ELAL o A

OBJECT-ORIENTED DEVELOPMENT OF TRAINING SYSTEMS USING ADAR

Dr. Matt Narotam
Burtek
Tulsa, Oklahoma

Dr. Sabina Saib L
Thomson—CSF
Santa Barbara, California

Mr., Clifford Layton
Rogers State College
Claremore, Oklahoma

ABSTRACT

This paper discusses aspects of software engineering and design methodology to be used for

development of software using Ada for an existing C-1Y41B Qperational Flight Trainer {OFT).

The OFT

software was originaliy developed using FORTRAN 77 as the implementation language. The paper deseribes
the application of software engineering concepts such as abstraction, information hiding, modularization
and generalization, and the development of a methodology for generating a program design based on these
concepts. Also described are problems with the traditional object-oriented design (00D} methodology, angd
attempts to front-end Q00D with a functional. decomposition technique for generating the system design.

Changes are proposed to the 00D process to incorporate solutions for these problems,
described is applicable tc the development of software for any type of training device.

INTRODUCTION

The DOD mandate which specifies Ada as the
programming language for future mission ecritieal
system will impact procurement of relatad
training systems. Such procurement will be
based on the results of current studies that can
demonstrate . the cost-effectiveness .and
feasibility of using Ada for software
development.

In evaluating the impact of Ada on simulator
engineering, consideration must be given to the
hanefits that will be gained from developing
maintainable and reuseable software. Ada is a
language rich in constructs that supports a
design process oriented ftoward the development
of such systems,

A development process that 1is based on
FORTRAN restricts the application of coheepts
which bring about the development of
maintainable and re-useable software systems.
This is so primarily because of the primitive
constructs available in FORTRAN and the lack of
standardization which force designers to acquire
a2 mind-set that encourages software design based
on the peculiarities of various implementations
of the language. This leads to the development
of software systems which are costly to maintain
and not easily reusable., Ada on the other hand

supports a design process which encourages:

greater consideration to up front systems design
requirements with appropriate prioritization of
eriteria such as maintainability, reusability,
and system efrieiency. This design process
involves the use of a methodology to generate a
software solution based on system requirements
and system defintion. The process will lead to
cost reductions as opposed to cost escalation.
Crucial to this outcome is the application of
the appropriate methedelogy for simulator
systems engineering.

13

The methodology

Q00b is a methodology for developing Ada
software utilizing software engineering
principles. A complete presentation of the 00D
methodelogy may be found in Booech (1) and EVB's
00D Handbook (2) and is referred to as
traditional Q0D in this paper. Traditional 0CD
employs the concept of producing a system
solebion using '"real world" terminology which
aids the process of maintainability and
reusability of software systems. However, the
steps ildentified in traditional 00D are not
easily applicable to simulator . software
development. There are two major areas of
weaknesg in implementing traditioral QCD,

(1) Determining where the application of
the methodelogy begins in a system
engineering proeess, and -

{2) tThe actual process of developing a
system seiution © using reaal-world
terminolegy.

The proponents of traditional 00D recommend
the use of a front-end to COD such as Structured
Analysis Desgin Technique (SADTT™) (3) and
Jackson's Systems Development (JSD) (4) for
performing system analysis. Using a SADT based .

- front-end, a functional decomposition of the

system may be performed, at which point an 00D
application may begin. This process is far from
satisfactory for evolving the design for a
simulator system.

B pda is 2 register trademark of the U.S.
Goverrment (Ada Joint Program Office) Department
of Defense. '

™ SADT is a register trademark of SOFTECH, Inc.

Burtek, a subsidiary of THOMSON-CSF, _is
currently engaged in a research and development
program for the USAF entitled the Ada Simulator
Validation Program (ASVP). The ASVP is a proof-
of=conecept project intended to provide data to
the Government for application on
procurements of training devices. The ASVP

requires the redevelopment of softwarée for an

existing Burtek-built C—1418 OFT using Ada.

This paper presehts a refinement to
traditional 00D. The Burtek refined Q0D
incorporates steps which expands OCD to perform
an Objeot Oriented decomposition of the system
followed by the implementation of a solution.
The paper reviews traditional Q0D and funetional
decomposition using SADT as
00D. The problems with a SADT-based front-end

and the traditional ODD process are fthen
discussed followed by a presentation of
solutions incorporated in the Burtek refined
ooD.

