ADA FROM THE VIEWPOINT OF SOFTWARE ADAPTABILITY AND MAINTAINABILITY
q¥ Paul E. McMahon
Link F1ight Simulaticn Division of The Singer Co.
Binghamton, New York

Summary

A major goal of the Ada language is to decrease
the cost impact of software modifications resulting
from requirements changes. This paper shows how
.Ada Was the potential to achieve that goal thr?ugh

Tes of modifications to the F-16 Trainer
k| Simulator. Ada features not available in
Fortren are discussed as thay would be applied to

F=16 TFS examples with the potential medifica-
tfen in mind, From the Fortran examplé€s provided,
the retfcrale for many of Ada's features can ba
steen. The point is made that Fortran is a program-
wing language, while Ada is a design, documentation,
and implementation system. Ada addresses all stages
of the software development 1ife cycle and is not
Timited to the coding stage. Many of the tools
which Ada provides must be initially applied during
design activities if Ada‘s full benefits are to be
realized in reducing the cost impact of software
modifications.

Introduction

The field of computer programming is a young
discipline with many complex applications growing
faster than the required development methodologies.
As a result, today 7t is more costly to maintain or
wodify software than it is to develop it. Barry
Boehm, in-his article entitled "The High Cost of
Software," estimated that by 1985 software costs
would be 90% of a project, with mor? than 503 of
this being required for maintenance!,

This paper shows how Ada has the potential to
decrease the cost impact of this maintenance activ-
ity through examples of modifications to the F-16
Trainer Flight SimuTator (TFS). The examples are
first presented within the framework of the current
F-16 TFS Fortran programing environment and then
analyzed in terms of how the modification problems
encountered can be avoided with Ada.

Definitions .

Software adaption fs defined as the activity
required to preserve the specifications of a soft-
ware component within a changing environment. The
change to the environment may be a hardware change,
such as a rehost to a new computer, or a software
change, such as the installation of a new compiler.
Software changes affecting the specification will
be referred to as a software modification.

Software maintenance is not as easily defined
as software adaption and software modification.
Software maintenance activity is frequently re-
quired during both the adaption and modification
process, but is usually not_a P1anned activity. As
stated by Glass and NoiseuxZ, "Maintenance is the
enigma of software: Enormous amounts of dollars
are spent on it. ‘Little research or management
attention is given to it. And, in fact, it is not
aven a well-defined concept!™ Glass and Noiseux
define maintenance as "the act of taking a software
product that has already been delivered to a cus-
tomer and is in use by him, and keeping it function-
ing in a satisfactory way.”

In this paper I plan to show that software main-
tenance difficulties are partially a result of pro-
granming Tanguages which have not addressed the

337

total life cycle of the software product.

Fortran,
in particular, does not provide the tools required
to effectively support the modification phase. Fre-
quently, this results in unplanned maintenance
activity. In contrast, Ada's features are oriented
to the potential modification, providing the mech-
anisms to develop software in a more rigorous fash-
fon with the modification process in mind.

The F-16 TFS Enviromment

The computer system hosting the F-16 TFS con-
sists of a 16=bit virtual machine, the Nord 10,
controlling four 32-bit slaves, the Nord 50‘s. The
Nord 10, produced by Norsk Data in OsTo, Norway, is
controlled by an interactive multitasking operating
system known as Sintran. Al1 system 1/0 is through
this computer. The Nord 50's are used as single
task computers which offload the Nord 10 from CPU-
intensive functions, A shared memory system pro-
vides communication. Al1 software development is
accomplished in the Nord 10, while the Nord 50's
are dedicated to the simulation task. Over 90 per-
cent of the F-16 software is written in Fortran,
with the executive software and I/0 handlers writ-
ten in assembler. The support software had origi-
na11y been rehosted from another hardware environ-
ment.

The examples discussed in this paper are taken
from two block updates to the F-16 TFS. The Block
10/15 update included the addition of a Fifth Nord
50, the addition of a block of shared memory, the
incorporation of automated tools, and the instal-
l1ation of the latest vendor software. The Block 25
modification included a software rehost to the ven-
dor's state-of-the-art equipment: a Nord 100/500
system. The ND100 reptaced the ND10 and the NP500O
replaced the ND5O.

Computer Vendor Software

= ‘.

Both block updates required installation of the
vendor's latest software products. This included
compilers, Toaders, and operating system. This
activity caused unanticipated memory limitation
probiems to surface. The 16-bit Nord 10 has a
limited logical addressing range of 128(B. On the
Block 10/15 update, the vendor operating system
enhancements required memory which was previously
available for the real-time simulation device
drivers, As a result, software which was not
planned to be changed required adaption.

