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Summazry

The increasing complexity of military
systems, reduced guality and availability of
personnel, and reduced resources have made
Weapons System Support and Readiness (WSSR)
more and more difficult to wmaintain. This
paper discugses surrounding issues and pro-
poses a system concept for developing, com-—

bining, and integrating advanced training,
job performance aiding, and Artificial
Intelligence {AI) technologies in order to

reduce the time and cost of maintenance
actions and their instruction. In particu~
lar, expert systems coupled with video disk
and other presentation and I/0 technology
will allow expert problem solving skills and
knowledge to be made available to relatively
inexperienced technicians, embodied in an
integrated maintenance Job Performance
Aiding/On-the-Job Training (JPA/0JT) system.
A key component of the system will be an
"exyplanation facility" through which the
underlying reasoning of the system can be
imparted to the technician. The basic
objective of the OJT component is to build
the conceptual knowledge of the technician
rather than have him/her simply execute
instructions. Since the expert system will
handle the dual role of job performance aid
and intelligent tutor, it is anticipated

that the separation between maintenance
actions and maintenance training will
eventually become less distinct. Conse-

guently, maintenance training equipnent as
we know it today can be expected to be
gradually superseded by some form of

"intelligent maintenance assistant.”

The Problem

In recent years, +the sophistication of
military systems has increased rapidly, and
the attendant maintenance and diagnostics
requirements bhave becone corregspondingly
mere complez. At the same time, the guality
and availability of incoming personnel has
decreased. The resulting gap between the
desired level of personnel expertise and the
characteristics of incoming personnel have
placed technical knowledge and skill in
chronically short supply. As a result,
Weapons System Support and Readiness (WSSR)
ig and will continue to be more and mwore
difficult to maintain.

Current trends will exacerbate the
situation: the population of eligible youths
for military training 1is declining, the
reading and skill level of military recruits
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is not increasing at the same rate as equip-
ment innovation, technical documentation is
becoming more complex and voluminous,
over rates are high, and job competition
from private industry is strong. This
places tremendous pressure Uupon military
training reguirements.

turn-

In this paper, we will argue that a
different approach to maintenance and train-
ing will be necessary to alleviate these
pressures. Based primarily wupon expert
system technology and cognitive science
research, we outline a system for cdombining
job performance aiding (JPA} and on-the-job
training ({OJT) to optimize resource use for
both majintenance and training.

Current Training Mefbods

Our systems concept is based  upon
experience with maintenance trainer design,
interaction with Air Force subject matter
experts (SME), and observations of aircraft
maintenance training procedures at  the
organizational level, that is, flight-line
maintenance at an Air Force Aircraft Mainte-
nance Unit (AMU). A brief overview will
motivate later discussions.

some basic schooling in
a new recruit begins to learn

Having had
electronics,

his or her Air Force Specialty Code (AFSC).,

with the expectation of reaching the
apprentice-trainee "3" level at the end of
initial training. Formal training is

conducted in a dual Ilearning mode-—both
classroom and OJT. Classroom instruction
typically includes the use of simulated
aircraft maintenance trainers or part-task
trainers, as well as traditional Ilecture
methods. These training aids provide
familiarity with alrcraft system Jlocations
and Technical Order (T.0.) procedures while
avoiding use of flight line eguipment and
resources. Safe simulation of malfunctions
without damage to real eguipment is there-
fore possible. o T T

Training on the actual aircraft employs

the "buddy system" wherein a "5 level
apprentice, qualified on a particular
system, would supervise malntenance activi-

ties of the ™"3" level ~ trainee. This
apprentice training is meant to impart mini-
mim basic concepts on a particular aircraft
systems operational checks, the use of
T.0.%5, diagnosis and troubleshooting, and
removal and replacdement of Line Replaceable
Units (LRU). Typlically, an additional vear



of OJT at the AMU is required before a 5-
level or apprentice rating is achieved.
Further experience and testing, as well as
considerations of position and rank, are
necessary before the supervisory "7 level
of technician-specialist is achieved.

Shortcomings of Today's Training

Though classroom training - at the
apprentice trainee level has improved with
the introduction of more sophisticated simg-
latjion devices, training on the flight lipe
has suffered due to increasing burdens and
changing expectations at the 5-level. The
apprentice, while fully qualified to work on
his system  specialization, must also
supervige 3-level trainees and impart those
skills critical to mission readiness.
Typically, the majority of maintenance tasks
involve troubleshooting as opposed to opera-—
tional checks and removal /replacement,
Additional tasks such as keeping up with
T.0. changes and new aircraft equipment also
contribute to Jjob complexity and impact
efficient time management.

such as RIVET Force,
combine certain gkill
codes and specialties, thus increasing the
knowledge base required and forecing
additional emphasis on  troubleshooting
experience and training. Ag a result, the
frequency of undesirable troubleshooting
strategies (such as "shotgun" removal and
replacement) may increase.