REVIEW OF TRADITIOKAL OBJECT-ORIENTED DESIGN

Object—Oriented Design (00D) is a methodo-
logy that can aid creation and documentation of
software design. The methodology furthers
decomposition of a problem into "real-world"
objects and manipuiations f{operations), rather
than numeric data and/or functions. 00D should

be applied t¢ the result of the analysis and

requirements phases of a software development
project,, and after detailed problem definition
information has been collected; it should
facllitate design which can then be translated
into algorithms and code. 00D is intended tg be
supportive of ¢lient and designer communication,
and Ada and software engineering concepts.

00D has been developed with recently
developed object-oriented Jlanguages, such as
Ada, in mind. Compared to older design
methodologies that emphasize either data or

functionality, 00D places equal emphasis ch data
and funectionality {objeects and cperations). COD

alsc groups objects and operations in well
definad, loosely~coupled, and cchesive
partiticns that define interfaces. ° This
grouping, loose—coupling, and partitioning

correspond te the software engineering concepts
of abst¢raction, information hiding, and modular-—
ization. Ada features such as packages and

tasks; types, private types, and limited private

types; and programming unit specifications and
body separation are consistent with 00D and
software engineering concepts.

The main steps in traditional 00D are: (1)
Defining the Problem, (2} Developing an Informal
Strategy, and (3) Formalizing the Strategy.

The "Defining the Problem™ step is divided
into stating the preblem in a simple English
sentence, and analyzing and clarifying given
problem information.

The "Informal Strategy" is then desecribed in
an English paragraph. The paragraph should
eontain T+2 simple dentences, and should be
wriktten at a fixed level of abstraction.

Ffuture .

a _front-end to.

14

. system may be utilized.

~as_ Aytopated
{asap)T™ may be utilized.

"Formalizing the Strategy" requires gramma-
tical analysis of the "Informal Strategy". This

.process involves Identifying solution objects

and types (nouns), solution operations (verbs),
object and gperation attributes (adjectives amd
adverbs), and groupings of objects | and’
operations.

Interfaces of high-level, stand—-alone
program units are then determined; and computer
code (specificaticns) for the interfaces is
written, Stepwise refinement of the Aighest-
level program wit is subsequently done until
resulting subprograms can be directly translated
into code; this process is then applied to the
other stand-alone units at the eurrent level of

‘abstraction.

In traditional’ 00D, the methodology should
be applied recursively to any operation imple-
mentation of 200 or more lines of code. This
may lead to top-down problem decomposition in
terms of decreasing levels of abstraction of
objects and operations.

FUNCTIONAL DECOMPOSITION USING SADT

Traditional 00D Is not designed for
performing a front-end system analysis and
decomposition. A SADT-based approach for
performing a functicnal decomposition of the
This process of front-
ending the 0OGD methodology is recommended by
Booch and EVB.

The objective ia to decompose the system“
into partitions that functionally represent the
airecraft systems. A1l inputs to each partition
are then determined, which when collated would
provide the outputs from each partition, To
support this process. A SADT-based tool, such

Strugtwred Analysis Program

PROBLEMS ENCOUNTERED WITH SADT

Several problems resulted when applying the
SADT process, mainly due to the restrictions
imposed by the proeess in limiting the inputs
and oufputs between partitions. The funectional
elements are tightly-coupled which add to
complications.

A fundamental problem of performing a’
functional analysis is that a fairly detailed
evaluation of each partition is required to
identify the interfaces between partitions. The
information generated by this analysis can be
large, particularly with tightly-coupled
systems. This forces the designer to begin

‘handling reasonably large amounts of data rather

than studying the structure of the system
soluticn. Further, this process confliets with
software engineering principles and _the

phiiosophy of the 0CD approach.

T ssAP is a trademark of Thomson-CSF, Inc.

A sclution to this problem is to expand the
COD process and begin the system analysis
process by giving consideration to system
requirements. This is more consistent with a
system engineering approach to the problem. The
significance of this approach is that
appropriate consideration must be given to the
maniner in which system requirements are derived
and specified.

PROBLEMS IN USAGE OF TRADITIONMAL OQP

In applying traditional 00D, three main
problem areas have been determined; (1) the
jdentification <of objects, operations and
groupings after the writing of the informal
strategy, rather than before; (2) the confusion
caused due to the ambiguity of Engiish syntax
and semantics; and (3) the implied reguirement
that coding be done early in the design process.

