TRAINING SYSTEM BUILDING TECHNIQUES
& THE POTENTIAL OF Ada

E.L.Averill Software Staff Engineer
T.M.Choy Principal Lead Software Engineer
Honeywell T&CSD West Covina Ca.

June 5, 1986

ABSTRACT

The acquisitton of Training Systems is being stressed continually by the advent of re-
quirement change. The cost and schedule impacts from such changes are felt throughout

the acquisition and fielding process.

The use of FORTRAN places constraints upon the development process which limits

ability to reduce the effect of requirement change. Preliminary experience with Ada

Y in the

training arena shows that an Ada environment does not share the FORTRAN limits.

The paper examines the essential differences belween the Ada and FORTRAN software
environments in relation to both requirements change and to the introduction of generic
“standard” components within Trainer Products. The concepi of generic componénts is
defined in terms to show how an Ada environment facilitates in ways a FORTRAN environ-

ment cannot.

Support software prerequisites (particularly for Training System products) are identified
and are shown to be necessary to allow developers to exploit the potential within structures

that are part of the Ada language. =

INTRODUCTION

This paper identifies product differences between a FOR-
TRAN and an Ada software environment. The paper relates
these differences to the most desireable characteristics cur-
rently not provided by trainers. The paper then summarily
indicates how the potential of Ada can be engineered to
provide these characteristics for acceptable costs.

A major training school concern is training effectiveness.
A primary cause of trainer in-effectiveness is the difficulty
training schools have in responding to changes in trainer’s
requirements. Changes occur throughout the life-cycle of
the trainer. A requirement change arises from such things
as:

¢ changes to the equipment the trainer relates to,

+ field operational changes (for example technical order
changes which must be reflected in the trainer),

e aneed to upgrade the trainer effectiveness based upon
the experience of using the trainer,

® a need to improve the trainer’s instructional capabil-
ities,

Currently training schools are experiencing problems be-
cause of the conflict between the need to keep their train-
ers current, and the costs and frequency of change that are
necessary 1o keep their trainers current.

The techniques used to develop and build a trainer es-

tablish a floor for the costs associated with modifying the

trainer, (in terms of time, dollars, and the prerequisite peo-
ple skills).

The techniques used to build the trainer are part of the
design and development process, which colleciively are the
Process Technology, as opposed to the Prodnct Tech-
nology which refers to the components out of Wh](‘h the
trainer is constructed.

The paper compares the use of FORTRAN with the use
of Ada in terms of the effect it has on the Product Tech-
nology. This comparison is then exfrapolated to show how
the potential of Ada can be exploited to make substantial
changes to the Proeess Techno!ogy used to build and to
modify training systems.

Changing the process technology is significant because
experience with software estimating techniques (*} shows
the most significant factor which increases cost and sched-
ule of a product is the Process Technology used.

*Ada ja a registered trademark of the U.S. Government, Ada Joint Program COffice

i38



Need to Change Training Systern Requirements

Under the Figure 1 process {echnology, changes to re-
quiremenis are applied to existing implemeniation detail
{once a trainer is developed). Typically thé pathway from
requirements through design and development is different
from the pathway used for making modifications {o an ex-
In the original development the
“higher level” requirement and specification documents are

isting trainer product.

interpreted by engineers into the “low level” implementa-
tion which becomes the delivered produci. In the modi-

fication pathway shown in Figure I, if is Thé “low level”
implementation detail only that is changed.

However the Figure 1 technology can be upgraded if
requirements are separated into fixed and changeable parts

» and if {he fixed requirements ! are engineeréd info

a product architeciure for the traineér type, and if

the scope of things within the changeable require-

ments ? are engineered into a modificalion pathway
that (as shown in Figure 2) can serve both for the
original development as well as for change through

the product’s life-cycle.

Figure 1: Currently Changes are made to the Low Level
Implementation.