Expert Systems for Maintenance JPA/OJT:
Application pbilosophy

We believe that an expert system-based
tool for integrated JPA and QJT offers great
promise in aiding achievement of WSSR objec-
tives. Military programs for development of
expert diagnostic system prototypes are
already well underway; these systems could
be exzpanded to the type of intelligent
machine assistant and tutor combination that
we envision. An intelligent JPA/OJT tool
could aid personnel on the job using a com—
bination of expert knowledge of fault diag-
nosis and repair, advanced interface
techniques, and most importantly, provide
mechanisms to explain its reasoning and
knowledge to the user in a tutorial fashion.
The l1dea is attractive for its two-for-one
use of personnel time: real maintenance work
and individual training both get done simul-
taneously. If the funding of expert aystem
technology continues at the current level,
we view the development of a JPA/CIT tool as
a potential near-term solution.

New directives,
are attempting to

The central concept in both traditiconal
training and advanced expert system-based
JPA iz to put available knowledge to work
when and where it is needed. In training,
the emphasis is on putting knowledge in the
head; in AI, it is on putting it in highly
usable form in a machine, But we strongly
believe that expert systems will not ang
should not be seen as eliminating the need
to develop human experks. First, advanced
JPA's should be cooperative problem solving
environments, where both man and machine
contribute according to their respective
strengths. Man is not djust a sensor/
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effector. Second, without a dedication to
training we will be left with no true
human experts, Machine-based knowledge
should be thought of as a supplement, not a
replacement.

The distribution of human expertise in
a typical domain is shown in Figure 1. Note
that very high expertise ig rare. Pigure 2
illustrates the relative capabilities of the
best human experts, state-of-the-art expert
systems, and new trainees. Though there are
claims to the contrary, it is highly unlike-
ly that practical, intermediate-term ES's
will be able to handle all rare and obsgeure
there will always be some expertise
that cannot be incorporated into the know-
ledge base (e.g., using subtle perceptual
cues, or postulating hypotheses based on
"deep,"” or causally-based knowledge and
experience). Consequently, it always will
be necessary to rely on the best human
experts to solve problems whichk require
human flexibility.
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Figure 1. Digstribution of Human Expertise
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Figure 2. Relative Problem Solving
Capabilities
.There is an obvious need to ensure a
continuing supply of expert individwals in
the training pipeline. The use of expert
systems strictly as a problem selving JPA

will do nothing to develop the next genera-
tion of human experts, Instead of adopting
4 smart machine/dumb man philosophy we need
o focus on a amart machine/amart man
approach. In other words, we need to employ
expert gsystems in building human expertise
as well as in getting the job done.

. Ideally, this would be accomplished by
creating an OJT environment in which the
function of the maintenance support system
could vary ag shown in ¥Figure 3. Under
crisis conditions it would act as a expert
JPA, minimizing time to completion. Under
conditions of light workload it would

function as an off-line Intelligent Training
System (ITS) using advanced explanation



facilities and tutoring techniques
(discussed later). Under normal conditions
it would perform a mix of JPA and ITS which
would help to improve the efficiency of OJT.
For the maintenance domain, an expert OJT
system could 1) improve the ability of the
low end performers to the average level 2)
support the high end performers when they
are under time pressure by forcing a
rational approach and 3) preserve eroding
expertise in a usable form, The intention
is not to replace man but to support him Dby
integration of expert system knowledge with
his own experience, For advanced JPA, this
calls for a mixed initiative mode of opera-
tion in which either man or machine can take
the lead depending on the particular ecircum—
stances. The basic architecture of a system
intended for this dual role iz illustrated
in Figure 4.
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Figure 3. Varying Mix of JPA and Tutor
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Figure 4. Combined JPA and Intelligent