Among the lessons learned during the software
rehost effort on the Block 25 update was an under-
standing of what the phrase "“upward compatible"
does and does not mean. Although the Nord 100 is
viewed as 100% upward compatiblie from the Nord 10,
extensive sofiware adaption was required. This was
due to the fact that "upward compatible" means that
the CPU instructions and Operating System services
are still supported. It does not refer to space
and time requirements. For example, during the
Block 2% update the F-16 TFS software deve?opment
environment was rehosted on the 32-bit Nord 500.
This effort was required because of the {ncreased
overhead 1n code generated by the new ANSI standard
compiler. The Nord 100, with 1ts limited logical
addressing range, could not support this Tncrease
for the development software.

Recycie Automation

During the 10/15 update, software to simplify
and standardize the user interface to compilation
and Toading was developed. This enhancement was
desired because of the large number of user names,
passwords, compilers, assemblers, Toaders, prepro-
cessors, and postprocessors required by the system.
To meet this need, an Tnteractive program, known as
Cycle, was developed. Based on user requests,
Cycle determines task requirements from a single
database and appends to batch the appropriate job
control stream. The design goal was to medify only
the user interface, with Cycle generating automat-
ically what the users previously input manually.

Each compilation or assembly is carried out in
one of two library modes, known as LIB and DEF. At
load time, LIB entries are only loaded if previously
referenced, while DEF entries are aiways loaded.

The Toader also provides a REF command to allow
"forced" Toading of LIB entries not previously ref-
erenced. During the Block 10/15 update all soft-
ware was recompiled and linked through Cycle in the
LIB mode to ensure that only referenced software
was loaded in memory.

During test it was discovered that many of the
component system Toad files were dependent upon the
compilation mode. Knowing the inner workings of
the loader, programmers had tailored their Joad
streams, with commands such as REF, and compiled
some components in the LIB mode and other compo-
nents in the DEF mode. On investigation, to
determine if this process could be automated into
Cycle, no simple rule could be determined. The
Tack of a rigorous standard for compilation and
Toading had resulted in different levels of pro-
grammer usage of the compiler and loader capabil-
fties.

Although earlier recognition of this particuiar
fact would not have changed the design approach,
the overall cost of Cycle could have been reduced.
Discovering the problem late in test proved more
costly. - This is due to the indirect manner in
which problems are found at this time. A lcad
stream failure due to the LIB/DEF condition may
result in a "soft" errvor not detectable by the
Toader. The contrel language set up by the pro-
grammer may be acceptable to the loader, but no
Tonger accompiish the original intent. This type
of problem is frequently the most costly of all to
track. The symptoms during execution may be subtle.
Since a program such as Cycle touches all software,
anticipation of where such problems may occur is
difficult.

If during the design phase all Toad and recycle
files were reviewed closely, the potential problem
could have been anticipated up front and thus re-
solved before system test. More ideally, if the
users had not been exposed to the details of Loader/
Library facilities, the job streams could not have
been individually tailored.

Auto Test Guide
The Auto Test Guide (ATG) software package was
developed to automate software testing by control-
1ing the inputs to the simulation task while mon-
ftoring and reporting the outputs. The system was
designed to run in real time with the flexibility
to allow the user to run predefined tests with any
subset of the real-time moduies enabled. The imple-
mentation was accomplished by porting the control
software from a functional ATG system developed to

338

test single modules in a batch or background mode.

Following a peried required to integrate the soft-

ware intoe the real-time environment, the system was
successfully tested and released to the users.

Shortly after release, various system failures
were reported. One user reported that the first
test case was ignored, while another reported that
end conditions were randomly skipped. Another
common report inclTuded system crashes resulting in
a nonrecoverable condition; rebooting from disk
failed to clear the problem. Initial investiga-
tions proved fruitiess. The reports did not point
to a particular area of code and the failures could
not be reproduced., Since the users were reporting
no difficulty in causing the problem, time was
scheduled with both user-and designer present to
trap the problem. During the first few sessions
the system functioned as advertised and the effort
was abandoned. However, the problem soon returned.
After a number of such troubleshooting efforts, -
enough information was gathered to solve the prob-
lem. :

What would cause a relfablé system to become so
unpredictable in a modified envirorment? The clue
to the soTution was in the reports of a system
crash and the change of the environment from back-
ground to real-time. A1l reports were eventually
tied to an initial system crash. It was found that
test data was driving the simulation software out-
side design tolerances, causing an exception to
halt the system. After rebooting, the ATG system
would be degraded and operate unpredictably.

In order to provide real-time common memory
communication between the ATG system and the
reai-time environment, the ATG system had to be
linked under the real-time loader environment in
the Nord 10. Software running under the real-time
loader can be thought of as one level closer to the
Operating System and the virtual segment swapping
environment. In the real-time segment enviromment,
following a system reboot, each segment contains
the information from the Tast time it was swapped
out to disk. The Operating System contains no data
on its own real-time segments, and is therefore not
adversely affected by this swapping process. This
was not the case for the ATG system.

