DISTRIBUTED PROCESSING FOR COMPLEX SIMULATORS
By David Parkinson
Singer Link-Miles Ltd.

Lancing, Sussex, England

Summary

The requirements for training systems for
increasingly sophisticated aircraft continue to
extend the technology of computing systems applied
to real-time simulators. This paper describes a
distributed computing system, partitioned on a
functional basis with the autonomous major func-
tions connected as a network. This system, called
Functionally Distributed Simulation, is the basis
for a new simulator generation, the Micro Simula-
tion Technology (MST) simulator. It permits
designing and manufacturing a simuTator on a
moduiar basis, which achieves considerable advan-
tages Tn 1ife-cycle costs, especially those
associated with maintenance and upgrades. Micro-
processors are used throughout, to achieve even
greater flexibflity and relfability. Extensive use
is made of paraliel precessing to meet the high
{teration rates needed for simulators; the various
ways of interconnecting the microprocessors to meet
the performance requirements are described. Micro-
processors are also used for dedicated tasks such
as real-time status monitoring and built-in test
features, especially within the integral distri-
buted inputfoutput system. The performance of this
system is described, together with results from
simulators that use this modular approach.

Introduction

Background

Training systems for sophisticated aircraft
continue to extend the technology requirements of
real-time computing systems. To achieve the high
fidelity demanded, today's simulators use some of
the most advanced super. minicomputers available.
While the cost of a given computing capacity tends
to fall because of technological developments,
increases in complexity, programming, and mainte-
nance factors continue to drive up the cost of
ownership. This paper describes a new concept that
addresses this problem hy applying distributed
microprocessor concepts. Such a system forms the
computational basis for & new simuiator generation,
the Micro Simulation Technology (MST)} simulators.

Traditional Simulator Complexes

A traditional simulator configuration consists
of a mumber of subsystems driven by a centralized
host computer, which is connected to the subsystems
by means of various interfaces (Figure 7).

108
VISUAL | l/”/, LINKAGE
RADAR HDST
COMPUTER SouND
—— |
M v’/’/’/ \\\“~5 CONTROL
oTioN LOADING

Figure 1 TRADITIONAL SIMULATOR CONFIGURATION

169

Where extremely high performance {s required,
such as for radar or visual simulation, the sub-
system contains its own special-purpose computing
architecture and electronic circuitry. This
civcuitry sometimes employs hundreds of cards to
achieve the relevant display fidelity. But even
these subsystems are very much dependent upon the
timeliness and quality of the data. inputs they must
receive from the host computer complex, which
contains the behavioral model of the aircraft.

Over the years, aircraft have increased steadi-
1y in complexity, standards of expected simuTator
fideTity have risen, and elaborate training system
capabilities have been superimposed upon the basic
simuTator task of reproducing vehicle and weapon
system behavior. As a result, pracessors have been
paralleled within the central standard minicomputer
compiex to cope with the increasing computation
load. Three, four, or five CPU's within such a
complex, for a single simulator statfon, are not
uncommon. Figure 2 shows a standard means for
achieving such a tightly coupled central computer
complex. The two key features are use of shared
memory to communicate between processors and use of
a single CPY for centralized control of all linkage
to the simulator equipment and for control of all
interfaces to peripheral devices.

TO BPARE
INSTREETOR
CRTSYSTEM

DEFINITIONS

RYOS NEALTINE DFTION MUDULE

NEM MEMOAY N

CAAD READER TLE TYPEWRITEN LINE FRINTER,

MTU MAZNETC TAPE UNIT GARD A

[mx (ATACHADNOU EATASETNTERFACE | W7Z EAGRETIE TAPECONTROLLEN
[

mHD MyiNa KEAD 5% DRVE
Ry cRTTERMRAL

I
K80 HHIH BPEED DEVICE) HOC MOViNG KEAD CISK CONTROZLER
HSFP BIGH HHEED FLOATING FUINT Le® Line PAIMTZRFLGITER
U CINTRALPAOCESSING UNIT)

Figure 2 MULTIPLE CPU'S IN TRADITIONAL CONFIGURATION

Efforts to keep up with the mounting computa-
tion lead by continuing to add addftiomal tightly
coupled CPU's introduce problems that are far from
trivial, and these difficulties ncrease as some
nontinear function of the number of CPU's being
coupled. Even if this could be ignored, changes in
avionics configuration in prasent-day aircraft have
imposed further strains upon the traditional archi-
tecture. Aircraft systems employing highly
sophisticated "black hoxes,” each of which is
cdpable of processing Targe amounts of information,
have become distri{buted processing systems them-
selves, using buses such as MIL-STD-1553 or ARINC
42% to communicate between processors.

Since the host computer, with its 1inkage
hardware, is not responsive enoigh, these aircraft

units cannot be interfaced through conventional
linkage 1ike traditional panels or controls.
Simutators have had to incorporate special inter-
faces, which have their own 1ntelligence, to manage
the communication protocol and to provide some
local processing capability.

Disadvantages of Centraljzed Computation

As is usually the case, the search for alterna-
tives to the traditional simulator approach has
been motivated by the need to improve performance
while, at the same time, attempting to reduce the
cost of ownership. With regard to performance,
both the computer vendors and the simulator manu-
facturers have steadily increased performance of
minfcomputers by new developments, novel architec-
tures, special hardware features, and various
software techniques. However, this performance
improvement, since it remajned within a centralized
host, has not always been available to meet the
specific demands for higher performance within
individual subsystems, For example, in the case of
control 1oading systems, it has baen found more
effective to achieve the high digital computation
rates required to improve the dynamic responses of
that system by providing specialized dedicated
microprocessors embedded within the subsystem,
rather than to attempt to create an adequate time
segment within a host computer to accomplish the
same result.