Tutor
Expert System Techbpologv: An OQverview

An expert gystem is designed to solve
{or assist in solving) complex real-world
problems by using knowledge derived from
human experts, Expert systems are the most
mature and commercially predominant imple-—
mentation of AI technology today. Conse-
quently, there are currently hundreds of
expert gystems in existence (of widely
varying guality, complexity, and ubtility),
an assortment of software "tools®™ for build-
ing eystems large and small, ‘and an abun-
dance of introductory literaturel. Table 1
liats several "classical™ systems.. ’

although promising, today's ES's have
shortcomings +that have thus far limited
their widespread and routine use. For
instance, ES behavior is "robust™ only
within a very narrow domain of expertise;
the system will fail to yield valid results
{and not know it} if that range is exceeded.
For gimilar reasons, choosing a good problem
turns out to be the real key to a successful
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system because not all problems are anenable
to ES treatment, Also, user-system inter-
action 1is generally very limited and user
acceptance has been poor due to insufficient
support for system conclusions and inability
to answer quegtions as a human consultant
would. In sum, there are few large and
routinely used ES's due to either technical
or human factors problems. This situation
is changing, however, as these issues are
addreszed in research laboratories and
commercial prototypes. ’

Table 1. Examples of Expert Systems
System Domain of Expertige
MYCIN Diagnosis of Infectious
) Diseases
PROSPECTOR Geclogical Exploration
DENDRAL Molecular Structures
MACSYMA Mathematics
XCOoN Computer Configuration
DIPMETER 0il Well Drilling
CATS-1 . Diesel-Electric Locomotive
Maintenance
Figure 5 illustrates the basic archi-
tecture of an expert system. The knowledge
base contains the human expert's knovwledge,
typlcally in the form of rules and facts.
Rules generally take the form "IF (some
conditions) THEN {(some action).” The

engine controls the order in which
the rules in the knowledge base are invoked
to sclve a specific problem submitted by the

user. The  knowledge acguisition  I{EA)
i allows the subject matter expert,
who may not be very conversant with

computers, to enter his knowledge directly,
with prompts from the system. In practice,
assistance from a "knowledge engineer”™-—the
AT equivalent of a software engineer—is
usually needed to integrate the new know-
ledge into the existing system. The yser
interface allows a dialog between the user
and the system, including requests for user-—
supplied data.

:élg;ll.EBﬂE
— 1SITION
T FACILITY

KHOWLEDGE
BASE
EXPERT
w rlSEn INFERENCE
INTERFACE - ENGINE
USER
Figure 5. Basic Expert System

Although most "vanilla" ES's look the
at this level, in reality there are
differences in the design of
nontrivial systems for different types of
problems, particularly in the inferencing
mechanism. For instance, an ES for diagnos-
tic purposes works wvery differently from an
ES for planning or design. MYCIN, a diag—
nosis ES, uses backward chaining to derive
the probability of a certain diagnosis based
on 1limited input data. XCON, an ES for
design, uses a generate-and-test method to

same



produce a hardware configuration based on a
customer's order. There is no single mode
of reasoning across all gystems.

Wby Traditional Expert Systems Do Mot Make
Good Fraingxs

On first inspection, 1t locks like an
expert system's knowledge base wonld be just
what is needed for trailning. After all, all
the knowledge necessary for expert problem
solving is there, and additional rules for
teaching might be added easily encugh.
Unfortunately, using an ES knowledge base
for teaching turns out toc be not as easy as
it locks, due to some subtle problems. In a
nutshell, the the real-world equivalent is

that many of the best human experts do not
turn out to be effective teachers.
When designing a conventional expert

system the primary or only objective is to
create a successful problem solving tool.
The architectures of mogt current expert
systems reflect this principle, However,
since it may be necessary to convince the
user of the validity of the solution to the
problem, some explanation capability is
usually incorporated. In most cases this is
achieved by "playing back" the appropriate
rules to the user. While this explanation
technigue may sometimes be adequate for
justification of the system's conclusions,
it is far from satisfactory for instruction-
al purposes. There are several reasons for
this:

1) The rule's English equivalent may
not be easily interpreted. For
example, consider +the following
MYCIN rule:

IF: 1) THE INFECTION IS
MENINGITIS
2) THE SUBTYPE OF MENINGI-
TIS IS BACTERIAL
3} ORLY CIRCUMSTANTIAL
EVIDENCE IS AVAILABLE
4) THE PATIENT 18 AT LEAST
17 YEARS OLD
5) THE PATIENT IS AN
ALCOHOLIC i
THEN; THERE IS SUGGESTIVE
EVIDENCE THAT .-
DIPLOCOCCOS-PNEUMONIAE
IS AN ORGANISM CAUSING _
THE MENINGITIS

In this case the underlying causal
process to be explained is:

ALCOHOLICS BREATHE IN
THEIR OWN SECRETIONS, S0
ORGANISMS FOUND IN THE
MOUTH CAN TRAVEL TO THE
LUNGS, CAUSING
PNEUMONIA.,
Thig explanation is not clearly
evident from the above rule
because the real reasons for why
the premises lead to the conclu-
sion are not present in the rule;

causality is implicit rather than
explicit, This means +that the
system can perform well, but

17

doesn't "know" enough to be able
to explain why what it does works.

