AN EMBEDDED IMAGE GENERATION SYSTEM FOR
FIELD TRAINING

Charlas Wakeland
Senior Systems Engineer
Rediffusion Simulation Incorporated
2200 Arlington Downs Road
Adington, Texas 76011

Recent advances in VLS| {Very Large Scale Integration) logic have reduced the size and
imptoved the performance of units for the Engineering Workstation and CAD/CAM
market to the point where their performance is comparable to first generation Real Time
Image Generation Systems. Within narrow confines, these units may be adapted io
low-and training applications which require real-time imagery with moderate update and
polygon requirements. This paper describes a turnkey dual processor image generation
system with payload simulation capability which is packaged in a 10 slot Multibus
chassis. The modular, systems oriented, design approach which vields a 10board unitfor
field useis equally applicable to other low-end simulation/training system raquirements.

Introduction .

The capability for training in the field 1= an elusive goal
for any large scale system. With many large systems, the pri-
ority of creating a system which fulfills the requirements of the
primary (often changing) mission(s) tends to shrink the capacity
available for the training mission. Our turnkey duai processor im-
age generationsysterm (1G) that five years ago would fili several
dedicated trucks is packed into a single chassis.

Why Fiald Training?

The economics and desirability of field training using the
embedded simulation concept can be motivated very simply by
nating that every system has a complex payload that if lostor
destroyed represents a significant dollar loss, Each time a bird
is flown for other than the primary mission, some “risk” is involved.
This risk is greatest when personnel are making the transition

between clagsroom and field. Integration of new crew members

into existing crews represents another risk area. Lack of oppor-

189

tunity to train (due to bad weather for example) represents a third
risk category. Fleld training using an embedded simulation
device directly attacks this risk factor by providing a weather
independent, risk free training opportunity to allow teams to
integrate, to allow members to maturs, and allow testing of
fleld raadiness.

Package Goals .

In addition to an unusual space constraint, our |G had to be
portable, rugged, powered from existing power, provide
compatible video, and interface to an existing (9,600 baud)
RS-232 communications link Furthermore, the system had to
meet EMI (Electro Magnetic interference), Predicted Mean Time
Between Failure and Repairability criteria. Total package weight
under 100 pounds was considered ideal since that implied that it
could be transported by two men. ’

Turnkey Solution

Based on the above criteria, Bediffusion Simulation Incor-
porated initially designed an eight board system housed in a
double high Multibus card cage which would provide approxi-
mately 500 polygon scene capacity with studio quality RS170A
black and white video output. The RS-232 link would download
the system software and then provide information blocks five
times per second. Based on further discussions with the end
users, this proposal was modifled to provide floating point
hardware support and ROM (Read Only Memaory) storage of the
program and data bases bringing the total board count to ten
boards. All of the system elements were existing, commaercially
available hardware. The final, ruggedized packaging is shown in_
Figure 1. The "turnkey” nature of the soiution is such that the only
external control required for the 1SC is a power switch (Figure 2).

T .
-

® adtEy IILNTOL courIen ®
WTRrAGE rocy

vz
L] o

-
Oun-w}.-.-.’“‘“ -
LIS @a L]
sonun) fon
r

Figure 2. ISG”E-'ror;t Panei

System Performance

The coupled Payload Positioning System (PPS) and visual
provide approximately S00 polygon instantaneous capacity with
a total database in excess of 4,000 polygons. Several scenarios
are supported which provides the ability to vary target position
and control moving targets. The system supports target acquisi-
tion and tracking, standard saarch patterns, and allows complete
six degrea of freedom for the eyepoint.

Figure 3 is a view of the gaming area from approximately

10,000 ft. Note that the terrain includes roads, streams and hills.

Some forested terrain is also included in the database.

Figure 3. Gaming Area from 10,000 ft.

Typical three dimenslonal targets are of 20 to 50 polygon
complexity. The formation of tanks shown infigure 5 representan
enemy threat. Figure 5 is an enhanced photograph showing low
level of detail to high level of detail for part of the formation. This
transition is dependent upon field of view and range so that under
normal operating conditions, the transition is not detectable.

System Architecture

Figure 4 is a system block diagram of the system as delivered.
This dual MBS000 configuration is just ohe example of how multi-
micro systems can be configured to meet specific needs. The
front-end or PPS is a dedicated simulation of the payload and
uses a 10 Mega-Hertz clock speed 68010 processor and a
floating point accelerator board to compute the position and
orientation of the evepoint. This information is passed to the
second processor via shared memory located in the Multibus
(TM) RAM card.