The steps in traditional 00D reguire that
the Informal Sirategy be written prior to the
listing of objects, cperaticns, and groupings of
objects and operations. This order seems to be
the reversal of the ordered thought process used
when 00D is actually applied. The objects,
operations, and groupings are typically
determined from the analysis and clarification
of infermation given at the start of the design
process, and must be in the software engineer's
thinking before writing the informal sirategy.
This strongly implies that the ¢hjects
aperations, and groupings should be determined
before the informal strategy is written.

The use of English syntax and grammar in
traditional 00D is likely to cause confusion,
due to ambiguities regarding noun, verb, and
modifier identifications and meanings. This
confusion contributes. to communicatioen,
management, and guality asswrance problems based
on English, and not actuaily related teo the
substance of a project. If those involved in an
application area have developed area-specific
precise forms of description and meaning, these
forms should be considered as replacements for
Bnglish within QOD. Diagrams, graphs, charts,
outlines, summaries, etc., are often more
directly meaningful and precise than English
text.

Traditiongl 00D forees consideration of code
toc early in the software development process.
In Defining the Interfaces, and possibly before,

programming language units and their speeifi-

cations {code) must be considered. And, in
implementing the sclution, coding of specifi-
cations and program uvnit bodies must be done
before possible further design involving
recursion of QOD., This will likely clutter and
hinder the design with implementation details

rather than allow the implementation details to _

be put off until a later coding phase of the
sof tware development., The wusual sequence of
software development phases has design belore
coding, and dees not mix the two directiy; this
allows the solving of a problem based on a few,
easy-to—grasp, nhigh-leyel partitions in the
design; before implementing the solution based
on many, hard-to-consider, low-level details in
code,

15

"needed, rather than after the

SOLUTIONS TO PROBLEMS OF TRADITIONAL OOD

The traditional COD usage problem; related -
to ordering the writing of the Informal Strategy
before the listing of objects, operations and
groupings; can be soclved by reversing this
ordering. The reversal is consistent with what
a software engineer actually does in applying
0oD. It is only after an engineer has
abstracted objects, operations and groupings
from already available information, that he can
write them into an Informal Strategy.

The proposed solution requires greater
emphasis on analysis and clarification of given
information than in traditicnal 00D, and
requires the determination of cbhjects,
operations and groupings before specifying the
Informal Strategy. The Informal Strategy
becomes & summation of an analysis and
clarification of givens that includes listings
of objects, operations and groupings.

Implementing this _sclution greatly aids the
solving of traditional 00D usage problems that
are associated with English language
ambiguities. Since objects, operations and
groupings are determined before the Informal
Strategy is written, there is no need to
determine them by highlighting the nouns, verbs
and modifiers. The use of diagrams, graphs,
charts, or cutlines is emphasized and the use of
English for software analysis and design is de-
emphasized. o

00D can lead tc premature coding, due to the

point at which recursion is done in the tradi-

tional 00D seguence of steps. This point is at

the end of the entire sequence and forces coding
in one sequence vefore design when recursion

ocours, This problem can be solved by posi-

tioning the c¢all for recursion after the

Informal Strategy step arid before the
Formalization of Strategy. The design can then

be done through successive recursicns of the
first two 00D steps, before coding is begun.

These proposed solutions more fully Support
the use of software engineering concepts of
abstraction, information hiding and
medularization in 00D. The determination of
objects, operations and groupings, before the
writing of the Informal Strategy, allcws the
abstraction of the objeects, operations and
groupings in partitions (modules} when they are
s Informal

Strategy. The repositioning of the call for

" Pecursion aids abstraction, information hiding,

and modularization, by aiding progressive
abstraction and expansion from high-level
{design level) to low-level (code-level); and by
encouraging that low-level detalls (code) be
hidden within partitions (modules} during
design. ,
The three proposed solutions require altera-
tions to the traditional 00D steps. These
alterations, together with additional proposed
steps, are listed in Table 1, The steps which
are new or re-ordered, compared to traditional
00D, are discussed in the following paragraphs.

Table 1.