With regard to ownership costs, 1t should be
emphasized that we are not concerned with the
direct hardware cost associated with computation.
Rather, we are concerned with the associated costs
attributable to problems of gaining access to the
centratized computing complex from wultiple users
and problems associated with unwanted and error-
producing interactions between software components
residing within a centralized host. These are both
reflected in increased costs associated with soft-
ware control, test, and debug and with the diffi-
culty of maintaining integrity of already proven
and error-free software during the rearrangements
recessary 1o accommodate equipment change, update,
reconfiguring, etc.

The need for more effective performance when
judged by these criteria Jed to the study and
analysis that resulted in the system described in
this paper.

Conceptual Development of Distributed
Computation System

In 1980, when we began a study of distributed
processing techniques for f1ight simulation, the
digital flight simulator computation system had
expanded through the application of new technology
and design techniques for almost twe decades. This
expansion had always been -impiemented within the
constraints imposed by a central computer and
input/output system. This process had Ted to a
sTtuatfon in which the behavior, structure, and
basic requirements of simulator computation were no
longer well understood, even by simulator
designers. The first part of the study, therefore,
concentrated on determining the real nature of the
computation process, with particular emphasis given
to the all-important problems of partitienability
and of interfacing to the rest of the simulator.

He collected from a range of simulators, which
included an F-16, UH-60, C-130 and a B-747, data
that covered:

1} Definition of major functions (modules that

170

represent primary simulator functions,
e.g., engines)

2} Hardware assembly and sofiware interfaces

3) Module computational requirements

4) Major function computational requirements

5) M&jor functionrfﬁferfaces

6) Hardware panel and major function interfaces

7) Record/playback/reset interfaces with major
functions

. The interfaces between major functions {point
5) ara key parameters in determining the partition-
ability of a computing system. The study found
that a major source of misunderstanding arose
from the traditional unconstrained use of shared
memory.

The host computer had always contained large
amounts of shared memory, and the contents of
shared memory have long been thought of as “common
data," "global data,” or even “"cross talk." The
difference hetween "shared data" and data trans-
mitted between various major functions was not an
apparent or even a relevant design parameter,
Shared memory did contain true interface data, such
as engine thrust, to be passed between functions,
but it also contained cowmon data, such as the
value of 180°, -1, etc, It contained true global
data variabies, but it also contained many more
unglobal extras. It had originally been adopted as
a convenience {partly to avoid having to make
partitioning decisions.), and its retention and
popular use had obscured the functional modularity
of the actual simulator software.

The analysis showed that in the case of the
€-130, for example, true functional partitioning of
the software resulted in 1,341 inter-major-function
parameters {not counting training system soft-
ware). When we considered module iteration rates
and the needs of a typical training system or
instructor operating station, we arrived at a data
rate of 9,53 words (32 bits) per second as the
fntermodule communication requirement for a
functionally partitioned C-130 simulator.

Data obtained from the other simulators studied
{see Table 1)} followed the same pattern and agreed
reasonably well with those from the C-130. Since
our samples had been selected to cover a broad
range of simulation, including a wmilitary helicop-
ter, a high-performance fighter, and two types
representing military and commercial versions of
multiengine aircraft, it was safe to conclude that
the natural structure and interplay of major
simulator systems was compatible with the concept
of distributed computation, though this had been
masked by the undisciplined use of shared memory.

Table 1 COMMUNICATION BETWEEN MAJOR FUNCTIONS

BROADCAST DATA TRANSFER RATE

AIRCRAFT TYPE (32-BIT WORDS) (WORDS/SECOND)
F-16 697 12,345
UH-60 627 16,809
B-747 2,129 14,778
c-130 1,341

9,531

This conclusion was further reinforced by data
obtained in other parts of the study, in which a
surprisingly close correlation was shown between
the simulator software (both at the module and the
system level} and the hardware, such as panels,
controls, and instruments, associated with the
given systems. It appeared feasible to think in
terms of a mmber of dedicated computation centers,
each directly associated with a major function or
major simulator system.

"Distributed processing” does not in itself
define efther & system architecture or the type of
processor to be used. However, for reasons asso-
ciated with functional modularity, the. then-
emerging microprocessor technology seemed to offer
the greatest promise for a true advance in
simulator architecture.

It is important to understand the issues at
stake in this decision. The simulator study had
used the term “major function" to represent a
collection of software modules that would remain
clesely coupled in a functional partitioning of the
simulator. Good design methods could ensure a
functional hierarchy of software during design, and
the benefits of this technique were well documented
and understood. In the past, these methods had not
been applied within the host computer structure;
hence, whatever benefits may have been derived from
functional modularity during software development
had been lost from the start of integrated testing,
and forever after. The rasylts of our study showed
c¢learly that this was not inherent in the simulator
requirement and recommended techniques of software
management which would maintain structured software
functionality regardless of the processor charac-
teristics. The advent of the "supermini,” with jts
internal capability for multiprocessing, was
especially compatible with this concept. The
supermini, when employed with the structured
concepts which had been proven viabie in the
simulator data study, could lead to a substantial
improvement in untangling the chaotic state of
simulator sofiware organization.