The second 68000 processor starts what would traditionally
be the visual system. This is a modified version of the RIS (TM)
1000 series graphics terminal from Sillcon Graphics, Inc. This
particular conflguration uses 2 bit plane boards, a GPL, 1 Mega-
byte RAM Card, Update and Display controller boards and the
GF1 board which contains a AMD2901 bit slice implementation
of a FBC {Frame Buffer Controller) and 14 custom VLS! chips
known as Geometry Engines (TM).

Figure 5. Tank Formation

pof VOPANEL | g RZI2C -
It (PORT 2)
¥Ji
FLOATING
£5010 AM zerom
FOINT Ace. PAOGESSOR BOARD BOARD
BOARD
(5 4 FPA I W O & AaM @ AOM T
A 4 h 4 A 4 h 4
| wuLtiBug MuLTIBUS Pt
F 3 F 3 »
kA 4 b 4 4 - _
GEOMETRY -
68000 P CEnGINES UPDATE piseLay | coLon = oaioa
PROCESSOR [J2 L[= — CONTROLLER | o o |CONTROL] MAP 2
BOAKD E - 0 {GRN)
CONTROL » L l -
5
{3y M1 {1a) GF1 (8} ues o 73] DC3
b h 4
RAM EPROM Pe| uuviaLs
K BYTES K BYTES
P 250 B4
i i 298 et muLTieUs |
RAM 1024 NONE 4
AOM NONE 1024 ¥
ToTAL 1792 Taek | ¥
AIT-PLANE
MEMORY
1
®n 5| eez
) = BACKPLANE SLOT

Figure 4. System Block Diagram

190

PPS CPU

The CPU from the Payload Positioning System is an SGI
68010 based processor board with 512K bytes of onboard RAM,
sockets for up to 256K of ROM (128K used in this application),
4 serial ports and a parallel port The RAM has on-board parity
checking and Is mappable using SGi's memory management
hardware to appear anywhere in the processor's address space.
Although the hardware supports virtual memaory, this feature was
not used since there is no “mass storage device” in the system.

SKYFFP (TM)-floating point accelerator board

The floating point accelerator board improves the speed of
floating point operations from approximately 25 microseconds
per operation to about 5 microseconds for single precision add,
subtract and multiply. This is used strictly to support the PPS
software,

Visual CPU

This 68000 based cpu board is used primarily as a controller
for the graphics. At 500 polygons/frame or 2,500 polygons per
second, 2,500 times 4 points/poly times 3 dimensions per point
times 4 bytes or over 100K bytes of data must be pumped thru
the pipeline every second. The board has 256K bytes of on-board
RAM and up to 84K of ROM, two serial ports and a mouse-port.

GF1 - Geometry Engines

A ribbon cable connects the processor board to the start of
the Geometry Pipeline (TM) onthe GF 1 board. The 14 GE's(figure
6) translate, rotate, scale and clip world coordinates (x, v, z, w) o
determine screen coordinates. The frame buffer controller (FBC}
located on this board interprets strings of coordinates and
commands as either point, line or polygon primitives. The FBC
then translates these graphical primitives to commands which
Fill Processor {LUC3) interprets. Polygons may be broken into
several quadrilaterals by the FBC software to take advantage of
an optimal rectangular filling algorithm,

Figure 6. GF1 Board with 14 Geometry Enginas

UC3 - Fill Procassor

The Fill Processeor imptements the filling of polygons in very
fast hardware, accessing upto 16 pixels in parallel. Inalarge area
fill, 44 million pixels per second may be written. Line draw speed
and filling at the edges of polygons is very orientation dependent
due to the architecture of this device. Worst case, when the fill
processor is hitting only 1 pixel per cycle, the 44 megapixel fill
rate decays to less than 3 million per second.

BP1 and BP2 - Bitplanes

Bitplane memory comes in increments of 4 bits by 1,024
pixels by 1,024 lines per board. Since this application is black and
white and typical monitor response is only 4 bits of greyscale (16
shades of gray), only 2 bitplane boards are used. They are applied
by drawing an image into one board while the other board pro-
vides the data for the image seen on the screen. By swapping the
role each board plays during the vertical retrace inferval no
glitches or flickering is apparent. In this application, the bitplanes
are “ping-ponged” approximately five times per second (ie. the
image update rate).