ORIGINAL DESIGHN DESIGH
REQUIREMENTS & SPECIFICATION
L ] R ———
Legend: .
mem—— A Document

or product y
+~w—p An Engineering DEVELOPMENT
activity
L
REQUIREMENT MODIFICATION TRAINER
MODIFICATIONS # PRODUCT
Wil it —

Figure 2 illusirates the process technology that can be

achieved based upon requirement separation into fixed and

variable parts. The paper indicates that this process tech-

nology is a practical possibility due to the potential of Ada.

! Fixed Requirements nre represented by project independent specification.

*Changeable Requirements are represented by project dependent
specification.

139

Figure 2: Ada Facilifates Design of Modification Pathways
info the Product T T o

ORIGINAL . FIXED
REQUIREMENTS " REQUIREMENTS
e A

CHANGEABLE SPECIFICATION
REQUIREMEXTS DF FIXED
— ARCHITECTURE

A
! SPECIFICATION
“»-(F CHANGEABLE
PARTS
L ]
FIXED PART
MODIFICATION TRANSFORMATION
REQUIREMENTS
L
VARIAELE PART Y
TRANSFORMATION
Legend: TRAINER

vramemme | Document

APPLICATION
or Product =

=——— An Engineering &
Activity . PRODUCT
ARCHITECTURE
E— R ————

QA Process

A trainer product which provides capabililies {6r the
training school to keep the trainer current has to have the
Figure ? type technology designed info the {raimer.” ~~ °

The paper compares FORTRAN and Ada and states the
opinion of the writers that Ada facilifates such a design
while FORTRAN lacks essential characterisiics to make such
a design practical. ’

With a trainer designed to be kept current by the train-
ing school, changes will be made by changing the trainers
spacificafion. The specification will have to be formalized
so that the trainer software (which provides the “change-
able requirements part™) can be regenerated.

Experience (?) shows that, with current technologies,
changes at design time Cosi a very small fraction [dollars
& time} of the cost required by the same change at or after
accepiance lest {ime, (at which point under the Figure 1
process technology, it is the implementation detail that has
to be modified). From this experience il is ¢léar that the
cost of change will be very significanily reduced if {rainers
can be kept current by regeneration instead of modificafion.



PM Trade’s Standard Trainer Components

PM Trades Five Year Development Plan (1985-1989)
(*) calls for the standardization of component items within
a maintenance trainer., This introduces a set of poten-
tial contraints into the original design and development
process. The writers feel that there is significant synergism
between the two needs

1. to build in ease of changeability via a modification
transformation process as per Figure 2,

2. to build trainer type producis out of standard com-
ponents.

Both introduce development cosis at the front end in order
to establish 1the technology. Both aim for long term life-
cyele cost reductions. The PM Trade plan identifies

“Problem: There are currently no means for
obtaining compatibility among Army mainte-
nance training devices or the computer software
which supports them. ...,

Objective: To design a specification which
will support acquisition of a wide-scope family
of microcomputer-based maintenance trainer sys-
tems wherein hardware and software modules
from any acquisition will be directly interface-
able and usable with modules from any other
acquisition,”

This PM Trade objective is distinct from {he objective of
keeping a training product current. However both involve
standardization within the design. There exists sufficient
commonalily in the straiegies needed to realize these ob-
jectives thal a single design may be conceived io serve both
purposes. Further, such a design is obtainable with an Ada
software environment. With the FORTRAN language the
same design may be possible, but the practical difficulties
arising from using FORTRAN probably will prevent realiza-
tion of the objectives. ;

DETAILED CONSIDERATIONS

In this section we first identify the types of requirement
that training schools wish to change ® and under what con-
ditions. Then we examine the significance of FORTRAN
and Ada to the irainer system product.

Changeable Requirement Examples

Changeable requirements for trainers are in the course-
ware, in the simulation, and in how the field equipment
is represented to the trainee. Specific examples of change
for maintenance trainers, can be changing a step within an
existing procedure of a particular lesson, such as

» introducing al 2 new place a display from the visual
syslem, or

*We recognize derived requirements will be affected also, but felt
changes to derived requirements are not significant to the main
discussion.