The ATG system wis found to contain various
first-pass and "in progress” flags. Since part of
the system's data was within RT Common which was
reinitialized on system reboot, after a crash, the
system would contain inconsistent data and perform
erratically.

Symbol Dictionary

e -

Example 1 - The F-16 maintains a Symbol Dic-

. tionary System to control the allocation of common

data. Through the use of a source scan system the
programmer 1s relieved from the task of generating
his own Fortran type and common statements. The
system was rehosted from a 32-bit environment to
support both the Nord 10 and Nord 50. Because the
Nord 50 does not admit to halfwords (16-bit), the
16/32-bit environment required special processing.
In order to support both processors, common numbers
were Togically associated with memory type. This
association was Tmplemented through the use of hard-
coded common checks. This programming technique
caused the software to fail on reconfiguration of
the commons due to the additional CPU.

Example 2 - During the 10/15 update, an unanti-
cipated ¥a11ure occurred within the symﬁoT diction-

ary system. Following weeks of investigation the

problem was found to be twofold. By fncreasing the
number of symbols for the block update, a maximum
had been reached which was 4K below the decumented
maximum. This was found to be caused by a “"hard-
coded" check for 12K symbols. The system was
designed and documented to support 16K symbols.

The secend problem centered upon the existence of
an undocumented scratch file which needed to be
increased in size.

Although the problems encountered in the symbol
dictionary system were trivial to solve once found,
the time required to track the problems was costly.
The complexity of the system requires a Tengthy
tearning curve preceding any level of troubleshoot-
ing. Barry Boehm states with respect to Air Force
avionfcs software, "{t costs something 1ike $75 per
instruction to develop the software, but the mainte-
nance of the foftware has cost up to $4000 per
instruction."! When it takes weeks to solve.a
problem, and the final solution affects only two
instructions, the nature of the maintenance problem
is better understood.

Debug Enhancements

During the F-16 TFS prototype effort it was
realized that more advanced tools couTd sfgnifi-
cantly reduce the troubleshooting effort. Since
the debug package required modification to support
a fifth Nord 50 for Block 10/15, the enhancements
were also planned. During this modification, the
Nord 10 logical addressing 1imit of 128KB per seg-
ment was reached with the Debug System. This
caused a need to restructure Debug inte a multiple
segment system. Following this activity, it was
discovered that the Daily Readiness system was no
Tonger functioning correctly. No changes had been
made to this system. Upon Tnvestigation it was
Tearned that the Daily Readiness system was tied to
the segment structure of Debug. Thus the Debug
restructure had in turn broken the Daily Readiness
package. What inftially appeared as a straight-
forward change was rippling through the system,

Simulator Initial Conditions

The Block 10/15 update did not specify any modi-
fications to the Initial Conditions software., This
system consists of a control module in each of the
Nord 50's responsible for special processing re-
quired to properly initialize its CPU to the re-
quired conditions. To control the sequencing of
the inftialization process, a control variable,
UCINT, in shared memory counts down from 50, with
the values reflecting the current stage of initial-
ization in process. For example, when UCINT equals
44, the control program in CPU 1, UT01, executes
specialized code to initialize the Nav/Comm Re-
ceivers to the required conditions.

By design, the initial conditions system con-
tains interfaces to virtually every real-time
software component. Because the system was highly
visible and frequently utilized, many softiware anom-
alies unrelated to Tnftialization required trouble-
shooting through the initialization process before
the faulty simulation software could be identified.
As & resylt, debugging of many simulation software
probTems required not only the simulation program-
mer, but also the training system initial conditions
expert and a two-stage process.

The Rote of a Computer Language

A computer language may be viewed as a tool to
aid both the man-computer and man-man communication
process. Fortran provided a significant communica-

339

tion fmprovement over assembly languages by allow-
ing programmers to express thefr intent in terms
more closely resembling the design problem. State-
ments such as IF (BRAKE .AND. WOW)} THEN AIRSPEED = 0
are certainly more understandable than a sequence

of {instructions indicating various primftive
arithmetic and logical operations on registers.

Fortran represented an initial step toward
simpTifying the communication process by recog-
nizing that it was not necessary for the program-
mer to understand all of the details concerning
how the CPU was solving the problem. This con-
cept, known as abstraction, will be discussed

further in the sections ahead.

Since the development of Fortran, numerous other
high-level languages have addressed the communica-
tion problem by providing a rich assortment of
powerful programming constructs, most of which are
paid for in run-time efficiency. As a result,
while most software designers have recognized the
value of abstraction mechanisms in terms of communi-
cation and reusability of software, it has always
been feared that the price would be too high, espe-
cially in real-time environments. As a result,
while we no longer concern ourselves with the con-
dition of CPU registers, the potential value of
abstraction in reducing the cost of software mainte-
nance has not been fully realized.