DC3-Display Controller

One of the functions of this board is to provide all of the syn-
chronization and timing information for the system. Numerous
digital clocks criss-cross the system, and most of them are
generated by this board. Since high speed state controller logic
determines the raster format, the board is, in a sense, program-
mable. Digital to analog converters on the board provide the
video output signals.

Software Architecture

All of the software developed for this application is written in
C. The Silicon Graphics RIS (TM) 1400 Workstation and Mostek
Matrix 68K Development System running UNIX (TM} were used
to implement and debug the code. Much of the PPS software
existed as a Pascal implementation and was translated into C.

Thisis a multi-processorapplication where twoindependent
procassors execute their respective programs. These programs
communicate using a block of shared memory which includes
simple flags and structures to arbitrate access. The programs are
independently compiled, linked and copied into EPROM.
Changes to one processors code do not necessarily imply
re-compitation for both systems. In one processor, the entire
application package is treated as a single program which starts
with a physical reset of the processor board, In the other, a more
traditional approach whth an off-the-shelf operating system, the
partitioning of real time and off-line software and the partitioning
of tools versus application is evident. These two very different
orientations co-exist on boards plugged into a common chassis
and bus structure.

PPS

The PPS software is compiled as a set of independent modu-
les, and all of the modules including bootstrap code and device
drivers are linked into one executable file. The core image file is
then blown into [27256A EPROMS. No operating systern as such
is involved in the PPS side of the system. Bootstrap code in
EPROM on the PPS processorboard is executed in response toa
physical reset of the system. The system is initialized from codein
the same ROM's, including downloading 4k of microcode to the
SKYFFP (TM). The applications code (the PPS proper) is called as
a subroutine from the monitor section of the bootstrap code. Note
that all of the code executed by the PPS processeris contained in
4 read only memory devices (ROMs).

Two interrupt driven functions run on the PPS processor. An
interrupt driven reai time clock is included in this code and the
serial device driver is interrupt driven. The device driver is appli-
cation specific in that it detects the end of tha information blocks
from the host and sets both flag and pointer to end of block. The
incorporation of this type of code into the ROM’a dictated that the
application run in a supervisory state on the 68010 micropro-
cessor. Literally, there is no distinction between support and
application code on this board,

Visual Software

Visual Software must be addressed as four separate areas:
Real time software, real-time support, bootstrap, and modeling
tools.

Real-Time Software One of the design goalsfor the overail
program was to minimize the volume of real-time software. As a
general rule of thumb less code implies less time implies better
overall performance. The proprietary code for this application

procasses and displays three-dimensional objects on a two-

dimensional terrain plane in correct visual priority. Part of the
software calculates correct priority solutions in real time and
passes the object descriptor and three space location to the
code which displays the object. The system uses a “"painter's
algorithm™ and processes ohjects and polygons in a farthest
away first fashion. Qbviously, the ground (terrain) is processed first.

Allof this code makes extensive use of the IRIS (TM) Graphics
Library. Code was generated to manage and prioritize cbjects,
but the polygon display and object display routines are used
directly without modification from the Graphics Library.

Real-Time Support All of the real-time graphics support
software like transformation and display of three space polygons
was available as part of the IRIS (TM) Terminal Programming Envi-
ronment Since library calls are the same in the remote applications
(terminal) environment, standalone applications envircnment
and UNIX (TM) System V, graphics code can easily be tested in
several environments without modification.

Bootstrap As noted, an operating system (B kernel} is used
to support graphics operation. Since this Is a non-standard envi-
ronment, special bootstrap code was created. The {up to) 1 Mega-
byte ROM cardis treated as a mass storage device. Afunction which
down-loads code from the ROM card is called as system initiali-
zation. After download, checksum verification and stack alignment,
control is transferred to the downloaded program (B kernel). The
ROM copy is created from an Ethermet downloadable file,
therefore, the program may be tested before 28 EPROMS, almost
380K bytes of code, are created.

Modeling Tools

A comprehensive set of tools was created by R. Adams, of
Rediffusion to bridge the gap between the modelers point-poly-
object orlentation and the system implementation as “a C
program™. Collectively, they are referred to as the ETRAN mod-
eling system.

Source preparation

The modeling process begins with the standard UNIX (TM)
operating system ulilities. The modeler creates a source file
containing point and poly definitions. The last few lines of the file
gather the polygons into structures called sub-objects and the
sub-ohjects are gathered into objects, but the priority of the sub-
cbjects is determined by a relational operator whereas the
polygons are fix-listed within a suh-object The modeler may at
this time, or much later define a high and low leve! of detail
version for the object

The ETRAN source file is then compiled which checks all
polygons for planarity, generates any points which ara implied by
translation, scaling, mirroring or rotation of the defined polygons.
This level of compiler checking is independent of the graphical
output device and may be done on a simple UNIX (TM) based
system with or without graphics.