I this half-way solution had been accepted, we
could never have obtained the full benefits of
total functional partitioning. Full functional
partitioning implies more than development of
software within protected environments, crossed
only via carefully defined interfaces (which can be
provided by the proper utilization of standard
centralized computer architectures). It also
implies the abiTity to specify comptetely func-
tional packages, to design, fabricate, and assemble
along these same functional boundaries, and finally
to test functional systems as complete modules
independent of the status of other modules that
comprise the entire simulator. This implies
embedding the computational capability itself in
the system module design in a way that is not
feasible with minicomputers -- and even Tess with
superminis -- because of their packaging and unit
cost. Furthermore, it implies an intimacy between
computation and simulator hardware which is not
provided within conventfonal computer linkage
concepts. “Distributed processing" was only one of
the essential elements needed to achieve true
functional modularity, and for reasons associated
with the size of the computing capacity increments,
the packaging possibilities, and the treatment of
1/0 channels with respect to the computation
process, only microprocessor technology seemed to
offer the possibility of achieving such moduTlarity.

Important questions had to be answered before

the decision to take this approach could be made
with confidence. These questions centered upon the
the ability of microcomputers to handle the
necessary computation at rates and accuracies which
not only would match the capabilities of current
conventiconal technology but alse would ailow for
future enhancement of those standards. We took to
be representative of then-current simulator tech-
nology the performance of minicomputers whose
capability was about 0.7 MIPS (Millions of Instruc-
tions Per Second) and supermini's capable of about
2,5 MIPS, each executing FORTRAN ANSI 77, with a *
32-bit word length.

In the discussion that follows, it is important
to note that the design decisions described, and
the performance achieved, were made using the i
technoTogy available in the years during which the °
system was developed (1982-1984). Nothing is more
axiomatic in modern technology than the year-to-
year improvement we now expect in the state of the
art. Therefore, the system to be described should
be c¢onsidered as a baseline design that is already
in the process of being upgraded. This upgrading,
described below, does not in any way change the
structure of the system.

The microprocessor family selected for evalua-
tion and Tater incorporated into the 'system design
was the Intel iAPX86. In the early 1980's, this
was the only family which offered a hardware
floating-point processor as well as full software
support for FORTRAN ANSI 77. Both capabilities
were essential to achieve the necessary performance
in a_design that would be compatible with modern
simulator software technology as well as with our
own facilities for software development and support.

Since individual microprocessors ¢learly could
not match individua® minicomputers for computation-
a1 throughput, it was necessary to assume that
several micro's would have to be clustered within
at least the Targer major functions. The analysis
of module rates which had been made in the simula-
tor study had shown the performance required from
each functional area. The predicted performance
for a single microprocessor under typical simulator
benchmark conditions was taken to be 200 KIPS,

This fndicated that the most demanding requirement
-- the flight major function in an aircraft with
unusuatly complex function-matching requirements --
would require six such microprocessors. It was
well within the capacity of the multimaster bus
system being considered for the design to accom-
modate this number of microprocessors. Further
research successfully proved the feasibility of
partitioning the f1ight area modules among six
processors to achieve the required performance.

The requirement, however, was that this compu-
tatfon capability had to be achieved without com-
promising the 32-bit performance that had become
industry standard for simulators. It is especially
interesting to consider the impact which the
architectural approaches taken by microprocessors
have had on this question.

In the minicomputer environment, the use of
T16-bit or 32-bit words had been definitive in
establishing computational power. The transition
from the former to the latter was accompanied by
substantial upheaval and increased cost at & time
when computational power was still a significant
cest factor. By their choice of architecture, and
by taking advantage of very high levels of inte-
gration within YLSI technology, the microprocessor
manufacturers have practically bypassed the factors

that made the word-length question such a determin-
ant of performance in the minicomputer environ-
ment. Of course, at the present time, all major
manufacturers either have started production or
have announced intended production of “true 32-bit"
microprocessors along the growth path of their
present designs, and by 1986 these components will
be available in production quantity. The point is,
however, that even in the 1982-1984 time frame, the
techniology already existed to achfeve 32-bit per-
formance, using microprocessors whose data words
were & nominal 16 bits -~ the traditional indica-
tion of a performance limitation. :The three
factors which contributed to this were:

o Microprocessor families inciude numeric
coprocessors as working partners with the
?rocessor chip itself. For example, in the

ntel family used for the system being
discussed, the 80287 Numeric Processor
Extension is used with the 80286 micropro-
cessor and is dedicated to executing par-
ticular functions or instructions associated
with numeric operations. It is more than a
hardware add-on mathematical unit, in that
it shares the local bus with the host
processor and can access memory. The
coprocessor interface allows specialized
hardware to appear as an integral part of
the host architecture. ATl instructions
that require numerical operations are
executed by the coprocessor, which can
handle 32- and 64-bit floating-point data
types. This capability is transparent to
the programmer, who simply specifies the
data type when writing source code in a
high-order language such as FORTRAN or
Pascal. The code that executes on the
coprocessor is generated automatically by
the object code compiier.

The use of a coprocessor s a powerful
concept. The coprocessor increases the
performance of processors in particular
applications and is not just an add-on
arithmetic unit to overcome a resclution
1imitation with 16-bit processors. The
32-bit microprocessor families, including
such examples as the Intel 80386 and the
Motorola 68020, will continue to use
COprocessors.

o The use of a 32-bit-wide bus in a mini-
computer environment enhanced performance by
reducing the time to fetch data and by pro-
viding for single fetches of instructions
greater than 16 bits in width. The same _
benefits will also accrue when using 32-bit
microprocessors but will be of considerably
less importance, For example, the TAPX 286
has a bus interface that can achieve 8
Mbytes per second. Throughput is enhanced
by using a prefetch Tnstruction queue, which
results in a limited pipelined operation.
The bandwidth of the CPU bus, as in the case
af the miricomputer, is 1imited by the
technology that drives the bus and by the
activity, or contention, on that bus. A
32-bit data word, as opposed to & 16-bit
word, is of secondary importance in this
context.