Ada/Fortran Comparison

- The Fortran programming language features encom-
pass four categories: Control, Execution, Input/
OQutput, and Data. The following paragraphs compare
Ada and Fortran within each of these categories,
and are followed by an examination of Ada's exten-
sfons in support of maintainability.

Fortran program control constructs include an
unconditional, compyuted, and assigned GOTO, an IF-
THEN-ELSEIF-ELSE-ENDIF construct, and a DO-ENDO
construct. WhiTe Ada does not support assfgned
GOTQ's and does not recommend the use of uncondi-
tional GOTD's, the control constructs otherwise
contain essentially the same capabiTities, with the
IF-THEN construct being identical and the Ada case
statement serving the same purpose as Fortran's
computed GOTO. In terms of execution, the formu-
lation of arithmetic and Togical operations and
subsequent assignment are once again almost iden-
tical between the two languages, with minor syntax
and Texical element differences such as the require-
ment in Ada for 2 colon preceding the equal sign in
assignment statements. Fortran's Subroutine Call
and Function Statement are similar to Ada's Proce~
dure Call and Function capability.

While Fortran provides Read, Write, Open, Close,
and Format statements to process I/0, Ada provides
no comparable facilities. In Ada, I/0 s not an
issue because it is not viewed as part of the lan-
guage, Ade views I/0 as an application to be imple-
mented by the user.

The final category, Data, falls somewhere be-
tween the well-defined control and execution cate-
gory and 1/0. While Ada does provide predefined
data types similar to Fortran's Real and Integer
types, to_a large extent data typing is also seen
2s an application problem and left to the user. 1In
order to better understand how such features as I/0
and data types can be treated Tn this manner, we
must investigate Ada's extensions to the four cata-
gories of the Fortran environment.

Introduction to Ada Extensions

As stated earTier, a computer language is a
tool to facilitate communication. While the im-
medfate need during prototype software development
is man-computer communication, and languages such
as Fortran admirably support this need, it is the
man-man variety which ultimately drives the soft-
ware life-cycle cost. As seen with the symbol
dictionary problem on the F-16, weeks were spent
understanding how the program functioned, while the
ensuing code change was trivial.

While it has long been realized that sound soft-
ware engineering principles represent a solution, a
practical method to ensure that rigorous methodol-
ogies are employed has not been available. Langu-
ages which have attempted to solve this issue hy
providing a richer collection of constructs have
failed to Tower the cost of software maintenance,
High-powered language constructs ease the communi-
cation with the computer far more than the commu-
nication with & new programmer who 1s unfamiliar
with the requirements and espoused methodologies.

Many have charged that Ada is doomed to failure
because it is a complex language which is too diffi-
cult to lTearn. As seen in the previous section,
the basic control and execution constructs of Ada
are straightforward. Strictly viewed as a pro-
gramming tool for man-computer communication, Ada
is no more difficult to learn than Fortran. What
is viewed as complex within the language are the
tools which Ada provides to address the difficuit,
costly problems we have seen in the later stages of
the software Tife cycle: the man-man communication
problem.

Loose Coupling

The Loosely Coupled Concept - One of the major
probiems in maintaining a complex system is the
potential ripple effect of any change. While the
Fortran common memory system provides the environ-
ment, it is not the cause of the ripple effect.
The ripple effect is caused by a lack of localiza-
tion. We define "coupTing” as “a measure of the
strength of intercomnection" of modules, and “co-
hesion" as "how tightly bound or Eelated its Tnter-
nal elements are to one another."S A maintain-
able design requires a “strongly cohesive" and
"loosely coupied” system. The ripple effect
described in the Debug Enhancement exampie was
caused by a strongly coupled system.

Development Methodology Effects on Loose Coup-
1ing - The terms "top-down" and "decomposition™ are
known to software developers as sound software
engineering practices. Yet, it {s not uncommon for
products of such sound development methodologies to
become costly to waintain during the modification
phase. This situation was seen in the example on
the F-16 TFS with the Debug and Initial Conditions
systems. A partial explanation may rest within our
application of this methodology.

During the initial stage of product develop-
ment, functional software requirements are deter-
mined. These requirements are then allocated to
computer program components, thereby initiating the
top-down decomposition process. Traditionally, the
hierarchical tree thus formed has come to represent
not only a functional decomposition, but a physical
one as well. Unfortunately, the optimum decomposi-
tion in support of the modffication phase frequently
differs from this functional representation.

340

_ Our experience on the F-16 TFS has shown the
need to minimize interfaces in order to localize
and simplify change impact and maintenance activ-
fty. In the example of the Initfal Conditions (IC}
system, by providing all Togic within one physical
component, any anomaly occurring during an IC re-
quired a training system IC programmer to wade
through extensive unrelated initialization code to
determine the area of concern, followed by an anal-
ysis of the state of the real-time simulation com-
ponent exhibiting the anomaly., The latter stage

.required a second programmer knowledgeable with the

simulation component software.