2) The underlying knowledge is
usually embedded in many
rules and there is Implicit know-
ledge contained in theé
interaction between the rules.
This means that a single rule

might only make sense in the con-
text of other rules that work with
it, either in terms of programming
tricks, problem solving strate-
_.gies, inference structure (i.e.,
contreol), or meaning. .

3 The inferencing technigques used in
an ES rarely even attempt to emu—
late the same form of reasoning as
a human expert, The uniform con-
trol structures, logie, and/or
probabilisgtic technigues that are
-used by an ES to arrive at the

same conclusion as & human expert
are usually very different than
the human reasoning process.

Though this is not important if a
single (correct) answer is accept-
able output, the surface behavior
of the syvstem (e.g., a series of
data reguests at the user _inter-
face) and resulting explanation of
a system's "line of reasoning™ can
be difficult or impossible to
follow or emulate, can be ineffi-
cient, or frustrating. In appli-
cations where understanding system
recommendations is important, user
acceptance is greatly reduced.

An expert system designed primarily for
problem solving has proved tc be of limited
benefit as a device for teaching, without
major overhaul.
tive the system muat have explanation as its
principal thrust, This requires an archi-
tecture and knowledge base that differs from
the conventional "performance™—oriented
appreoach, In the next section, we discuss
ATl as applied to classroom instruction, as
background to the JPA/OJT system that incor-

" porates many ICAI technigues.

Intelligent Computer Bided Instruction
-{ICAI} -

: The effectiveness of a traditional CAI
system is dependent upon the ability of the
courseware author{s) to anticipate every
possible incorrect response by the =student.
The program can then branch to instructional
material intended to remedy the poztulated
deficiency in the student's understanding or
knowledge. In Cal, all. responses are
"canned”™ (i.e., written word by word and
stored in the program verbatim} and are_

“invoked at specific program branches.

In an ICAI gystem, responses may be at
least partially constructed by the program
as it executes, and can be invoked in a more
flexible fashion. Ideally, the program can
use this "intelligence” to adapt to instruc-
tional situations not specifically foreéeseen
by the courseware author. Also, since’ an
ICALI system includes an “"expert tutor,™ the
{programmable) teaching strategiezs of the

To meet the training objec—



best instructors in a particular domain may

be captured and made available to many
students via machinery. {Note that no ICAI
system to date claims to replace instruc-

tors, only supplement them.)

Table 2 shows several examples of ICAI
aystems that have been successfully imple-
mented and documented2. The basic archi-
tecture of an ICAI system is depicted in
Figure 6. There are three main components:
an ezpert knowledge base J{essentially an
embedded ES). &the tutoring meodule and the
student model. The expert knowledge base
contains the specific task knowledge and, as
will be described later, must be organized
in a form suitable Ffor instruction and

explanation, as well as problem solving
performance.
Table 2. Examples of ICAI Systems
Systen Subject
GUIDON Medical Diagnosis

SOPHIE Electronic Troubleshooting
WEST Elementary Math
BUGGY Arithmetic Skills
SCHOLAR Geography
MENO PASCAL Programming
STEAMER Steam Propulsion Plant Operation
ICAL SYSTEM
'.I"l.‘l‘I'ORING
e SRR
Figure 6. Basic Components of an ICAI

System
The Student Model

The student model is a "snapshot"
representation of the student's knowledge
and understanding of the subject matter

under instruction. Ttz function is to pro-
vide input to the tutoring module (e.g..
gaps in a student's knowledge of the domain,
problem areas, interaction history). in
addition the student model may contain
hypotheses about a student's possible
misconceptions. Of necessity the number of
recognized misconceptions must be limited to
a commen subset due to  the virtually
unbounded number of possible misconceptions
that could exist about most topics.

The two most common methods of imple-
menting a student model are the Toverlay"
and "bug®™ approaches. In the overlay method
the student's knowledge is represented as a
subset of the instructor's knowledge. In
the bug approach the student’'s knowledge is
characterized as & series of bugs (i.e.,
deviations) from an acceptable understanding

of the subject matter. For example, a
aystem c¢alled Buggy can recognize 130
different possible bugs in the performance

of subtraction
numbers.

of two multiple digit
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The student model is created and main-
tained using several techniques. These
include direct questioning of the student,
implicit evaluation of the student behavior,
and historical observation of the student's
learning experience. some form of student
model is key to a successful ICAI system.