A. DEFINE THE PROBLEM

Burtek Refined QOD

1. STATE THE PROBLEM (IN AN ENGLISH SENTENCE)
2. ANALYSIS AND CLARIFICATION OF GIVEN INFORMATION (INCLUDING PROJECT REQUIREMENTS)
a. Determine the Level of Abstraction of the Analysis

b. Specify Assumptions and Limitations

e. Identify Objects and Object Attributes
d. Identify Operations and Operation Attributes -
e, Group Objects and Operations in Partitions (Consider Inelusion and Dependency}

f. Identify Partition Interfaces (Use Tabulatlon and Graphics to Document Groupings,

Dependencies and Interfaces)

- Identify Partitions that require further Decomposition -

B. SPECIFY

THE INFORMAL STRATEGY (A DESCRIPTION QF THE SQLUTICN BASED ON ANALYSIS AT THE CURRENT LEVEL

OF ABSTRACTION)

(VALIDATE THE INFORMAL STRATEGY)

¥%¥%XFOR EACH PARTITION REQUIRING FURTHER DECOMPOSITION
RECURSE THE METHODOLOGY FROM START TO HEREX*¥#

C. FORMALIZE THE STRATEGY _ -

1. DEFINE THE INTERFACES (IN TERMS OF ADA MODULES AND DEPENDENCIES CORRESPONDING TO NONDECOMPOSED

PARTITIONS)
2. IMPLEMENT THE SOLUTION

a. Use the Stepwise Refinement to Optimize Modularity

b. Determine ADA Specifications for ADA Units.

c. Implement the ADA units

DETERMINE THE LEVEL OF ABSTRACTION

This new 00D siep explieitly indicates the
importance and placement of level of abstraction
determination and also allows 00D to better
suppert the software engineering concept of
abstraction and related information hiding.

Each analysis and eclarification of givens is
done In a context that includes a comprehensive
network of groupings of objects and operations,
covering the problem seolution space relative to
an acceptable granularity of space, time,
logical complexity as well as other selected
criterion, This context iIs called level cof
abstraction.

A level of abstraction iIs determined for
gach recursion of 00D, The problem statement
for a recursion bounds a space (establish a
scope) to be covered by the level of
abst¢raction, and the determination of this level
precedes and influences the steps that follow in
the recursion. Levels of abstraction must be
carefully determined by software engineers and
supervisors.

SPECIFY ASSUMPTIONS AND LIMITATIONS

This new 00D step specifies the main
assumptions and limitations of the current level
of abstraction. This information allows the
customer and the software engineer t¢ have a
common understanding before design continues.

16

IDENTIFY OBJECTS, OPERATIONS AND GROUPINGS

These three steps are not new, but are newly
placed and zcecomplish different resuifs compared
td traditional 00D, as discussed in SCLUTIONS TO

PROBLEMS OF TRADITIONAL 00D. _ o

IDENTIFY PARTITION INTERFACES

. This is a new 00D step, not equivalent to
the traditional Defining the Interfaces 3tep,
that comes later. This step emphasizes the
importance of design” level partitions and their
dependencies and interfaces, rather than the Ada
program units and interfaces to be considered in
later steps.

The documentation for Cthis step, and the
immediate predecessor, includes a graphic
presentation showing inclusion, interfacing, and
dependency. This documentation shows how the
previous steps, ‘in the cwurrent recursion,
support the scoftware engineering conecepts of
abstraction, information hiding, and
modularization. by graphiecally revealing the
partitions (modules) abstracted, and by hiding
other information. - :

IDENTIFY PARTITIONS FOR FURTHER
DECOMPOSITION

Software engineers’ and supervisors should
identify partitions at the current level of
abstraction that decompose
operations partitions at the next level of
abstraction
Although length or complexity of prejected
implementation of a partition may be a
meaningful determinant for further partitioning,

into new objeect—

{in the next recursion of Q0D}._

uy T

e

the experience of engineers and supervisors in

the project application area will be the major -

determinant.
SPECIFY THE INFORMAL STRATEGY

This step is equivalent to Developing an
Informal Strategy, Iin traditional 0CD. The
sequential placement 18 after identifying
objecks, operations and groupings, rather than
before.

VALIDATE THE INFCRMAL STRATEGY

This new step encourages evaluatign of the
effectiveness of the Informal Strategy as a sum—
mary of the results of the steps in the current
recursion. A valid Informal Strategy is written
according to the current level of abstraction,
and related assumptions and 1limitaticns; and
should reflect objects, operations, attributes,
groupings and interfaces,

The walidation process wmay require that
changes be made in the results of preceding
steps in the current recursion. Suen changes
are elaborated in other design steps that the
changes influence.