Performance limitations that result from
requiring double fetches of data words
simply determine the number of micro-
processors to be employed to serve the needs
of a given major function. When the system

172

migrates to the use of full 32-bit micro-
processors, it will be possible to reduce
this number in some cases. In other major
functions, there will be no change. In
neither case will there be a difference in
quality of computation, since the current
practice of maintaining 32-bit or 64-bit
precision will continue to be employed. In
particular, the availability of the greater
performance per microcomputer which will
result from the transition to the 32-bit
generation will not be used to reduce_ the
number of major functions in the simulator.
As we have seen, the number of major func-
tions results from optimizing the structural
organization of the simulator, not from a
need to economize on the number of micro-
processors employed,

o The third benefit conferred by the use of
32-bit wide buses is an extension of the
addressing range of the computer. Both the
SEL 32/77 and the TAPX 286/10 have a 24-bit
bus, which shows that 32-bit performance is
not related directly to the addressing
capability. The addressing range of the
{APX 286, with its integrated memory _
management, is 16 Mbytes of physical, and
1 Gbyte of virtual, memory.

It is not the size of programs which require
this massive addressing capability, but the
technique of structured programming and the
desire to provide system protection for
programs and data by means of segmentation
which can be effectively applied in line ~
without performance penalty. The transition
to 32-bit microprocessors will make it -
possible to provide these structural advan-
tages more lavishly than at present and
therefore will represent an improvement at
the software system design, rather than at
the computation, Tevel.

Provisfon for Simulator Management

The requirements for simulator management,
taken in the broadest semse, were considered, and
it was clear that many of the facilities hitherto
provided in the central host computer could be not
only equaied but improved upon with distributed
microprocessors. Functions such as built-in system
tests, real-time performance monitoring, debug,
plus other requirements for product suppori were
jdentified as candidates far separate, dedicated
computer rasources. Through distributed pro-
cessing, each function could be satisfied without
compromise with the real-time operations. In fact,
integration of these "management" functions and the
means by wiich they could communicate with external
resolrces was as important to the successful
development of the distributed computation concept
as the derivation of the real-time processing
system itself. The microprocessor environment
provided a natural avenue by which the necessary
communication needs could be satisfied and optim-
ized for each function that had to be provided.

The vehicle by which this was accomplished was the
development of a bus structure to provide both
inter- and intra-major-function communication
suitable to the total needs of the simuilator.

Although many of the management functions which
had to be exercised during the actual operation of
the simulator could best be accomplished at the
distributed, i.e., functional, level, there
remained a set of global functions which could not
reasonably be allocated to any particular major

function module. The solution here was to incor-
porate into the system architecture a single, dedi-
cated management computer, similar in structure

o the computers used in the major function
modules, but dedicated in {ts software and its
Tnterfacing entirely to the global management
requirements of the simulator.

Design Considerations for
A DisTributed Microprocessor System

Data gathered on existing simulators, in terms
of module timings and interface requirements, could
now be related to microprocessor performance and
potential architecture to arrive at a general
specification.

Local and gilobal bus structures were defined
which supported the functional partitioning that
the simulator study had shown was achievable for
even the most complex simulators. Since a dis-
tributed microprocessor system implies the use of
many processors, the specification of this bus
structure is critical; it is described in detail
betow., The required global bus performance can
vary enormously, depending upon how global memory
is defined. The functional partitioning which was
preserved in the system specification gave the
desired benefit of minimizing this traffic, thus
permitting use of a message system interface with
quite Tow bandwidth requirements.

The remaining attributes of the distributed
system architecture can be summarized as follows:

1} A total system could range from four to 40
processors, depending upon the complexity
of the simulator. These would be grouped
into from four to 16 major functions,
depending upon complexity.

2) ANl processors would receive synchronizing
timing signals.

3) Fach processor would have a time-frame
structure similar to that imposed by
current computer executive programs,

4) All processors would use "data messages" to
control execution.

5) Each processor would have access to private
memory via its own private bus.

6} Each major function would have immediate
access to its own dedicated Tinkage system.

7} Hardware inputs and outputs would be mapped
into Tocal memory.

8} Each major function would contain:

a) executive

b) debug

c) inftialization

d) record/playback

e} malfunction control
f) freeze control

g) error message logic
h) Tinkage handler

9) Peripheral access would be provided through
only one processor or processor cluster,
which would be tasked with global manage-
ment functions for the entire simulator.

173

Mmajor functions."”

Functionally Distributed Simulation

The research study and the avaflable micro-
processor technology clearly indicated the feasi-
bility of developing a distributed computing
system. To convey the basic design philosophy,
this radical new approach was called the Func-
tionally Distributed Simulation (FDS) system. This
section describes the FDS structure and performance
characteristics. (See Figure 3.)

_ . MAJOR FUNCTION COMMUNICATIONS B!S
i '
|!.0.."Fs|1l3HTJ

| | l

SIMULATOR
HANAGEMENT
COMPUTER
[DEAUE LINK

SIMULATOA MANAGEMENT NETWORK

Figure 3 FUNCTIONALLY DISTRIBUTED SIMULATION

System Overview

Real-time computing requirements are parti-
tioned on a functional basis and referred to as
The major functions are auto-
nomous, i.e., each contains processing power,
meimory, and Tinkage for one {or more} functions,
such as flight, engines, etc. To achieve the
desired degree of modularity, the major functions
also have clearly defined hardware and software
interfaces to other functional areas. Although the
more traditional methods of achieving modularity
through resource partitioning can optimize a given
resource, such as CPU time, functional partitioning
provides more jmportant advantages, such as
flexibility and upgradabiifity.