The Tutoring Module

Good instruction regquires knowledge
about how to teach a particular subject in
addition to a mastery of the subject matter
itzelf. The tutoring module incorporates
instructional theory into teaching strate-
gies. It commanicates with the student,
gelects courze wmaterial, eritigues his
actions, prescribes remedial material and
provides assistance as appropriate.

_ There are several teaching strategies
used in ICAI systemsg: o T

o Constructive debugging: characterize
the bug and focus on correcting it.

o Reactivé iearning: give feedback to
the student on his ideas.

o Socratic tutoring: allow the stu-
dent to formulate his own beliefs.

o Coaching: cbgerve the student
and interrupt when appropriate to
suggest new ideas.

The last method, c¢oaching, is the one
that shows the most promise for job perfor-
mance aids and 0OJT since it most resembles
the master—apprentice scenario. :

What is Needed for Maintenange OJT2
Maintenance Technician's Role '

when T.0.'s are incorrect,
incomplete, or ineffective in locating a
fault, or when automatic test eguipment
itgself fails or is also ineffective, a main-
tenance technician must originate his own
procedures for troubleshcoting and repair.
We have argued in a previous section that
thig will continue to be the case even with
the advent of expert systems. The tralning
problem does not go away: at minimum, there
will be a need for competent human backup to
automated systens. Our basic argument is
that some number of technicians must have
the skills and knowledge to construct rather
than just follow technical procedures for
trounbleshooting and repair. Given that
expert system technology matures sufficient-
ly to be used routinely by maintenance
technicians as JPA's, how can we extend them
for master—apprentice 0JT, so they can serve
double duty?

Currently,

Making Minimum Fnowledge and S$kills Explicit

In any training setting, training costs
should be contained by first identifying the
minimum knowledge and skills necessary to
perform tasks associated with a particular
job, and then provide training which pro-
motes good retention and the ability to
apply what is learned to real problems3. It
is generally recognized that teaching



trainees to follow T.0. procedures alone

does not promote flexible troubleshooting
skills. Other conceptual knowledge and
cognitive skills necessary for proficiency

must be identified.

Identifying this minimom set is parti-
cularly important for using expert systems
in training since typical gystems contain
only the knowledge necessary to perform well
to solve the problem. They do not contain
conceptual knowledge per se; 1t is said to
be "compiled into"™ the performance knowledge

in the same way that rationales for T.0.
procedures are implicit in the procedures
themselves and unavailable for inspection.

Symptom—-fault associations of the type con-
tained in & rule base are the "compiled"

version of the deeper causal chains and
inferencing knowledge posgessed by an
expert.

One of the advantages of the targeted
master—apprentice training paradigm is that
a good Jjourneyman ¢an give a running
explanation of what is going through his
head ag he constructs his procedures: he
makes his rationale explicit for the
learner. "FThinking aloud™ protocols of
expert problem soclvers demonstrate cluster-
ing of closely associated concepts, use of

"competitor setsg" {sets of competing
hypotheses consistent with accunulated
evidence), and "chunking™ of evidence and
clues in ways that evoke particular
hypotheses or a data-collection activity.

Thus, it becomes imperative that we identify
the types and uses of expert knowledge that
will be necessary for good OJT commentary,
because it will otherwise not be in the
system when it is needed.

Recent resgearch suggests that trouble-
ghooting proficiency has at least three
basic prereguisites;

0 device-specific conceptual knowledge
¢ an understanding of how to use de-

vice knowledge to direct the appli-
cation of available troubleshooting

techniques
¢ skilled performance  of basic
troubleshooting technigues {e.g.,

resistance checks, voltage checks)
Device Enowledge

It is obwvious that the technicilan must

know something about the device he must
troubleshoot, What 4is a source of radical
digagreement, from the standpoint of impact

on resultant training requirements, is how
much and what type of knowledge is necessary
for a technician to understand and reason

about complex systens. If & knowledge of
theory is deemed necessary (evg.r the
ubiguitous Ohm's Law) then training will be

much more costly. Qur position is that for
most troubleshooting, there iz a middle
ground between learning strictly procedural
material and learning in depth theoretical
material, That middle ground is described
in terms of device function and role, out—
lined below.
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. [structure and/or

Engineered devices and their components
can be understood using four highly inter-
related conceptsi:

o The "role"™ of a device iz the
function that the device plays
within the context of other struc—
tures (e.g., the role of a power
train 1is to transmit the rotary
motion that is produced by the

engine to the rear wheels),

¢ The "function® of a device is its
behavior as a black box, but unlike
its "role" it Is context-—free (e.g.,
the function of a wheel is to spin,
but its role must be dJdefined in
terms of what spinning does for the
system as a whole, as in a gyro-
scope, or a steering wheel),

o The "gtructure® of a device
describes what componentsg it is made
of and how they are connected. BEach
component can in turn be described
in terms of its own role, Ffunction,
etc.