» causing a specific panel output fo occur, or

¢ the change can be more demanding such as changing
an existing simulation module, or

s adding 2 new lesson, or

» replanning the lesson steps returned to in response to
a “repeat task” command.

e if graphic displays are used to represent the field equip-
ment, then the detail of the representation is open to
change.

Cost_Implications of Requirement Change

We know from (') and (%) that the cost of making
changes upon the implementation detail of a product is
in general much greater than the cost, per unii of function-

ality, of the original development.

We can compare the cost/time characteristics of the
modification of a trainer product with the charateristics
of the original development, by considering the cost to add
a Boor to a multistory building. It can be readily appre-
ciated the addition of a floor can require more work than
the original building because the existing design did not in-
clude what was necessary to support the extra floor. Hence

‘all the preparation and support for the change has to be

included in the cost.
The essential causes of cost escalation are similar for

_both software and physical systems. The extra cost comes

from rework that has to be done.

So in summary, if it is true that trainer systems

s will continue to be subject to changes in their require-
ments throughout their life-cycle, then

e considerations towards minimizing life-cycle cost will
continue to support the need for cost effective mod-
ification pathways to be designed into the original ~
trainer. Pathways to allow training schools to re-
spond to the ongoing need for change within their
operational resources and within their environment.

A Systems Engineering Comparison

FORTRAN and Ada are not compared in terms of their
instruction repertoire or in terms of the environmental sup-
port to the using software engineer. The comparison made
is in terms of the organization and structure that can be
put into the product as a result of the language constructs,
FORTRAN encourages a relatively low level and proce-
dural formulation of the requirements specification and the
top level design documents, which introduces cost/time prob-
lems when it comes to making changes to the praduct after
it is delivered. A low level, procedural approach to the spec-
ification submerges the visibility of user’s needs within the
implementation detail. Ada allows the system’s software
requiremnents and top level design to be stated in data struc-
ture and data transform operational terms, which can make

140



the user’s needs more visible within the design, and acces-"
sible to change. Hence Ada designs can be enigineered to
facilitate changes for those requirements which are known
to be subject to change.

Probably the most critical visibility for a trainer system
product is the interface between the instructor and trainee
users and the trainer. In FORTRAN there is no more capa-
bility to design a high level representation of the user’s re-
quirements than there is in assembly or machine language.
Ada's package mechanism enables all user’s world objects to
be represented in the design with all their direct interfaces
with the user. Few system modifications do not require a
modification to how the system product interfaces with the
user.

The objective of our comparison between Ada and FOR-
TRAN is to compare them in terms of the ease of building
into the system product Figore 2 type properties. Note the
Figure 2 type properties must be designed into the prod-
uet, and into the process which builds the product. The
fact is that Figure 2 type properties rely on the internal
organization and design of the software within the system
product.

We, therefore, compare FORTRAN and Ada by exam-
ining the effect each has upon the specifics of the traiper
product,

FORTRAN’s Effect on the Product

FORTRAN'’s product is a hierarchy of functional pro-
cedures (routines and subroutines) which require a global
set of variables to connect the routines into a meaningful
whole. The root node of the hierarchy is firmly fixed at the
implementation level with the operating system, the hard-
ware configuration, and runtime environment. It contains
no notion of environment beyond its single thread of control
and mermnory space. A FORTAN system changes state by the
routines making changes to the global variables. There is
no provision or assistance {except an array) for organizing
and managing the data structures by means of which the
systerz state rnay be controlled.