An alternative design approach, in support of
the potential modification, would be a simplified
IC control program with one function in Tife: ac-
cept initialization requests from the fnstructor
and command the simuTation components to perform
their own initialization. Special initialization
logic would be Tocalized within the associated
physical simuTation software. When an anomaly
occurs or a modification 7s reguired, the software
impact will be localized, minimizing change activ-
ity and personnel required for technical investi-
gations.

Loose Coupling Through the Ada Package - In the
previous section we looked at the role of loose
coupling in attaining a maintainable software sys-
tem. This discussion was Tndependent of the imple-
mentation language and, indeed, loosely coupled
products can be achieved in any language, including
Fortran and Assembly. However, Fortran and Assem-
bly do not provide features to assist or monitor
progress towards the attainment of this character-
istic. In fact, in most software enviromments,
including Fortran, the strength of interconnection
of a system is Targely determined prior to the use
of any language features. Ada, on the other hand,
is a design Tanguage with teols addressing the
early development stages.

Through packages, Ada provides the mechanism to
strongly support the attainment of a loosely coup-
led desfgn and final product. In general, packages
are used to group Togically related entitles, such
as data objects, or subprograms. However, its
major value during the design phase is in fts struc-
ture, which consists of two distinct parts: a
package specification and a package body. Through
the package specification, a complete system inter-
face may be defined and compiled separately from
the user of the interface, as well as separately
from details required to implement the interface.
The language will also enforce the interface by not
&1lowing accessing units to compile correctly if
the specification is not maintained.

Example - Figure 1 presents an example of how
Ada packages can be used during design to control
ripple. Data 1s segmented into a logical hierarchy
based on visibility requirements only. Each block
represents an Ada data package. As you move up in
the tree, data visibility and potential rippie
impact increase. To achieve a Toosely coupled
final product, the design goal is to minimize the
size of higher-Tevel packages. By using such a
system, design approaches could be given a tangible
maintainability measure based on {mpact to the
tree. Alternate design approaches could be com-
pared in the light of this measure. .This would
encourage designs which minimize impact to higher
level packages and could be used during the early
design review process to assist the evaluatfon of
alternatives.

FLIGHT
108
NAV/COMM
INTERFACE
FLIGHT 108 N
168 NAV/COMM 'ﬁ{‘ﬁ:
INTERFACE INTERFACE INTERFALE
FLIGHT 108 NAV/COMM
LOCAL LOCAL ieCAL

Figure 1 LOGICAL HIERARCHY OF DATA PACKAGES.

The package specification is a feature of Ada
which supports verification and enforcement of in-
terface designs. It is a tool which focuses on the
early precode software development stage and is not
meant to encourage premature coding of design de-
tails. Used properly, interface package specifica-
tions can provide the visibility of system intercon-
nections needed to control potential impact of
change activity.

Abstraction

To assist in reducing software cost, one of
Ada‘s goals is the development of reusable and
easily modified software components. Easily
modified components can be achieved through a
separation of details and functional requirements.
This compartmentalization of details serves two
purposes. First, understandability is enhanced
when top-level functions are easily determined
without a need to study Tower-level details.
Second, by Tocalizing the details, the dependency
of other software on these details can be mini-
mized. The software can be more readily modified
without unforeseen impact. Ada refers to this
coricept as data hiding, or encapsulation.

The term abstraction refers to "the process by
which we distinguish the functional characteristics
of a facility from the implementation of that facil-
ity."® various levels of abstractions occur natu-
rally within the software development process. For
example, the symbol dictiomary system on the F-16
may be viewed as having one high-level functional
characteristic: to process symbois. This charac-
teristic may be decomposed into the three functions
of adding symbols, deleting symbols, and reporting
status. This refinement process continues until
the functions fdentified are expressible within the
constructs of the programming language.

This Tterative process of moving from the ab-
stract problem demain to the details of implementa-
tion represents an essential ingredient in the
software development process. Unfortunmately, in
many development environments this process is not
captured within the final product. The abstraction
process frequently occurs only in the mind of the
programmer. Traditionaliy, the computer language
represents the final phase of translating the Tow-
est-level details into terms understandable to the
underlying machine, As a result, the code provides
onty the implementation details of the software
development process,

During the modification process, visibility of

341

all develoEment stages is necessary. In the ex-
ample of the symbol dictiomary on the F-16, the
top-level functions were not clearly visible. The
code contained a flat structure and did not reflect
the abstraction process which led to its develop-
ment. As a result, it took weeks to determine
which detail, among many, was relevant to the
current problem.

To simplify and minimize potential impact, the
modification programmer needs to understand as much
as possible concerning the original development pro-
cess. Mechanisms which capture the abstraction pro-
cess within the final product can ease this process.