0 A device's "mechanism® is how its
structure produces its function.
This 1is uswnally a physical causal
chain (e.g., in a Rube Goldberg
machine, the swinging boot kicks the
bucket that contains the ball that
rolls down the chute and knocks over
the first doming...).

A synthesis of recent research leads us
to believe that it is knowledge of the
functions and roles of individual system
components and their functional interconnec-
tions that is crucial, but only to the
particular componert level that the techni-
cian can (or is expected to) affect. If a

technician is responsible for repair at the
LRU level, he need only know encugh about
each componentt's inputs, conditional

processes, resultant outputs, and functional
connections to other LRB's to be able to

- apply general troubleshooting principles to

construct an efficient set of procedures.
To apply these principles, he need only know
how an LRU will act given a certain set of
inputs. Specifically, what he does not need
to know is the theory (mechanism) behind an
LRU's operation or what subcomponents it
consists of (structure} if the LRU is the
lowest level of his repair responsibility.

It i1s only necessary to promote enough
comprehension of each component so that its
effects on other components can be under-
stood. For example, in the case of a gsimple
electrical battery it is not important to
understand the basic electrochemical process
taking place within the battery. It is
sufficient to know the effect of varicus
loads at the terminals and what the impact
is when the parameters go outside normal

limits. The only excéption that ig allowed
to this general rule is if a component's
processing is more easily explained and

remembered by reference to its subcomponents
mechanism) than by a
description of its overall Processing

function,



We have dubbed this level of under-
standing of a device as a "minimum mental
model," emphasizing an understanding of the
interaction between system components. it
has been experimentally demonstrated that a
ninimum mental model of a device is
necessary and sufficient to promote faster
learning, more accurate retention, and
faster execution of operations procedures
than strict memorization of those same
gperations procedures without the model>.
In addition, it allows inferences to be
drawn about faults and their possible loca-—
tions based on expectations about proper and
improper device functioning.

Strategic Knowledge

The other critical component of
proficiency is more elusive. It is strate-—
gic knowledge, and concerns the use of a
device model in constructing a set of
procedures which will i1solate a fault.
Strategic knowledge can be viewed as a body
of decision rules that are invoked by parti-
cular aspects of a conceptual view of the
domain. This knowledge has all the hall-
marks of expert problem scolving: use of
perceptual cues, heuristics (hit-or-miss
rules of thumb), attentional £focus, hier-
archical goal structures (e.g., divide-and-

conquer troubleshooting  strategy), and
flexibility. This is the knowledge that is
buried in T.0. procedures, and that is

implicit rather than explicit in most expert
system knowledge bases.

Research has demonstrated that  there
are large differences in skilled and
ungkilled airmen in their ability to
construct an understanding of the problem
space, pursue hierarchical goals, and
gystematically focus their hypothegesé6. it
has been said that the task goal structure
of gome unskilled airmen rarely becomes more
elaborated than "get the supervisor off my

back." Without guiding strategies, trouble-
shooting can and often does turn into
"gwaptronics,” in which a technician
replaces each replaceable part with a new

part which is believed to be fault—-free. In

problem solving parlance, this is called
"blind search,”™ and is one of the wmost
inefficient methods of problem seclving.
Because one keeps swapping until the test

egquipment indicates normal unit functioning,
this blind search usually works if there 1s
a single fault located in a swappable part.
For this reason, it is effective, but
extremely inefficient and costly.

The training problem is this: in
extended practice sessions, it is the number
of correct performances of a task that
determines the adequacy of learning and
subsequent skill proficiency, not just the
nunber of trials?. This is true of cogni-
tive as well as motor skills. The obvious
lesson is that swaptronics is not valuable
experience; "doing the Jjob" in this way
doesn't provide good practice. -

A training system should therefore
emphasize strateglc problem sclving, since
there are large gains to be had for a more
structured approach to the troubleshooting
activity. The training should include a
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large number of practice sessions where the
job~ is done "right,"™ that is, efficiently
and expertly. This is the role that could
be played by JPA/OJT expert systems.

System Concept for JPA/OJT Expert Svetem

Systen Concept

an expert JPA system designed £for
troubleshooting could and shounld also be
designed to be articulate, augmented with
explicit device and strategic knowledge for
uese in training. Equipped with this know-
ledge and, optionally, other media exten—
sions, an articulate expert system could
serve in a master—apprentice, learning-by-
observing, learning-by-doing paradigm.