Table 1: Product Differences for FORTRAN and Ada coded Systems

ITEM Ada ] FORTRAN 1 Environment Effect
Threads of Multiple | Single ‘Single’ forces dependence upon
Control operating system, and constrains
scope

Memory Dynamic | Static ‘Static’ inhibits virtual memory
(pointers require Assembly Code)

Built-in Full Array The lack of built-in structures

Data Structures | Set Only mandates low level design thinking

User Objects as | Full None A Data Structuring capability is

Data Structures | Set prerequisite to ease of change

Built-in I/0 Full /G | No i/O Full support facilitates

Potential support | Potential ease of change & wider scope

Algorithmic Full Primitive Primitive implies a wide gap

Structuring Set between requirements and imple-
mentation

Recursion Provided | None Recursion requires well developed
structuring -

Exception Fall None Exceptions always exist, ‘handling’

Handling Support provides formal interface to main
algorithmic logic ™~~~

Writing of Possible | Not For FORTRAN Assembly code is

1/O Drivers Possible needed: Ada provides machine
representation capabilities

Task Full None Task Types allow for maximum

Types Suppori parallel execution pathways at run
time :

R SV

141



Ada’s Effect on the Product

Ada’s data structure specification can start in the user’s
operational theater with real world objects. There is a set
of objects in the user’s operation that the irainer system
must have represented in its memory:

Ada not only facilitates the specification of the data
structures, but it creates a structure in the product which
is an accurate representation of the objects within the user’s
operation.

The data specifications become a collection of sepa-
rately defined data packages for which the Ada language
provides considerable language support.

For each separate system object represented by a data
structure, (in Ada a Package), Ada directly associates the
operations needed to operate upon that structure. The
scope of the logic within the operations {in Ada a sub-
program), is clearly defineable in terms of pre- & post-
operation data states.

Data structure independence from implementation strat-
egy and configuration, means that there is, within the prod-
uct, a data level with a clean interface to the lower levels
mm the product structure. (This support is in direct con-
trast to the amorphous data mass provided by FORTRAN’s
commeon data block of global variables.)

More Detailed Ada/Fortran Comparisons

Table 1 compares those features in the Ada and FOR-
TRAN languages which have significant effect upon the
compiled code within the system product.

FORTRAN is a language which has proved its effective-
ness and limitations over more than 20 years. Although
it has been upgraded to include some algorithmic struc-
turing, it still relies on informal use of “go to’s” to carry
out its functioning. The problem here is that there is no
way to relate the “go to” connections to the function being
perlormed except by detailed examination of the “go to”
network, this may be compared to analysing wiring without
the aid of a wiring diagram. Further FORTRAN allows use
of subroutines, but again the use is informal and requires
detailed Instance by instance examination to comprehend
the system behavior implications. C

FORTRAN’s scope is too limited to provide a product
structure that facilitates the design of a product architec-
ture with the characteristics portrayed in Figure 2. FOR-
TRAN allows only one thread of hardware control and so
cannot properly relate to the needs of managing its under-
Iving hardware configuration. All peripheral device drivers
and interrupt handling have to be writlen in assembly level
language. A software engineer user has to rely heavily

on specific non-standard operating sysiem functionality to
fitllfi] basic needs for establishing the software for a system.

142

On the other hand Ada has been designed upon the
experience of more than twenty years use of dozens of dif-
ferent languages. It has 2 much wider scope. A comparison
of the scope differences is illustrated in Figure 3.

Figure 3: Scope Comparison Between Ada & FORTRAN

Theater of Operations for
Training System User

Training System User
Requirement Specification

System Specification

Top-Level Data Structure l
Design Ada
Scope

Implementation Design

FORTRAN
Scope

!

Detailed Algoithmic
Design

Run-Time Environment

Hardware Configuration

Th tential of Ada

The Ada potential thai we are referring to depends
upon the conceptual notions which gave birth to the lan-
guage. We draw attention to specific features.

The Ada language provides the sofiware engineer with a
complete set of descriptive and specification capabilities. It
is not necessary to go outside the language to make a com-
plete specification of the low leve! functionality required for ~
the hardware configuration.

