DESIGN, DEVELOPMENT AND MANAGEMENT OF REUSABLE
SOFTWARE COMPONENTS IN ADA*

JAMES O'DAY .
SPERRY SYSTEMS MANAGEMENT
SIMULATION SYSTEMS
RESTON, VIRGINIA

ABSTRACT

The use of Ada and reusable software components in flight training devices promises to
significantly reduce the cost and development time of future trainers. This paper deals
with the selection, design, development, and management of rcusable sofiware components
utilizing Ada as the design and implementation language. In order to realize the benefits
of reusable software components, careful planning is needed to ensure that appropriate
candidates are selected. In this selection process the additional cost of producing an
efficient real time software component is discussed and weighied against the useful
lifetime of such a component. Since design is the most critical part of the development
cycle of a reusable component, generality versus efficiency tradeoffs are discussed in
terms of how they will affect the future success of the component. The successful
management of reusable components and their acceptance by programmers is also discussed.

INTRODUCTION s More thoroughly tested and reliable software
components
The cost and complexity of flight simulation B
devices is rapidly escalating along with the need ¢ Enhanced rapid prototyping capability
for cheaper, more realistic training. Since a) : -
flight simulator is so software intensive, the The level of software reuse is directly related
software development process has a major impact to several factors which will be discussed in more
on cost and schedule. Flight simulators are detail later., These include:
becoming more software intensive in an effort to)
keep up with the increasing amounts of informa- e Application domain requirements (especially
tion being processed on board modern aircraft as efficiency)
well as to simulate modern threat environments.
Reusable software is one means by which software o Experience level of software designers

development costs can be reduced.

@ Programming langudge

Reusability as it is used in this paper refers

to the ability to reuse previously developed ¢ Management commitment to reuse
software components with little or no modifica- Co- : -
tion necessary. For the purposes of this paper, ¢ Organizational structure to support reuse
a software component is defined to be an Ada
procedure, function, package, or generic, The o Documentation
scope of reuse possible includes system, sub- -
system, or individual elements. Reusability of ¢ Programmer acceptance
software components is not a new concept but has . .
been around for quite some time; the most common ¢ Availability of other reusable compenents
example being math libraries. The amount of)
software reused has varied from company to Three major tasks are associated with producing
company, and industry to industry. The Japanese and applying reusable software components to any
have successfully applied this concept in their application. These are:
culture to produce "Software Factories" where . _
programmer productivity has greatly increased 1. Identification and selection
because of the amount of reuse. Reuse Tevels of
50 - 60 percent have been reported in some types 2. Design and development
of business applications. While a feasible level
of reuse in real time flight simulation applica- 3. Management
tions has yet to be determined, the following can o)
be assumed to be typical benefits of reuse. IDENTIFICATION AND SELECTION
¢ Reduced software development time All the major areas of flight simulator software
development should be considered when identifying
e Reduced software development and maintenance and selecting candidates for reuse. 1In a typical
costs flight simulator the mafor areas of software .

development not including special purpose devices
such as visual and radar landmass systems are:

* Ada is a Registered Trademark of the
U S Government (Ada Joint Program Office)

134

¢ Flight dynamics

e Engines

o Aircraft systems

e Instructor operator station {(I0S)
¢ Real time system sofitware

¢ Sofiware tools

e Atmospheric environment

e Tactical environment

e Aural and motion cueing

In choosing whether to design and implement a
software component as a reusable component,
several faciors must be taken into accaunt. The
first and most important of these is efficiency.
Since reusable components tend to be more general
than software components written to saltisfy a
single requirement, the reusable component is
likely to be less efficient in a real time envi-
ronment than a non-reusable component. The
danger here is that money saved on sofiware
development would not compensate for the -
additional hardware expense required to support
the reusable component at the high iteration
rates characteristic of some flight simulation
modules such as flight controls. This, in
essence, polnts to the need for a cost tradeoff
analysis which would be used to weigh several
factors before a decision is made.on whether a
software component is a good risk or not. The
most difficult part of such an analysis is how to
quantify savings from reusable components, since
reusable components are likely to reguire some
modification to be usable from one simulator to
another. Figure 1 represents general relation-
ships between the cost of modifying reusable
software versus the cost of original development.
Reuse becomes questionable as the amount of
modification to a reusable software component

increases. The greatest cost savings come with
the least amount of modification. A reusable
2 COST OF
REUSE QUESTIONABLE r”‘i:;: REUSE