Ada_Support For Abstraction - The concept of
abstraction is supported in Ada through the
Package, Generic, and Data Typing mechanisms. The
Package mechanism in Ada supports abstraction in
two ways. First, by providing a capability to .
separate the Package Specification from the Package
Body, the goal of separating funciional require-
ments from implementation details is supported.

The modificatfon programmer can view a package
specification quickly and does not need to study
the implementation details to understand the effect
of the package components. Secend, through the
Private and Limited Private parts of a specifica-
tion, the logical interface to a package may be
made visible, while the physical interface detaiis
are hidden. The Private part of a specification
defines data which can be operated on by the user
of a package, but dees not allow the package user
to see the details of how the data is constructed.
The user cannot tailor application software to the
structure of the data. This feature provides an
enforcement tool to minimize the ripple effect as
seen in the example of the Debug Enhancements. The
Limited Private mechanism fs similar to the Pri-
vate, but also limits the operations on the data
available to the user.

Data Abstractions In Ada - Capturing the
abstraction process in the development of data
structures is also possible in Ada. Once again,
using the example of the F-16 TFS Symbol Diction-
ary, the system must operate on only one type of
data, referred to as Symbols. The functions iden-
tified in the previous section, Add, Delete, and
Report, operate on Symbols, Further analysis dur-
ing the development process reveals a need to re-
fine the type Symbol into two categories: 16-bit
and 32-bit Symbols. This process has jdentified
two valuable pieces of information to the modifi-
cation programmer -- the abstract notion of a Sym-
bol and the details of implementation requiring two
different computer word sizes. In the case of the
F-16, since Fortran does not provide mechanisms to
support data abstraction, the code provided the
details of implementation only, while the basic
notion of a Symbol was lost.

As mentioned earlier, many high-order languages
have addressed this problem by providing a richer
assortment of dats types. However, this approach
1eaves the programmer with the more difficult de-
cision of choosing which data type contains the
characteristics which most closely resemble the
real-world problem domain. This approach provides
no insight into the rationale for the programmer's
transiation from problem domain to solution domain.

Ada supports the capture of this abstraction
process by providing a minimal collection of prede-
fined types and a powerful collection of tools to
allow the software designer to rigorously define
his own data types to match the characteristics of
the real world. In our example of the F-16 Symbol

Dictionary, suppose one of the requirements inclu-
ded an interactive program to store or display the
Tnitial value of six character symbolic varijables.
Furthermiore, suppose the number of symbols from
each of the Nord 10 and Nord 50 and the total num-
ber of symbols required to be supported was not
specified. In Ada we could define our own type
called SymboT_Name Yalue and declare it in a Pack-
age as Limited Private. We could then define two
operations on data of type Symbol Name Value: ADD
and DISPLAY. Since we have defined type Symbol
Name Yalue to be Limited Private, Ada will not
allow any other operations on this data type and
will hide the structure of the data from the user
of the package.

In the real worlid, sfnce the structure of cer-
tain types of data may vary, it is desirable to
have a mechanism to describe this variance within
the data type. Ada provides the tool to accomplish
this conditional data structure through the Dis-
criminant and Yariant components within Record
types. The structure of the record may be varied
(Yariant part} based on the value of a parameter
known as the Discriminant. Through the Variant
Record capability, we can implement the details of
the type Symbol Name Yalue in such a way that
variabies of this type would automatically take on
desired characteristics as a function of a discrim-
inant 1dentifying the Nord 10 or Nord 50 computer.
Furthermors, by use of Ada's Access type mechanfsm,
the maximum number of symbols nsed not be con-
strained by the code. Access types allow for dynam-
ic allocation of objects during run-time.

Although run-time overhead 1s regquired to allo-
cate space for objects created dynamically, ail
constraints on the data structure must be estab-
lished at allocation time. In simple terms, this
means that Ada supports the need for data struc-
tures which vary under run-time conditions and grow
with new requirements without a need to reprogram
the software. Through the Package, Limited Private,
Yarifant Record, and Access type fTeatures of Ada,
the abstraction process, which previously existed
only 7n the mind of the programmer, can be reflec-
ted in Ada code. See Figure 2 for an example of
these features.

Generics in Ada - Another feature of Adg which
addresses separation of the functiomal requirements
from impTementation {s the Generic mechanism. The
Generic is a facility within Ada which ailows a
programmer to implement an algorithm fndependent of
the data on which the algorithm will be applied.
Generics may be thought of as programming templates.
The data to be operated on is fiiled in by a process
known as instantiation, which creates a specific in-
stance of the template for each data type needed.
This feature of Ada effectively allows the same
software to operate on different types of data with-
out the software model being tailored to the speci-
fics of that data.