This completeness Is a very significant facilitator to the
successful development of system/sofiware generation ca-
pability for system engineers. So the potential of Ada for
training systems is in it ability to support future system
specification Janguages.

Figure 4 depicts the different levels within the Ada Jan-
guage, and relates these levels to both the user’s world and
underlying Hardware.



When examining Figure 4 we need to recognize that all
functionality is achieved by data transforms.

Ada provides very considerable data typing features
which preserve, the intent of the user’s operation, in the im-
plementation specifics. For instance if a parficilar switch
‘is defined to be a particular type, then it would not be pos-
sible o perform operations upon that switch which were
not defined as applicable in the data specification for that
type.

Hence with Ada the systems analysis of the training
need can be accurately represented in the Ada data spec—
ifications. These data specifications are sure to be accu-
rately translated into executeable memory environment by
the compiler.

Figure 4: How Ada Relates to a Training System Environ-
ment

TRAINING SCHOOL CLASSROOM
OPERATION

} Bridged by
¥

} informal

¥

} Engineering

} Ada's
} Specification
(includes operations on the Data) } Code

Data Structure Specification

} Ada’s
} Body level
} Code

Algorithm Specification

e e ek e . O . 2 P i e e AR Ll

Standard Interfaces built by Supplier in the
form of Low-Level Ada Packages

(includes Special I/0 support,
Run time Environment,
Tasking, Interrupt handling etc)

e o o L o i o i o .

HARDWARE

SOME PREREQUISITES TO EXPLOIT THE
POTENTIAL OF ADA

This section of lthe paper identifies some prerequisites,
besides the Ada language potential, o make the updating
of training systems possible and within the traiding school
budgets. The same prereguisites facilitate the acquisition
of training systems with inter-operable components.

Generics and separate compiling are two Ada features
not menfioned in Table 1 because they do not change the
execution of code. However both are prerequisite for the
reusability of engineering labor in the generation of Train-
ing systems. Generics enable very high level macros to be
developed, which can then be specialized for a specific need
without having to recreate fhe commeon framework. Both
are necessary to support a Figure 2 process technology.

Separate compiling allows for the management of Ada
code “pieceparts”, and allows the pieceparts to be compiled
on their own, and then added in to other compilations by
making reference to the reuseable part.

Ada provides only the poteniial. To realize the desired
training system behaviors there has to be investment in
the technology of system generation. Creating the means
for the generation of a systém, such as a training system,
requires very similar antecedents to the creation of a hard-
ware factory. The following antecedents are seen o be nec-
essary: - - s s

1. The specification of a PRODUCT TYPE, (which
sets oul the scope of a particular software Tactory;)

2. A clear and rigorous separation of fixed from change-
able requirements for products belonging io the prod-
uct type,

3. The fuli development and maturation of an Ada parti-
tioning language along the research and development
lines documented by a Honeywell Report (%), (this
will allow both the Ada specifications and the Ada
bodies to be truly independent of both hardware and
configuration),

4. The development of a high level language {which is
dedicated to the product type, ] and which dllows spec-
ification of the variable (so far called changeable) re-
quirements, via graphic and tabular means after the
style of Teledyne Brown Engineering TAGS (%),

" 5. The development of interactive graphical tools for the
transformation of specifications in the “product lan-
guage” into standard databases {which can be used to
recreate the diagram on many monitors, printers, and '
plotters); databases which can be transformed via
Ada tools into lower level enginecring products/data
‘bases, some of which may act as frameworks of dia-
grams or tables for completion by an engineer who
adds further specification... which gets put inlo an
enriched database and so on until by automation as-
sisted stepwise refinement and decomposition the prod-
uct is fully defined.

{The Introduction to an Army report () clearly de-
fines the connection between a specification and one
of its possible implementations, the report lays a for-
ma} foundation for the use of specification languages).