The major functions provide real-time process-
ing. A simulation management computer provides
product support, primarily through software tools
such as editors and compilers, plus other software
for total simulator maintenance and diagnostics.
Functional separation of this computing facility, =
general-purpose microcomputer and industry standard
operating system, from the demanding real-time
requirements is an important characteristic of FDS.

The major functions and the simulation manage-
ment computer are connected by three main communi-
cation paths -- the major function communication
bus, the simulator management network, and the
debug 1ink. The rationale for using these buses is
to provide paths matched to data requirements and
to utilize message passing between units instead of
traditional direct memory access; this ensures
simple, clearly defined interfaces. Without these
features, the system could not truly be considered
distributed processing, and major functions would
not exist.

Major Function Comwunication Bus

The major function communication bus provides a
high-speed (8 MB/s) path between major functions
for time-critical data transfer. The data are
transferred using a broadcast system with a simple
hardware/seftware polled protocol. During a real-

time frame, typically 33 ms Tong, each major
function calculates a predetermined amount of data
required by one or more other major functions.
Before beginning processing of the next frame, each
major function takes its turn to broadcast these
data, (See Figure 4.)

DATA
TRANSFER

1

MAJGR
FUNCTION
sLaT

Figure 4 MAJOR FUNCTION COMMUNICATION BUS

Since each major function has a relatively
small amount of data to broadcast (as discussed
previously), the total time to complete this
transfer is 1-2 ms.

The bus specificatfon ensures data integrity by

adopting a synchronous transfer and double buffer-
ing of data within the major functions. In this
distributed system, with each computing system
consisting of muitiple CPU's, the emphasis was to
achieve stable, valid, and coherent data throughout
each real-time frame, An asynchronous operation
would have required a more complicated software
protocel and the design of multimaster bus arbitra-
tion schemes, for which the state of art in soft-
ware tools and the prerequisite use of FORTRAN ANSI
77 did not provide the necessary facilities. Other
bus systems, including the use of industry
standards such as ETHERNET, did not provide encugh
bandwidth. Those that did (typically the vast
number of microprocessor system buses such as YME,
or Multibus I) did not satisfy the requirements of
a global bus for a distributed system striving to
achieve modularity.

STmylator Management Network

Not all data that pass through a simulator
computer are time-critical with respect to real-
time performance. Since the nature and purpose of
these data present a very different requirement, we
use & Tocal area network (ETHERNET)} as the communi-
cation bus. Primarily, this gives each major
function access to a mass storage device associated
with the simulator management computer, enabling
transfers of data for program Toading, diagnostic
reporting, and access te database information.
Linking a1l major functions in this manner to the
simylator management computer is a very 1ight load
for ETHERNET, so there is good performance --
typically 20-30 KB/s. The other benefits of
ETHERNET, apart from its being a de facte industry
standard, are the low cost per node for this Tevel
of performance, made possibie by using VLSI
components, and also its ability to expand the
resources served by the simulator management
network (with other computers. file servers,
printer servers, etc.). Incorporating a Tocal area

174

network in this role provides a good opportunity
for vertical integration.

Debug Link

For a Targe system, we use a separate communi-
cation path for debugging major functions. As
discussed later, each major function has a dedi-
cated CPU for this role. It needs access to
information within the simuTator management
computer. An additional rietwork for this purpose
provides & high degree of fault tolerance.

In addition to transferring predefined debug
pages on request, the debug Tink gives access to
the symbol dictionary on disk, to give a real-time
symbolic debug capability, even when a wmajor func-
tion is being worked on independently. ETHERNET

- again gives a good performance through its Tow

Tatency for low loads. A symbol can be typed at
the debug terminal and transmitted through the
debug Tink to the simulator management computer,
which accesses the Symbol Dictionary on disk to
obtain the absolute address. This is transmitted
back to the major function so the debug CPU can
display the contents of that symbolic variable.
Typic311y, this tetal process takes less than one
second.

The debug 1ink also permits accessing major
functions or performing debug tasks from the
simutator management computer. The networks ensure
that the advantages of distributed processing are
maintained but make global access to information
from one centralized point available when
applicable.

Major Functions

The system architecture of a major function is
shown in Figure 5, which shows two main buses
dedicated to internal processing.

DN COMMUNICATIORS BUS

MAIOR FUNCTTON
INTEREACE AND
CROSETALK MEMORY

0

0

=) cA
AND AND
DLAL POAT MEMORY DUAL PORT MEMDAY

Urn{IUFF!llll
SYSTEM INTERFACE

INTELLIGENT
[}

MANAQEMENT OEBUG _——_| i | I

LK UNK
PADCESSOR PFADCESSOR w
LOCAL DEBUG

Figure 5 MAJOR FUNCTION SYSTEM ARCHITECTURE.

Using a parallel system bus for conmunication
and module-wide contrel functions, plus a local bus
associated with each processor to maximize perfor-
mance when multiple processors are used, {s typical
of the latest advanced microprocessor bus systems.
All the circuit cards required for a major func-
tion, including linkage cards, are connected
through the parallel system bus.