Run-Time Expense

We have discussed the role of a computer Tangu-
age and drawn a comparison between Fortran and Ada
language features. The four categories of Control,
Execution, Input/Output, and Data were identified
in the Fortran language. In Ada a new category
encompassing Packages, Data Typing, and Generics is
needed. This category will be referred to as
Development Tools. $ince the Fortran concepts of
Input/Output and Data are developed in Ada through
the use of our tools, these categories are no long-
er required. Furthermore, as the Control and Execu-

342

tfon categories are similar, in comparison to For-
tran, the run-time expense of Ada s dependent on
the cost of the Development Tools category.

Packages and Generics are tools to assist in
the abstraction process. These tools encaurage
sound development techniques and provide a vehicle
to help in describing how the final product was de-
veloped. These tools are directed at the man-man
communication problem discussed earlier. Packages
and Generics allow us to capture more of the devel-
opment process within the source code without the
expense of overhead at the object code level. They
are purely tools to assist in the deveTopment and
documentation of software,

ATthough a major goal of the Ada Data Typing
mechanism is also to ease the man-man communication
process, there exists a potential for run-time ex-
pense. Three characteristics of data objects must
be considered: creation, representation, and veri-
fication. Data objects are created through a pro-
cess referred to as elaboration, which is based on
extensive visibility and scope rules within the Ada
lTanguage. Depending on how the software is struc-
tured, eTaboration may cause run-time overhead.
However, the extent of elaboration is controllabie
through the scope rules. Data defined within the
scope of the main program will remain in existence
and will not require the overhead of periodic
elaboration.

One of the more costly features of other high-
level languages is run-time determination of data
representation. While Ada does provide facilities
for dynamic allocation of data through access types
and provides for deciaring variable-sized objects
of the same type, once an object has been declared
and elaborated, its internal representation in the
computer is fixed. In other words, there is no
run-time overhead reguired in determining how the
data should be stored. -

The last category, verification, refers to run-
time checks such as array bounds and 1imits placed
on data during its type definition. Run-time over-
head for these features is expected to be in the
range of 10% over comparable Fortran code. While
it is not advocated by the lanquage, a Pragma exists
to disable run-time checks, eliminating this over-
head.

Operating System Interface

In order to achieve a Toosely coupled final
product, it is equally important to strive for
clear, simple interfaces into the operating envi-
ronment, as well as within the components of the
application software. Ada's package specification
can help in achieving this goal.

Example - The final example from the F-16 to be
discussed in this paper is the vendor Operating Sys-
tem. The real-time device drivers encompass some
of the most complex, time-critical software on the
F-16 TFS. Due to response time requirements and
the architecture of the Nord 10, this software was
required to reside in the top 128{B of memory with
direct interfaces into Sintran, the vendor Opera-
ting System. This requirement posed a significant
potential impact to the device drivers with each
new release of Sintran.

In order to clearly establish and control this
interface, all entry points into Sintran and refer-
ences to Sintran symbols were maintained in a
single interface control file. Teo wminimize poten-

Tris Procedure can cksra Tools wvitbaut krowing
== detaxrls of dzta structurss ar logic cof the precszdurss
== within %he packcage -

Typs Response_Type is (ADD, JISPLAY, CONEZY? —° 7
Responss : Resnonse_Tveer
frevicus_Link : Link_Type)
Hackagse 2numers
,

-12 is naw Taxt_ic.enumerctionm_ioc (Resvonse_Typeds
usg @numera_1io

aR5in
loop
Put_line (" AZ2, DISFLAY, or DONE ? ")
vat {Responsel;
casg Response Vs

wnen 43D
when JISPLAY
when DONZ
end coses
ena locp;
end MainJ

> AT (Pravious_Link);
> DISPLAY {Pravious_Link};
» swiItr

([}

package Tocols is

==Zpumeration Tyges SuppsSrt Anstraction
type Computer_Tyge 1g {Ncrd_10r Nerd_5C)7
Computer : Computer_Tyoes

==Limitsd Frivete Typ? hides implemantation details of date structura
type Link_Typz is limited orivates

==-0nly Procedures ACZ and JISPLAY mey Oz used on Typss Link_Type
nrocedure ADC (Link : in out Linxk_Typad:/
praocedurs CDISPLAY (Link : Limk_Typel’;

Brivate

typa Symsol _hemz _Vrlue {Cemsutzr = Computar_Typel? .
== Access Tyces sliow gynawic ellocaticn of chjects ana thus
== suppor* sasirzcticn in dzsign. “nerd i3 ne taed to erhed
== Max numpstrss sucn &8s File s1z2s within the cedz. This rasults
== in & mare maintsinzale 2nd ocrecdusct.

tyse Link_Type 15 =2cc3gs fymoel_Nema_Valuzs

uhtyper tre voluzs
1 he cantreollac.

tad e the usuzl 12
is Intez2r renge =32

2t chizcts of

zets of Tympa
range.