143



6. The preservation of all the intermediate products (i.e.
the databases) each of which represenis a particular
level of specification for one product,

7. The development of a special tool set which allows
an end-user to make changes to the content of these
databases, which then can be directed to regenerate
the product with changed requirements. _.

SUMMARY

The paper shows how the Ada language facilitates a process
technology in which there is a separation of requirements
into fixed and changeable camps while FORTRAN dogs not.

The paper identifies what the Ada language brings to
a training system product and to the development process
that Is not available with the FORTRAN language. In par-
ticular it focuses upon those differences which affect our
ability to build modification pathways (as per Figure 2} and
standard inter{aces {as per PM Trade’s Generic Trainer)
into trainer product types.

The paper has only summarily defined the generation
process, and cannot go further because of the size of the
topic. It has to leave to the experience of the reader to
see the connection between the Ada’s potential and the
demand for a product generation process.

FURTHER WORK

It is our viewpoini that the following extra research
work will speed up the realization of Ada’s potential to the
training system community.

1. Industry and the training system System Program
Offices 1o work upon the pre-requisites for adopt-
ing a standard product {ype approach 1o replace the
current method of individual total specification for a
trainer.

2. The exploration of a product line specificafion lan-
guage development:

¢ the specification language to become the means
of specifying the variable requirements, and

+ the semantics of the language to be formally di-
rected towards z product architecture,

¢ a product architecture to satisfly the fixed re-
guirements.

{Such architectures could include the standard inter-
faces for the generic trainer which the Army seeks to
bring into being.} .

3. Standard database design iools for graphic diagrams
and parameter tables for integration into the engi-
neering process described in item 5 above.

- } REFERENCES

(1) R.W.Jensen, “An Improved Macrolevel Software Develop-
ment Resgurce Estimation Model”, Praceedinigs of the Fifth In-
ternational Society of Parametric Analysts Conference, St. Louis,
MO, April 26-28. 1983, ' i )

(2} B.W.Bochem, “Software Engineering Economi¢s”, En-

glwood Cliffs, N.J.(1981); Prentice Hall.

Ll44

" (3) Project Manager for Training Devices {FM TRADE) 1985-
1989 Simulation and Training Device Technology, Five Year Ex-
ploratery Development Plan, Approved by James W.Ball Colonel
ORDC Otlando Florida

{4) Septernber 1985 Preliminary Report on “The Ada Pro-
gram Partitioning Language” and “Ada Program Partitioning
Language - Reference Manual® Honeywell System and Research
Center Distributed Ada Project,

{5) January 1986 “Technology for the Automated Generation
of Systems (TAGS) - Reference Manual” Teledyne Brown Engi-
neering, Cummings Research Park, Huntsville, Alabama 35807,

{6) Leslie Lampert, SRI International, ARO 20628.5-EL “Spec-
ifving and Verifying Concurrent Programs® Final Report Feb
1985.

ABOUT THE AUTHORS

EDWARD AVERILL is a Software Staff Engineer for Hon-
eywell T&CSD. He started his software career in 1955 working
with machine language and paper input and output. For many
years he interfaced directly with the users, and to satisfy their _
needs, worked all parts of the life-cycle; requirements, design,
production, sell-off, and follow-up maintenance. ’

His current challenge is leveraging the on-going hardware and
software support system advances to enable competitive software
engineering development within the production of real-time sys-
tem products. The target is the application software within
the Training and Naval Combat System products made at the
T&CSD operation within Honeywell Inc’s Aerospace Defense
Group.

THOMAS CHOY received BSCS and MSCS degrees from
the University of Southern California in 1977 and 1979 respec-
tively. )

" Currently, at Honeywell T&CSD, he is the lead software en-
gineer of two Ada projects for the Air Force and Navy. His
industrial experiences are in the spacecraft real-time data sys-
tems, maintenance, operator, and visual trainers. His research
interests are in the areas of real-time parallel processing systems,
programming language translators, and programming language
theory.