The Major Function Interface Card -- The major
function interface isolates each major function in
a manner independent of the number of major func-
tions or the number of processers within them.
This resuits Tn full functional partitioning. The

major function interface contains on one circuit
card all the hardware and memory for the major
function communication bus. Data broadcast is
controlled by hardware and is executed Tndependent
of any other activity within the major function.,
The 32 KB of memory on each major function inter-
face card is mapped, so that the area for each
major function in the system is unique. This §s
programmed with the system software so that there
15 flexibility in terms of the number of major
functions and of the amount of data each
broadcasts.

Processor Circuit Card -~ The microprocessor
card executes the reai-time software modules. The
muTtiprocessing capability within the major func-
tion gives high performance to meet the require-
ments of the functional areas. Each card contains
mul timaster arbitration Togic and the interfaces to
the two buses that communicate with other process-
ors within the major function. Each card alsc
contains memory and other components to provide
local resources for low-]evel debug and built-in
test. This gives a significant advantage when
designing or testing microprocessor systems,
because a single circuit card requires only a very
few external resources for compTete test or debug,

The performance of the processor circuft card
using the Intel 80286 microprocessor and 80287
coprocessor, as used in the FDS-based simulators to
date, has been measured, using company benchmarks
that represent fl1ight simuTator software written in
FORTRAN ANSI 77. The results are shown in Table 2.

Table 2 COMPARATIVE PROCESSOR PERFORMANCE

IN KIPS
BENCHMARK. STD. MINI SUPERMINI 80286/287
1 383 2448 97
2 708 6694 328

Benchmark 1 consists primarily of floating-
point operations; benchmark 2 has a wixture of
floating~-point and integer operations. The mini-
computer used a single CPU with a high-speed
floating-point unit. The supermini used a single
CPU with a high-speed floating point unit and 12
Kbytes of cache memory. Both benchmarks were small
programs that ran completely in cache memory. A
normal simulator load would not fit into cache,
resulting in a reduction of the performance shown
for the supermini.

Three additional benchmark results are provided
which i1lustrate the point previously made regard-
ing the ability of even "16-bit" microcomputers to
achieve or surpass 32-bit minicomputer performance
as a result of thefr architecture and reliance upon
dedicated coprocessors. The results are shown in
Tables 3, 4, and 5.

Table 3 FLOATING-POINT MATH

SINGLE-PRECISION DOUBLE-PRECTSION

COMPUTER 322BIT RESULT ERROR 64-BIT RESULT ERROR
FDS 15 % 1073 1x 10712
COMF. A 473 x 1073 4537 x 10712
cow. B 3t x 1073 11 x 10712

175

_aircraft,

Table 4 SPIRAL NAVIGATION BENCHMARK

DIRECTION MAX ERROR, LeTITlIDE MAX ERROR, l.n%GITUDE
COMPUTER OF SPIRAL ... (DEG x 10-B) {DEG x 1076)
FD$ Tlockwise [320
Ctr Clockwise 42 397
COMP A Clockw] se 244 1984
Cir Clockwise 168 626
[~ Clockwise 3 153
ttr Llockwise 122 290
Table 5 INTEGRATION BENCHMARK
RATE OF FDS COMP A COMP B
CLIMB {FT/MIN) % ERROR % ERROR % ERROR
T 100 100 100
2 76 100 100
3 17 100 100
4 12 100 100 _
3 30 100 100
6 17 100 100
7 1 100 100
8 12 12 12
L) 17 22 22
10

6 28 30

The first benchmark primarily evaluates arith-

metic performance, and especially the precision and
‘- -accuracy achieved in floating-point operations, In

its outer loop, the benchmark sums the values 1 to
100 ‘and subtracts the result from the nominal
value, Therefore, the result should be zero. To
exercise the floating-point process vi gorously, the
square root of each successive value is taken 10
consecutive times and then resquared 10 times
before it is added into the sum of values. The
data presented in Table 3 show the resylts for both
single-precisfon (32-bft) and double-precision
(64-bit) floating-point values.

Table 4 shows results of benchmark tests
specifically relevant to navigation calcuTations in
simuTation. It consists of range, azimuth, and
reset calculations taken from a starting positiaon
which 1s successively ncremented by 100 range
steps of 10 nautical miles and 100 bearing steps of
3.6". The test is then repeated by decrementing
through corresponding steps until closure to the
original posftion. A1l calculations are performed
in double precisfon {64 bits). The maximum
deviation recorded upon calculating reset to the
starting point from any test point along the
traversed spirals is fndicated in Table 4.

The final benchmark demonstrates the effects of
rounding errors during an integration process such
as that required to solve the differential equa-
tions representative of aircraft flight. In the
particular case chosen, aircraft rate of climb is

. integrated to obtain a solution for afrcraft

altitude. In a simulator, these processes are
important to achieve the desired "feel® of the

. As the rate of climb is reduced, the
altitude change produced becomes fnaccurate, ;
because of computational error, and finally ceases
to change at all. It is important that the rate of
climb at which this occurs be imperceptible to the
pilot. The magnitude of the error for the change

-of altitude over one minute (expressed as a percen-

tage) 15 tabulated against rate of climb in Table 5

for each of the three computer types being com-
pared. (In all cases, double-precision calcula-
tions gave results very close to the correct
answers.)

The Debug and Management Link Processors --
These two Circuit cards are based upon a coOMOn
design; the debug card has an additional module
that drives a memory-mapped VDU and keyboard. In
keaping with the overall design philosophy, these
two cards provide functionally independent
resources for system debug and real-time status
monitoring. (These extensive facilities are
covered later in the software section.) The
management 1ink processor provides the main
communication path to the simulator management
computer, assimilates the status of the major
function, and reports back to the SMC. The
components of this highly ntegrated circuit card
are:

Microprocessor ~= 80186

ETHERNET processor -- 82586

YoU controller -- 8275
Linkage

To increase functionality and to improve
latency through the entire system, each major
function contains its own Tinkage. The linkage
card configurations depend upon the requirements of
the major functiors. Since this sometimes necessi-
tates more circuit card siots than the standard
card bin has, additional bins are used solely for
1inkage in these cases. They are tightly coupled
to the major function processors. .