We envision this system as a kind of
"Inteiligent Technical Order" aystem, with
the system using and explaining its diagnos-—
tic expertise, and supplying streamlined
technical instructions to the technician.
Actual troubleshooting procedures would be
carried out and results reported back by the
human technician.

Videodisc imagery (stills and woving),
graphics, voice synthesis and perhaps voice
recognition, and on-line database interface
serve as add-ons to this basic concept,
allowing the trainee f{o observe correct
performance of basic troubleshooting tech-—
nigues that have not been mastered (e.g.r
measurements} illustrations of device
models (e.g., - highlighted schematics of
components and thélr functional relation-—
ships), and other JPA-oriented informaticn
display techniques (e.g, no-fault values).

Though it will not be pursued further in
this paper, combilning media and "intelli-
gence" creates a highly desirable informa-

tion delivery synergy, particularly when the
goals of job performance aiding and training
become temporarily indistinguishable (as in
the case of basic measuring methods).

As digcussed in prior gections,
existing written troubleshooting and mainte-
nance procedures can reflect hidden
rationales that are necessary to develop a
full understanding of why the procedure is
reascnable. What iz needed for training is
a system that displays expert cognitive
skills as a model for the trainee, explain—
ing and justifying its problem solving
behaviors in terms that make explicit the
underlying concepts, sgtrategies, and device
models. For instance, a T,0. procedure to
test a certain component before ancther may
have been motivated by an historical data
base that shows the first as the most likely
fault candidate. The JPA/OJT system should
point this out:

the fault could be
caused by one of two things. Either
component A is not Xing correctly or
component B is not Zing correctly.

"at  thiz point,

[Opticnal  highlighted  video of

component functions.]

Component A is usually the problem.
Test it first,



[Optional video
procedure.j”

segment on testing

In our
niques, we

studies of explanation tech-

have identified other implicit
knowledge and meta-knowledge that shounld be
explicitly stated in an explanation. For
instance, heuristics (rules of thumb) should
be identified as such, just as a master/
teacher would:

"Usually, jiggling this knob may reveal

a dirty contact, but this docesn't

always work."

Other examples of c¢rucial embedded
knowledge that should be called out in

explanation of procedures is:

o relating data requests to pursuit or
change of current subgoalsg

o focus of attention on cues trigger-
ing alternative hypotheses

¢ distinguishing causal shortcuts
(2—— D) from full causal chainsg

{A-—— B— C— D)

o justification of elimination of
alternatives (e.g., Tthe fault is
not in component A because...")

Note that this JPA/QOJT combination
makes a tradeoff; the job gets done a little
slower than with the pure man-as-effector
paradigm, but the man geéts "smarter." There
would be 1lese dinstructional intervention
than with an off-duty tutoring system, but
on the other hand, there iz useful work
getting done during learning.

This gsystem concept also has an
important efficiency going for it: work is
learning. In a nutshell, this is because
the procedures take on meaning: "what to

do," "when to do." and "how to do" get
related to "why to do." By making
procedures meaningful--and successful-- we

satisfy the requisite criteria for making
practice useful, and get better use of main—
tenance time for both maintenance and train-
ing for those situations when expert systens
will fail and expertise must be available
elsevhere.

Cancept Expansion

As it stands now, our system concept
{Figure 7) is not a complete, classroom-type
ICAI system., This is intentional, primarily
because a really robust ICAI system which

does socratic tutoring and testing is very
difficult to build, particularly with
respect to user modeling. We have chosen
instead a limited Toverlay® user model

(which views novice knowledge as a subset of
expert knowledge and ignores possible mis-
conceptions) and develcped a model of
explanation with associated algorithms. The
primary emphasis is on effective explanation
of expert performance on-the-job.

The Explainer block contains the know-
ledge and algorithms needed to prescribe and
create explanations and justifications of
the actionz and knowledge of the expert
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system. The
supporting

Metaknowledge Bagse contains
knowledge about the expert
system's "performance™oriented Enowledge
Base and its control strategies. Embodying
some basic theories of understanding in
dialogue, the Explanation Model within the
Explainer block is relatively independent of .
complex user states except in terms of past
dialogue cortent and structure. It is
primarily a set of algorithms that calculate
what might be missing from the user's under-
standing of expert system behavior, using
the limited User Model as input. It applies
some "metalevel®™ algorithms that operate on
the knowledge bases to construct .explana-
tions consistent with high-level models of
the components of satisfactory explanation
for several generic sublect = matters
(engineered devices, goal-orjented diagnos-
tic actions). Explanations are constructed
according to principles of natural
gtructure8,

:
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FPigure 7. Simplified System Concept

This approach is roughly equivalent to
asking "how would I explain this device or
line of reasoning to a person whoe I don't
know personally?." A great deal can be done
with a system of this type without becoming
entangled in a lot of expensive complexity
of the type faced in elaborate ICAI aystems.
A key assumption is that the user can ask
for more detail if he doesn't understand,
and that there are conversational ways of
testing =a user's approximate level of com-
prehension. Emphasis is placed on explain-—
ing rather than interactive tutoring.