<u 32747;

~= py defiring our <

== 2 given typsz &cc2

=« Noro_10_Tyne zr=2 1
subtyse Nord_Tu_T i

== Tne discririmstad record type ¢l

== Tg 9% voriod oSFse2d agn tra veluz
type Sympel MNer:_Velues (Zompute

rezore

lzws tm2 structure aof tne record
of the diseririnant.
r : Zeaguitar_Typa) is

Symbol_Ngms String (1 .u 37
Fraviows_Linx Link _Tyn=:
Tonputor Computer Tyce?

cese Computer is
whnzp Noro_123 =>
¥
)
)

Inzti _Val -
danen Nerd 32 =>» N
lprtirl_velaz_hoarg_33 1 Intezar;
FLY-I - 32
ana racorgs

erna Taols’

Figure 2 SAMPLE OF ADA FEATURES

343

with text_io;

use text_ioa’

package bacy Tools is
packase My_Integer 15 new text_io.intager_io (Irteger))
package My_enumers is nes text_iao.enumaration_io (Computer _Typned)s
use My_Integer, My_2numera’

==Thraugh the separastion 2f the Pzckage Baody and Specificstion
==the details of the Procsaszures ACDD and JISPLAY srsz hidden
procedure AGLC {(Link : 1n out tink_Typa) is

Symbel : String €1 .. &)
aw_Link @ Link_Type;

begin

put_line {" Nord_10 or Nord_50 2 '");
get (Computer):
put_line (" Input six charascter symbel ")7
get (Symooll; .
== Create a record for the pragar cemputar
Neow_Link = new Syabol_KNema_Value {Computerd;
== S5torz symbol name
New_Link.Symbol _Name 1= Symboel:
== Storz initial velue
put_linz (" Input Initial Valusz ")/
if Computer = Nord_10 than)
get (New_link.Initial_Value_Nard_10);
else
get (New_Lirk.Initizl_Valus_Nord_50);
end 117
== Store Computer Type in Racard
Nzw_Link.Computer := Computer’
== Link new record in tne list
Wew_Link.Previous_Link 1= tink;
== Update last link o
Link := New_Links oL
end AGC/

procedure DISPLAY (Link : Link_Typa) is
Symbal 2 3tring {1 .. 532
Search_Link 3 Link_Type := Link;}
begin .. -
put_line (" Input six character symbel ")’
cet (Symboll; o
==2ingd reccrd in List o
iocop
if Sesrch_Link = pull then)
put_linez (" Symbol nat found "}J
sxit; L .
2lszif Sezrch_Link.3ymbol_Nema = Sympel than
put_lins (Symool):?
if 3ezrch_Link.Computor = Nerd_12 then .
put (Searcr_Link.Initial_Valus Nerd_ 132
axit}
elsa
put {Search_Ltink.Initisl_vsluz_Mord_549)7
2xits
end if;
2lse
Search_Link := Serrch_lirk.?revicus_Link’
end ifs
end leops
znd LI3PLAYS
and Teolss

Figure 2 SAMPLE OF ADA FEATURES (CONT'D}

344

tial software fmpact, a strict protocol was main-
tained by enforcing the rule that each device
driver use only the interface control file in com-
municating with Sintran. Although the enforcement
of this interface was accomplished manually on the
F-16, the philosophy is simiTar to the automatic
enforcement mechanism provided by Ada's package
specification. Despite the complexity of the de-
vice handlers, adaption requirements for each new
release of Sintran were almost totally localized to
the interface control file. As a result of this
Toosely connected, enforced design, the device
drivers required mipimal maintenance activity.

Conclusion

Our experience on the F-16 simulator indicates
that the high cost of software modifications is
largely the result of unnecessarily complex and un-
clear interfaces. Software which is Toosely con-
nected to its neighboring components, and easily
understood in terms of functional characteristics,
has not exhibited the increase in maintenance costs
in the later 1ife cycle stages.

Complex interfaces can frequently be sfmplified
by decomposing systems based on interface require-
ments rather than functional requirements. Ada's
package specification can be used early in the

345

software development cycle to suppert this decompo-
sition process. Used in this fashion, the package
specification provides both early visibility of peo-
tentially high-cost modification areas and a vehicle
to enforce design and documentation regquirements.

Unclear interfaces result from incomplete docu-
mentation and designs-which have been tailored to
special-purpose applications. Ada supports the cap-
ture of the development process through its Gener-
ic, Data Typing, and Package mechanisms, and does
so without costly run-time overhead.

References

1) Boehm, Barry W., "The High Cost of Soft-
ware,” Excerpted from Practical Strategies fer

Developing Large Software Sysfems, edited by E.
Horowigz. Addison-HesTey, 1575.

2} Glass, Robert L., and Nofseux, Ronald A.,
Software Maintenance Guidebook, Prentiqe-Ha11, 1981.

3) Booche, Grady, Software Engineering With
Ada, Benjamin/Cummings, 1983, p. Z9.

4) Brender, Ronald F., "What is Ada," Com-
puter, June 1981, pp. 17-24. o= -