System Designh -~ One of the most significant
advan¥ages of microprccessors is the ease with
which 1/0 devices can be connected. Micro-
processors have a relatively simple interface
specification for control signals and are highly
standardized. With high-performance systems using
muTtiple microprocessors, this feature can be
retained; with single minicomputers of comparable
performance, the interface signals and timing
present a much more demanding design for I/0. As
the performance of a single processor ncreases,
not only does the amount of centralized I/C in a
flight simulator Increase, but it becomes more
difficult to provide an interface with low laten-
cy. In general, simutators have never had I/0
directly connected to the host processor.
Centralized 1inkage has been serviced by using a
Direct Memory Access (DMA} unit and other distri-
butfon circuitry. Partitioning the Tinkage
functionally reduces the I/0 throughput and offers
the potential of lower latency; the increase in
processor performance and higher iteration rates
can be combined with improved 1/0 techniques to
realize higher fidelity in real-time simulation.

Linkage Built-In Self-Test -- A typical flight
simuTator uses 200-300 linkage circuit cards, which
range from simple electrical drives to high-speed
serial interfaces for as-in-the-aircraft avionics.
The economics of simuiator usage demand that fault
diagnosis and routine maintenance be as quick and
infrequent as possible.

Mot only can microprocessors be configured to
replace conventional minisystems, but they can be
applied in areas previously restricted by space or
cost. The philosophy of the FDS$ linkage is to have
a microprocessor on each card to provide local
intelligence for built-in system test. This gives
significant advantages over having to use the host

computer as the only source for diagnostic software:

o There is a higher level of diagnostics,
since the processor is closer (and easier to
interface) to the components it is monitor-
ing and can devote all its time to this task.

o It provides functionality, i.e., the buflt-
in system test remains with the cfrcuit card
when it is removed from the system
environment.

Figure 6 illustrates the linkage built-in-
system test philosophy of FDS.

TINKAGE TINKAGE LIWKAGE
MICRO- MICRD— WICRO- |
COMPUTER COMPUTER COMPUTER
- T 1 T
U U R
1
L
- MANAGEMENT
- LINK
PROCESSOR

SIMULATOR
MANAGEMENT

COMPUTER

Figure 6 FDS BUILT-IN SYSTEM TEST

The general facilities provided by the on-card
MiCroprocessoyr are:

o Power-up confidence
o Real-time monitoring
¢ Configuration control information

Intelligent Linkage Cards -- In conventional
simuTators with single host computers, certain
interfaces have to have Tocal processing power or
intelligence. These are usually associated with
spectal high-speed interfaces to aircraft
avionics. The abiiity to give linkage circuits
intelligence in the form of microprocessors can
continue the design concept of functionality to the
circuit-card Tevel. FDS uses a number of such
circuits for driving serial data highways, for
special instruments, such as synchros, and for
multiplexing simple switch/indicator channels.

The AC synchro driver is a typical example of
the improved functionality that can be achieved
with an on-board microprocessor. Each card can
drive two synchros. It requires only a demanded
angle and channel number. The local firmware
calculates the necessary output voltages and
damping requirements, which in the host computer
traditionally would be c#lled as sequential
subroutines. Thus the main math model, Tn
simulator software, is isoTated from fimal instru-
ment consideration.

As previously described, the local {ntelligence
can alse be used to provide maintenance and diag-
nostic facilities beyond those generally applica-
ble. The AC synchro driver has seven tests for
slewing and stepping, at various rates selected by
on-board switches. AlT these tests are available,
even when the card is isolated, and can be used
independent of other activities for checking the
circuit card and the driven fnstrument.

FDS Software

One FDS design criterion was to retain as many
software development tools as possible and to be

SR T R pE B

- Wi TR IR AR

D I

able to run existing FORTRAN-based appiication
modules for specific aircraft. Transfer of FORTRAN
programs for a SEL or Perkin ETmer minicomputer to
an Intel microcomputer system proved very effi-
clfent, with very few changes required. This
section describes some of the wmajor software for an
FDS system that strongly resembles that of current
minicomputer systems.

Real-Time Executive -- Most simulators have a
proprietary real-time executive that runs and
schedules the real-time modules. FDS relies upen
the same principle of a synchronized real-time
frame of, say, 30 Hz (dependent upon specifica-
tion), but each major function has its own execu-
tive, A synchronous scheduler synchronizes the
major functions and the multiple processors within
each major function. It provides for different
frame lengths, and module execution rates can
easTly be changed, since the elapsed time between
module execution s calculated dynamically.

Real-Time Debug -- The efficiency of debug in a
large, real-time software system requires consider-
able attention. In FDS, the debug system has been
functionaily partfifoned from the reail-time
enviromment by allocating a separate microproces-
sor, memory, and interface. This gives a high
degree of fault tolerance during development,
because problems in the real-time processors have
1ittlie or no effect on the debug software. Infor-
mation avaflable through debug Tncludes module and
frame timings, 30 continuously monitored symbols,
system faults, and executive/iinkage status. Debug
commands permit enable/disable of modules and
Tinkage, modification of displayed symbol values,
and change of VDU pages. A hardcopy of VDU pages
?an also be produced at the SMC using the debug

ink.