Rnowledge Representation and Control
Structures

Using an AI-based system for training
places certain dJdemands upon its modes of
problem solving and the form of its know-
ledge base, As was stated above, expert
systems are usually coriented toward perfor-
mance rather than explanation; they tend to
be black boxes rather than glass boxes. At
least two very basic characteristics of
typical expert systems will have to be modi-
fied before they c¢an be acceptable sub-
strates for training applications:

First, the problem solving method used
by the system must be capable of emulation

by humans. For instance, "brute £force"
computational methods employved by some
expert c¢hess programa make their problem



humans to
& popular

solving methoed impossible for
emalate. Backward chaining is
control structure for an expert system, but
aystems that use it ({e.d., MYCIN) are
psychologically invalid and  virtually
imposgsible to learn. Much good descriptive
work has been done on human diagnostic
problem solving, in which forward and back—
ward reasoning is mixed to accommodate work-—
ing memory and other human factors. This
work should be consulted as a model for
future control structures that are in fact
enulative. For example, in NEOMYCIN
progress has been made toward an extensible
representation of domain-independent strate-
gic knowledge for instructional purposesS.

Second, the most critical strategic and
supporting conceptual knowledge underlying
diagnostic procedures must be explicitly
represented and either integrated with or
cross—referenced to the "performance" know-
ledge base (see Figure B8). This is
necesgary to allow the system's Iinferences
and 1lines of reasoning to be justified in a
manner c¢ompatible with ™natural™ explana-
tien. Use of knowledge organizations which
are hierarchical or heterarchical and
multiply—indexed (i.e., through multiple
relations) is desirable for explanation
since gystems of objects can he represented
from wvarious relational viewpoints (e.dg.r
structural, functional, mechanistic). For
example, operaticnal eguipment can be repre-
sented a hierarchical "partology"” describing

the structural composition of a c¢lass of
equipment. Uslng the same objects with a
different relational persgpective, edquipnment
can be represented as a "functionoclogy,"
with each part associated only with its
functional role in the system as a whole.

{Incidentally, we believe that this kind of
knowledge will eventually be necessary
anyway, for purposes of updating the system
by way of intelligent knowledge acquisition
and maintenance.)
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Figure 8. Problem Taxonomy is Separate From

Diagnostic Strategy

For lnstructional purposes, rules turn
out to be a poor way of representing chunks
of interrelated knowledge. A frame-based or
gemantic network-based representation
currently best £ills this need (note that
the two are formally equivalent, just
different mechanisms). A frame-based system
actually incorporates a number of generic
rules (e.g., for inheritance) that allow the
representation to more efficiently encode
highly interrelated knowledge chunks.

It is this knowledge chunking that we
are after, silnce it allows us to talk about

knowledge in a more connected way (e.g., a
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bigger chunk than a single rule). _Attempts
to wuse MICIN rules as the to-be-learned
material have shown that it is exceedingly
difficult te learn rule systems per sed,
The rule forms in expert systems are
apparently not the learning P"primitives"
they were thought to be. Experience has
also shown that an explanatlon/training
facility cannot be retrofitted to ‘a
traditional rule-based system——the knowledge
reguirements are too different. Thus, the
time to think about design requirements for
a JPA/OJT system of the type discussed in
this paper is hefore a strictly performance
oriented system 1s built, not after. -

s

Artificial Intelligence can be expected
to have a significant impact on maintenance
training in the future. Expert job perfor-
mance alds are expected to improve mainte-

nance effectiveness, egspecially ~ for
moderately difficult diagnestic tasks.
HBowever, human experts possessing a sound

conceptual knowledge of systems and trouble-
shooting strategies will still be necessary
to handle the rare and exceptional faults.

In order to provide cost-effective
training necessary for maintenance personnel
to understand and reason about increasingly
complex systems, we have proposed a system
concept for an "intelligent®™ JPA/CJT system.
This system would provide explanation and
multimedia illustration of the device models
and troubleshooting strategies underlying
expert system and guman performance. This
high guality “articulate expert ~ gystem"
would provide a means of combining JPA and
OJT without sacrificing the conditions
necessary to make both activities effective
and efficient.
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