C0ST COST OF QRIGINAL DEVELQPMENT

A

A

(REUSE NOT ECONOMICAL

REUSE FEASIBLE -

3

N

o

— SAVINGS FROM REUSE

ath\

/;

-

AMOUNT OF MODIFICATION NECESSARY TD
MAKE A MODULE REUSABLE

FIGURE 1

software component can end up costing more than
original development if the amount of modifica-
tion becomes extensive.

Another major area of concern in selecting
reusable candidates is the useful lifetime or
payback period of the software component. Some
simulator software areas are more iechnologically
stable than others, which means that the added
costs of developing a reusable component would be
offset by its useful lifetime. Some aircraft
systems such as avionics are constantly being
updated. Good candidates in such an area would be
systems which have been standardized within one or
more of the military services. This includes
software associated with such systems as the
Global Positioning System, 1553 avionics bus
control, Standard Air Data Computer, Standard
Inertial Measuring Unit, etc. Bad candidates are
systems based on_older technology such as mechan-
ically stabilized inertial units as opposed to
newer computationally siabilized strap-down
systems. = Bad candidates include sysiems whose
fuiure use is very limited or doubtful and which
will not provide an adequate return on investment.

Anoptheyr area where technology impacts flight
simylators is in engines. .Because of the high
cost of developing engines, some engines such as
the J-79, F-100 and F-404 are commen to several
different types of fighier aircraft making them
good candidates for reusable software. Other
good candidates based on similar criteria would

e:

e Magnetic variation T
¢ Radio facilities database management
e Atmospheric eﬁyironmentalreffécts
Genaral IO§ utiljt& functions
e Math libraries
e General purpgse sysiem progrqmming utilities™
e Motion and G-suit/seat cueing

e Tactical threat environment (if table/data
driven)

DESIGN AND DEVELOPMENT

One lesson we have learned about reusing soft-
ware 1is that reuse must be designed in from the
beginning. Reusable software components do not
just happen--they must be planmed. In comparing
the design and development of reusable software -
components to the way software is normally

developed for a Tlight simulator, several differ-’
ences are.readily apparent.

Although both require
traditional forms of requirements analysis and
development of detailed specifications, the
requirements for reusable software components are
significantly more demanding than those for
conventional flight simulation software design. ™
This is due in part to the fact that the software
component must be more generic in order to respond

- to differing requirements from simulator to

135

simulator while at the same time being efficient
enough to meet real time requirements, This also
makes the job of specifying what the component

must do more difficult. If the specifications are
too demanding, efficiency and real time perfor-
mance will suffer. On the other hand if the
specifications are not demanding enough, the
component will not be suitable for reuse. While
these problems are not _unigue to reusable
software components, they are more demanding
tasks than we have faced in the past. Therefore
it is logical to assume that more time and effort
are going to be required in this part of the
development process. This will make the cost of
the reusable component more expensive initially
and will lengthen its development cycle. It
should also be anticipated that.the first versions
of the software component that are produced will
not completely satisfy the requirements and that
the design will go through several iterations and
will be a compromise between efficiency and
functionality. Care must also be exercised so
that a component is not over designed. The more
reusability desired, the more difficult and
complex the design task becomes, reducing the

likelihood of its success as a reusable component.

Ada is a much better language Tor supporting
reusability in flight simulation than Fortran 77
because the language has been designed with
reusability in mind. Ada supports the goals and
principles of sof§ware engineering much better
than Fortran 77 (/). Capabilities of Ada such as
strong typing, packages, generics,- information
hiding, exception handling, and separate compila-
tion are features which support reusable software
but were not available in Fortran 77. Table/data
driven forms of reusable software which worked
well with Fortran work equally well with Ada.