Off-Line and On-Line Tools -- Many software
development tools are required for flight simula-
tion, and these have been developed for FDS
systems. On-line tools, such as debug and real-
time error reporting, are provided by dedicated
microprocessors. Off-line tools for maintenance,
diagnostics, and software development are also
provided. While these are comprehensive and are
important to simulator development, they do not
currently exhibit any novel concept that involves
the use of microprocessors. We await the day when
software engineering and advanced workstations
combine to form & more efficient envirorment within
reach of all,

Typical Configurations

Functionally Distributed Simulation has now
been applied to many training devices, including
Fighting Vehicle Simulators, Wide-Body Airline
Simulators, Engine Maintenance Trainers, Jet
Fighter Simulators, and Submarine Control Simula-
tors. All these require extremely different
performance and configurations, but each is based
upon the same concept and modular building blocks.

A British Aerospace Hawk Simulator and an
Afrbus A300-600 SimuTator represent typical con-
figurations. They contain, respectively, five
major functions, with a total of nine CPU's, and
seven major functions, with a total of 27 CPU's,
for their real-time application software.

Benefits of Functionally Distributed Simulatfon

The following sections summarize the benefits
of FDS, including basic product configuration,
development methods, and cost of ownership.

Functional Modularity

The benefits of partitioning a problem into
smaller, more manageable tasks are well under-
stood., Traditiona?iy, this has been achieved to a
limited extent by resource partitioning, as opposed
to functional partitionfrg. Although there are
advantages associated with high-performance
centralized computing systems for applications that
cannot be partitioned easily., these systems tend to
be extremely complex, and they Tack the abjlity to
respond effectively to changes in requirements.
Resource partitioning requires a tightly coupled
system with high bus bandwidth, and it does not
encourage standardization of interfaces.

Functional partitioning gives a modular design
that reduces complexity and gives local autonomy of
response and the flexibility to incorporate
changes. VLSI technology permits achieving func-
tionality, and this functionality permits applying
new VLSI devices to each functional area. The
functionality also allows the benefits of the early
phases of parallel development to continue much
longer, easing test and calibration and software
updating.

Parallel Computation

Parallel processing is now a way of life and
the only practical way of achieving the computing
performance required for Artificial Intelligence,
Computer-Aided Engineering, and Real-Time Simula-
tion. It is now relatively easy to connect many
hundreds of microprocessors im integrated systems,
although, unfortunately, these do not always
provide a suitable environment for all problems.
True concurrency of operation on tasks that are
complex and not easily partitioned is still
awaiting a solution.

FDS uses parallel processing for an application
that can be partitioned. It is not unreasonable to
expect that the real-world behavior of a machine
can be simulated by a number of parallel pro-
cesses. The concept of parallel processing is not
complicated or novel; the problem in the past-has
been the attempt to represent the real world as a
sequential process. Parallel processing can
achieve a significant increase in responsiveness
and at the same time raduce overall complexity.

ReTiability

FDS has improved the reliability of a Flight
Simulator by 1ts use of VLSI technology and hy its
modular design. The number of electronic devices
and their metheds of fabrication are fundamental to
system reliability. For a given simulator, FDS
uses approximately half the number of electronic
devices as does a simulator based on a centralized
minicomputer. The manufacturers of microprocessors
are also beginning to use advanced CMOS technolo-
gy¥. This not only permits even higher Tevels of
integration through lower heat dissipation but
makes microcomputers more reliable than mini-
computers that use TIL or ECL technology.

A modular design is Tess complex; a system with
16 major functions is not necessarily more complex
than one with Just two major functions. The design
concept also achieves a high degree of fault .
tolerance through graceful degradation. Although
certain failures still impact total training avail-
ability, using a distributed processing system and
dedicated microprocessors for diagnostics improves
fault isolation and maintainability.

Cost of Ownership

One of the most jmportant factors in training
today is the cost of ownership of these increasing-
1y complex devices. Maintenance and running costs
over many years can exceed initial procurement
cost, and the need to upgrade performance very
often exceeds the initial design specification
requirement. The FDS design has addressed the
complex cost-of-ownership equation and has
minimized it by using a new design concept that
incorporates new, advanced technology.

Support and maintenance are very significant
factors in cost of ownership, and the FDS design
has now adopted industry standards wherever
possible. Although this was not feasible in the
early days, because standard bus architectures
lacked the necessary performance, the latest buses
developed by various microcomputer manufacturers
satisfy basic FDS requirements, The major func-
tions are now based upon Multibus II instead of on
the original proprietary bus system. All major
computing elements for these industry buses, such
as CPU and memory circuit cards, are available
commercially from more than one vendor. The
modular design of FDS and its adoption of industry-

178

wide standards are significant steps in reducing
the cost of ownership of flight simulators.

- About the Author

Mr. David Parkinson is a Technical Development
Manager with Singer Link-Miles Ltd. and is respon-
sible for all Research and Development Programs
undertaken at Link-Miles. He holds an honors
degree in Electronic Engineering and is a Member of
the Institute of Electrical Engineering.

He jotned Link-Miles in 1971 as an Electronic
Development Engineer. His early experience was
mainly in circuit design using a variety of analog
and digital techniques. After being responsible
for a number of new designs associated with simu-
Jators, he became 2 Group lLeader in 1977, super-
vising the staff of the Development Depariment.
During the last few years, he has been involved in
the introduction of advanced technology and
associated development. Major programs which have
recently been undertaken include an Electrenic
Warfare Simulation System, a Computer-Generated
Yisual System, a Distributed Microprocessor
Computing System for a Flight Simulator, and a
Digital Control Loading System.

