conceptions of "big.*

o Almost all dfagnostic and maintemance func-
tions in our products will soon be automated
-~ This will drastically reduce the amount
of money spent on these products during
their useful Tives.

o Technology tife-cycles are growing shorter
-= We are looking for solutions that stretch
the use of an overall topological configura-
tion, e.g., the use of public buses. The
microcomputer industry T1s cooperating in
this situation by Implementing such buses;
the competitive arena can concentrate on
improving products that run on them.

Cautions Against Buzzwords

Should

Distributed -- imply the use of

187

increasing both the power and
system. The presence of many
imply this for real-time

parallelism for
modularity of a
processors does not
applications.

Non-VYon Neumann -- Most CPU's use program
counters and programs stored in memory...that fis
Von Neumann, even if there are 100 of them! Even
Dataflow machines are using 2 National Semiconduc-
tor 16032 VYon MNeumann microprocessors for each CPU
card. The assumption that non-Von Neumann implies a
quantum 1leap in technological expectations I1s
untrue.

MIPS, FLOPS, WHETSTONES, # of VAX 11/780's --
Run “your application, and then get™ disappointed.
Use a stopwatch...not an instruction counter.

Concurrent -- Currentiy, this term describes
both serial and parallel systems. One CPU can run a
number of related or nonrelated processes at the
same time. The tasks or processes can continue

“indefinitely, while the computer switches back . and

forth between serial execution of any one of them
according to some event-driven scheduler. This is
not real concurrent processing.

‘Goals

Modest goals Targely met in the laboratory and
now or $oon to be disclosed incTude:
meet

0 Truly distributed architecture to

future demands

¢ Intelligent human interfaces with an entire
range of programmability. The system can
seem 1ike one Targe serial processor or like
a specifically accessible array of individu-
al units. Serial and parallel computing pro-
cesses can both be designed to rum on such
systems. system design takes full advantage
of the Tinear computational expansion the
hardware offers and of the parallelism that

results, which itself encourages
partitioning.

o Functionality generic (i.e., machine- and
language-independent} enough to withstand

and exploit all forms of hardware and soft-
ware advancement. Use of portable, widely
used Tanguages and operating systems with
memory-mapped communication techniques is
fundamental to achieve this.

o Automation and fault tolerance to reduce
costs. Reduction of the numbers and types of
physical modules that comprise the system,
faster and simpler communication, and 1/0
cards that are intelligent and fnterface
directly to the global backpiane bus are
making this goal a reality.

Conclusion)

Maximizing use of system-level, off-the-shelf
products for public buses has given tremendous m-
petus to our work in Binghamton by permitting us to
concentrate on the hardware modules needed to meet
our goais. It also makes possible a much Targer,
and also less complex, software effort, because we
can use high-order languages throughout system
software implementation.

We are currently realizing these goals.
Parallelism 9is being applied not only to the
computational portions of simulation design but
also to coordinated work in all other areas.

Because of its size and its roots in systems
theory, the computational problem has yielded solu-
tions, and we can apply these generally to almosi
all engineered subsystems. A proof of concept for
any of the several variations of modular, func-
tionally-distributed, microprocessor-based simu-
1ators will have to be retrospective. This approach
works and is viable. The length of time between now
and the day that thinkers and planners of the simu-
lation industry no longer consider this new ap-
proach modern will be the proof of concept.

References

1. Satyanarayanan, M., Multiprocessors: A
Compfitgati ve Study, Prentice-Hal T, ! 983, Chapters
89,10, '

2. Leighton, F.T., Complexity Issues in VLSI,
MIT Press, 1983, pp. 12-16.

3. Abelson, H., diSessa, A., Turtle Geometry,
MIT Press, 1980, Chapter 9. ’

4, Moto-oka, T. (Editor), Fifth Geperation
Computer Systems, Internationmal Conference on the
Fifth Generation Computer Systems {1981: Tokyo),
North Holland Pub., pp. 93-106, 121-130, 147-158,
189-222, 277-282.

5. law, A.M., Kelton, W.D,, Simulatien Modeling
and_Analysis, McGraw-Hill, 1982, pp. 59-101.

6. Rosenzweig, M.R., Bennett, E.L., Neural
Mechanisms of learning and Memory, MIT Press, 1576,
pp. 57-66, 73-0b.)

7. Larimar, S.d., Maher, S.L., "A Continuously
Reconfiguring Multi-Microprocessor Flight Control
System (CRMmFCS)," AFWAL-TR-81-3070, 1981, pp. 1-8l.

8. Symon, K.R., Mechanics, Addison-Wesley,
1971, Chapters 5,7,8

188

9, Padua, D.A., Kuck, D.J., Llawrie, BD.H.,
"High-Speed Multiprocessors and Compilation Tech-
niques,” IEEE Transactions on Computers, Vel. C-29,
Sept. 1980,

10. Blech, R.L., Arpasi, D.d., "Hardware for a
Real-Time Multiprocessor SimuTator,” NASA Technical
Memorandum 83805, Jan. 1985.

11. Bosworth, L.K., Connors, dJ.d., Goad, D.E.,
et al., Modular Simulator Concept Definition, Logi-
con, July (98%, Yols. T and Il. :

12. Bell, G., Snyder, F., Standard Modular
Simulator Systems Program -- Phase II, Boeing Co.,
July T9&.,

13. Holtsman, W., MicroeSimulation Technology,
Singer LFSD -- LR1069, Feb. 1982, Vol Il o

14. Marini, L.G., Finn-Hawk LJT Hardware Ref.
Manual, Singer Co. UK Link-WiTes (Internall, T98l.

15. Muchmore, S., Functionally Distributed
Simulation Architecture “and Systems Overview,
Singer Co. UK Link-Miles —— LMR 195, Dec. 1982.

16. Technolo Report, Electronic Design, Feb.
2, 1985,—1'66’Q'L‘E_p. " : -

Biography

Michael Ash is a research and development staff
engineer at the Link Flight Simulation Division of
The Singer Company in Binghamton, New York. During
the past three years, he has been involved exclu-
sively in systems design of distributed microcom-
putational enviromments for simulation.

Mr. Ash received a BA in Physics and an M5 in
Computer Science from the State University of New
York at Binghamton. He has coauthored six books.