Packages and generics are two of the most
important features of Ada Tor creating reusable
software components. Packages provide a means
of structuring reusable componenis. into logically
related units. For example, flight simulators
all contain some type of attitude indicatar.

While there are many different types of attitude.
indicators, they all share some common functions
such as. pltch and roll. 1In creating a reusable
software component for such a device, packages
give us the capability to isolate the core func- -
tions common to all aircraft simulators from .
those that are device specific. This means that
pitch and roll functions could be handled in one
procedure, turn and slip indications in another,
navigation and guidance functions-in another,
and so on. The Ada package lets us group these
procedures into one logically related unit while
the generic construct lets us create more than
gne instance of such an object; in this case
pilot, copilot, and standby attitude indicators.
This type of package could then be reused on
another flight simulator by modifying those
procedures which represent new or different
functions of the attitude indicator without
altering the core functions of the basic attitude.
indicator.

A major goal in designing reusable software
components is hardware and software 1ndependence
This will become increasingly important in flight
simulation as we begin to move into distributed
processing environments. If we are to be able to
transport a software component such as an engine

from a basically sequential frame-driven supermini

computer environment into a paraliel processing

136

“library of reusable components.

environment, partitioning of the component and its
communication interfaces must be carefully con-
siderad to prevent hardware and sofiware
dependencies from entering the design and
hampering its reusability.

MANAGEMENT

If reusable software components are to reduce
software development costs, they must be properly
managed within a company. They are a type of
resource that is wasted if left unused. The
management of a company must make a commiiment to
reuse not only in terms of the human resources to
develop reusable components but also in the form_
of an organization to manage them. Reusable
component designs will in general cost more and
will take longer to develop than single purpose
designs. The design efforts will also require the
talents of some of the best software designers .
within the company. If the management commitment _

is not there for this level of effort, a reusable

software component program will not succeed

Initially, savings from reusable software com-
ponents will need to be reinvested to build up a’
An organization
will need to be established to maintain control
over and to manage these components. The respon-

" sibilities of this organization would _include:

o Configuration management of reuysable sofiware
components . . Lo

e Maintaining documentation sufficient to find

and assess the adequacy of the cemponent for .

various applications

. Monitoring design and development of reusable

components -

o Helping to fdentify and select new reusable
component candidates B .

'] Tracklng problems with reusable components and
incorporating user feedback into new designs

¢ Advocating the use of reusable components
wherever possible

¢ Maintaining reuse statistics on the effective- —

ness of the reuse program

One last formidable obstacle that must be over-
come before reusable software can reach its full
potential is programmer acceptance. There is a
natural reiuctance on the part of most people,
including programmers, to accept responsibility
for other people's work. This can only be over-
come if the programmer has confidence in the
capabilities of the reusable component and if
he/she is not penalized if what had been a good
reusable component does not work in his/her
application. The attached list of referénces
shows the high level of interest in reusable
software components and some_of the wealth of
information available in this area.

SUMMARY
The success of-reusable software components in

flight simulation software development depends upon
three major factors. Selection of appropriate

candidates to become reusable software components 1.
is the first of these. The successful application
of design and development techniques to the real
time flight simulation problem domain is the
second, and the successful management of the
components is the third. Good reusable software
components will generally cost more and will take
Ionger to develop than software designed io be
used only once. A cost tradeoff analysis needs

to be performed to determine the best candidates
to become reusable components so that there will
be an adequate return on investment.

12.

13,

14,
ABOUT THE AUTHOR

James 0'Day is a Senior Member of the
Engineering Staff with the Flight Simulation
Division of Sperry Systems Management. He is
currently the principal investigator on an Ada-
based flight simulation IR&D project. Previous
responsibilities included team leader on a project
simulating an embedded area navigation computer.-
His military experience includes 1500 hours of
flight time as a helicopter pilot in special
operations and spacecraft recovery missions. He
holds a Masters Degree in Systems Management from
the University of Southern California and a BSEE
from the U.S. Air Force Academy. Mr, 0'Day has
also completed the course work requirements
towards a Masters Degree in Computer Science at
George Washington University.