Preview

The goal of the modeling system is to provide feedback to
the madeler as early as possible. Using the [RIS (TM) 1400 Work-

192

station the object, sub-object or simply the raw polygons may be
examined in 3D perspective from any postion and orientation.
In Preview, the modeler “fiys” around the oblect using keypad
commands.

Once several objects are ready, and the terrain built, a version
of the database is built for the workstation. All priority issues and
transition range questions may be resclved at this time, com-
pletely independent of the ISC environment, While the 1SC
system is designed for 5 Hz, update rate operation, no constraints
are placed on the operation speed of the workstation version, lts
goal is to provide feedback concerning how the database looks
and the priority solutlon.

ISC testbed ~ L . s

A special configuration of the 1SC was used during the devel-
opment process {figure 7). Packaged in 2 20 slot ratherthana 10
slot chassis, the testbed allowed use of additional resources like
additional RAM, Ethernet support, a Multibus bus analyzer,anda
floppy disk during the development.

Figure 7.

1SC Testbed

Once the content of the database is established, a version of
the visual software is compiled for the ISGC, including an object
module which does inter-processor communication. This
executable file is then concatenated with “B kernel” to form a
“downloadable file". The visual program and database and
operating system are downloaded via Ethermnet as a single file.
The loader in the visual processor board ROM then transfers
control to the downloaded program. At this point, debug of the
database timing, system performance, interface issues and all of
the other elements of a system with two processors and over
§12K bytes of information begins.

With Ethernet, downloading and initialization of a database
takes less than 10 minutes. Programming a smgle 127256
EPROM takes 10 minutes on the average.

Debug

Isclated from the tools and support of the standard operating
system, debug was the most difficult phase of the development.
Such simple things as getting output from the program are non-
trivial in the testbed environment. As an example, normally pro-
grams wait until a print statement has completed before continuing
exacution of the user code. Inthe real-time envirohment, assume

L L

r
]

a 200 millisecond frame time and a 9,600 baud serial line as
the output device, Even with interrupt driven /O and good buf-
fering, it is an error, perhaps fatal, when the userattempts to print
more than approximately 200 characters in his code. The time to
print 200 charactersislongerthan the frame time and the number
of characters to print linearly increases with time. Ergo, at some
point, the system will either stop processing until the characters
all print, orlose output or some unpredictable combination of the
two. Needless to say, status messages became short, cryptic
and sporadic.

The ability to halt the system, examine core locations and
restart the system proved invaluable in checking out the 1/O
subsystem. Examination of structures in core independently from
visual and PPS processors proved the key to smoothlyintegrating
the system. In-circuit emulation proved to be useful onlyin getting
the debug monitor and software tools running. This applied to
only the first 100 or so lines of code and certain aspects of the
prom programming process.

The most consistently valuable technique in debugging the
system was to simply sit down with the source code and go to
work. The transition to high level languages significantly im-
pacted the way the system was integrated. This was reinforced by
the effort to prove code independently of the target environment
on a module by module basis.

ROM Checkout

The final media for all programs and database information is
EPROM. The file which was tested using Ethernet download is
now burned into 28 127256's. A final test of the integrated ten
board system Is performed.

Conclusions
Although initial skepticism concerning the approach was

vary high, this program has conclusively demonstrated the
feasibility of tight, modular, turnkey systems for selected training

tasks. The adaptability and performance of the M68000 micro.

when coupled to dedicated, high perfermance CAD/CAM oriented
graphics encourages the pursuit of reaktime graphics problems
using similar technigues. The next generation of VLS| hardware,
wherever it may come from, promises incredible advances in

193

'ss}_stem capability. However, full exploitation of this increased
capacity will depend upon the success of its couplhg with the
cotrect, systems oriented, design approach.

I s

Figure 8. Hecou;ery Truck

Acknowledgements:

The following people and organizations have contributed
substantially to the technical success of this program:

» Ronald B. Adams Il, Senior Systems Engineer,
Rediffusion Simulation, Inc.

« Mitchell Summars, Consultant

« Bruce Borden, Member of Technical Staff,
Silicon Graphics, Inc.

« Peter Broadwell, Member of Technical Staff,
Silicon Graphics, [nc.