RECURSIVE APPLICATION OF THE METHODOLOGY

The importance of recursing 00D, based ‘on
placement of this step, 1is dlscussed in
SCLUTIONS TO PROUBLEMS OF TRADITIONAL QOD.

FORMALIZE THE STRATEGY

The substeps in this main step are essen-
tially the same as those in Defining the
Interfaces and Impleménting the Solution, in
traditional QOD. The main exception to this has
to do with the faect that recursion is no longer
done as in the traditional 0QD sequence, as
previously discussed in SOLUTIONS TO PROBLEMS OF
TRADITICNAL QOD.

SUMMARY

This paper has presented an approach for
developing simulator software using Ada. The
approach has been derived from an existing
methodology that has been expanded and refined
to provide a system engineering solution., . The
refined mefhodology 1is object oriented and
transforms system requirements inte a software
system. The changes to the existing methodology
include refinements to better identify system
partitions and components that begome Ada
units. In “addition, the methodology has been

integrated with the system engineering process ~

of establishing requirements and sblut’i?gi, that
leads to Ada software. Bocch has
significantly altered the (0D process, The
modifications are essentially similar to
Burtek's refinements to the 00D process and
supports an objecet oriented development process.

BEFERENCES

(1) Booch, Grady; Software Engiheering with

Ada, Menlo Park, CA; Benjamin/Cummings,
1983

(2) EVB Software Engineering Inc.; An
Object Oriented Design Handbook for Ada
Software

(3) Ron, Douglas & Brackett, John W.; An
Approach to Structured Analysis,
Softech, Inc. :

(4) Michael Jackson; System Development,
Prentice-Hall International Series .in
Computer Seience - :

{5) Thomson—CSF, Inc.; ASAP Dogumentation
package, 5350 Hollister Ave, Suite C,
Santa Barbara, CA 93111

{6) Boocch, Grady; "Object Oriented Design",
IEEE Transactions oh Software
Engineering, Vol SE-12, No. 2, F€bruary
1986, p. 211-221 - o

ABOUT THE AUTHORS

Dr. Matt Narotam is..a staff engineer at
Burtek, responsible for the techniecal
performance .of the Ada Simulator Validation
Program. Dr. HNarotam holds a Ph.D from the
University of Salford, England, for a Thesis on
Continuous Systems Simulation Language (CS3SLs)
implementation on mini-computers. Prior to
Jjoining Burtek, Dr. Narotam held the position of
Research Scientist at the Computer Simulation
Center. University of BSalford, where he
‘investigated simulation techniques for CSSLs,
AL Burtek, Dr. HNarotam led a _team of systems
engineers in the developmert of training
equipment for the F/4~18 aireraft, Prior to his
appointment as staff engineer, Dr. Narotam was
Supervisor, Software Systems. -

Dr. Sabina Saib is the Technical Pirector of
the Santa Barbara operation of THOMSON-CSF,
Inc. Dr. Saib 1s a consultant to Burtek for.the
ASVP, Dr. Saib has been resegarching Scftware

. Engineering Methodolegy and tools for performing

structured analysis snd deslgn technigues.” Dr,
Saib has also been evaluating autématic test.
tools. This work is being pérformed with
respect to 4da application to software
engineering. Dr. Saib has also been closely
invelved with real-time and multi-tasking issues
with Ada. Dr. Saib has authored several book
and papers on Ada and has served as jolni editor
with Robert E. Fritz in a book titled '"The Ada
Programming Languge: & Tutdrial, This document
qoentains aseveral papers covering real-time_and

-multi-tasking as applicable to embedded computer

system applications.

Mr. Clifford Layton {s_ Director of the
Computer Science Division at Rogers State
College {RSC)}, Claremore, Oklahoma. Mr. Layton
teaches several oourses at RSC on Ada and
seoftware engineering., Mr. Layton has a close
working relationship with Burtek on the ASVP and
has been inwoived In Burtek's research and
developnent program jnvestigating Ada real-time
and mulii-tasking issues. Mr. Layton is a
member of several professional bodies and is
chairman of the Oklahoma Special Interest Group
on Ada (Sigada) which Is affiliated with the
hssoelation for Computing Machinery. Mr., Layton
holds a Degree in Computer Science and
Mathematics.