REFERENCES

15.

16.

18.

1. An Object Oriented Design Handbook for Ada
Software, EVB Software Engineering, Inc.,
Jan 1985. .

19.
2. C. Ausnit, et al., "Ada Reusability Guide-
lines™, April 1985, Softech Report, NTIS ’
AD-A161 259. 20.
R. Buhr, System Design with Ada, Prentice-
Hall, Inc., 1984,

o,
G. Booih, "Object-Oriented Deveiopment“,

1EEE Transactions on Software Engineering,
Vol. SE-12, No 2, Feb 1986. -

22.

T. Cheatham, "Reusability Through Program
Transformations”, IEEE Transactions on
Software Engineering, Vol, SE-10, Sept 1984.

23,

B. Cox, Object Oriented Programming; An
Evolutionary Approach, Addison-Wesley, 1986,
ISEN 0-201-10393-1. - o

24,

P. Freeman and A. Wdsserman, "Software
Engineering Process, Principles, and Goals",
Software Besign Technigques, fourth edition
IEEE Computer Society Press 1983.

J. Goguen, “Parameterized Programming", IEEE
Transactions on Software Engineering, Vol.
SE-10, Sept 1984.

J. Goguen, "Reusing and Interconnecting
Software Components”, Computer, Feb 1986.
10. L. Healy, et al., "Reusable Software - Toward
Reconfigurable Trainer Systems", ITEC
Conference 1985.

137

Engineering, Vol.

7.

_Software Engineering, Vol. SE-10, Sept 1984f,

"D. Whinery and G. Barber,
to Software Reusability",

E. Horowitz, et al., "An Expansive View of

Reusable Software“, IEEE Transactions on
Software Engineering, Vol. SE-10, Sept 1984.

B. Jones, et al., "Issues in Soffware
Reusablllty", ACM Ada Letters, Yol. IV Num 5.

T. Jones, "Reusability in Programming: A o
Survey of State of the Art", IEEE Transactions
on Software Engineering, VOI SE-10, Sept 1984,

R. Lanergan and C. Grasso, "Software
Engineering with Reusable Designs and Code",
IEEE Transactions on Software Englneerlng,
Vol. SE-10, Sept 1984.

S. Litvintchouk and A. Matsumoto, "Design of
Ada Systems Yielding Reusable Components: An
Approach Using Structured Algebraic Specifica-_
tion", IEEE Transactions on Software

SE-10, Sept 1984.

M. Mac an Airchinnigh, “Reusable Generic
Packages Design Guidelines Based on
Structural Isomorphism*, Annual National
Conference on Ada Technology 1985.

G. McKee, “Advanced Tutorial on Designing Ada
Packages for Reusability®, Tutorial National

"SIGADA Meeting Nov 1985. o

Y. Matsumoto, "Some Experiences in Promoting
Reusable Software: Presentation in Higher
Abstract Levels®, IEEE Transactions on

J. Nissen and Peter Wallis, Portability and o
Style in Ada, Cambridge Universiiy Press, L
19%4, 15BN © 521 26482 0. : o

F. Pappas, "Ada Portability Guidelines",
Mar 1985, Softech Report, NTIS AD-A160 390."

‘R. Pressman, Software Engineering; A

Practitioner's Approach, McGraw-Hill, 1982'.: -

T. Standish, "An Essay on Software Reuse",
IEEE Transactions on Software Engineering,
Yol. SE-10, Sept 1984.

R. ST. Dennis, et al., "Measurable Character-
istics of Reusable Ada Software”, ACM Ada
Letters, Vol. VI Num 2, Mar/Apr 1986.

"Analytical Approach
Annual National
Conference on Ada Technology 1985.

