On-Line Help and References
for Courseware Developers

Brian L. Dear
Senior Courseware Developer
Training Systems Center - -
Hazeltine Corporation

This paper repors on the increasing use of on-line help and
reference programs within computer systems, specifically authoring
systems for the development oi computer—based training. The
advantages of developing a comprehensive help program are
explained. The “help” features of two well-known authoring systems

are described.

Coping with Computers

Like automohbiles, computers must be
understood before they can be “driven.” We
first learn how to sign on; cnce on, how 1o
move around the system; once finished, how
to save our work and sign off. This is
never as easy as it sounds. Anyone who has
used a computer has faced the familiar
error message “Invalid data” or “Invalid
response.” We type a command and the
system says “what?” We eventually learn to
adjust to the system’s quirks, much as we
learn to cope with a temperamental
transmission in 2 car. Recall that
triumphant feeling after successfully
signing on to a system for the first time.
Rzcall the relief of finding two hour's
work still safe, still on-line, and ready
to be edited the second time.

Computers for Instruction

Trainers use computers as tools: first
to develop instructional material, and
second to deliver it, once tested and
debugged. Developers of computer—based
training (CBT) most likely use specialized
editors and programming languages tailored
specifically for creating instructional
material. These authoring systems, as they
are called, range from simple menu-and-
prompt programs for developing drills and
quizzes, 1o super—sophisticated
environments for developing the most
complex of tutorials and simulations.

A Growing Market

Ten years ago, there were perhaps a
dozen widely—used authoring systems; five
years ago, this number had perhaps doubled.
In 1986, there are probably several hundred
authoring systems on the market. (See
Locatis & Carr, 1985, for more "
information.}

Many Similarities Among Systems
While the number of systems has grown

dramatically in recent years, the

ditferences between today’s systems and
those of five and ten years ago are not
great. A typical authoring system of today
comes with text and graphics editors, ~
student input editors, and branching

aditors. When we remove the whistles and
pells, the appetizers and desserts, we
discover that the majority of authoring
systems offer a standard fare of tools:
screen—maker, input—analyzer, and brancher.
Some also allow some form of management
system and calculator. Much of the current
effort among creators of authoring systems
is 10 imprové this set of basic tools: make
them sharper, more robust, more powerful,
more plentiful. [t is vitally important,
however, that the user of these tools, the
courseware author, understand how to use
them; otherwise they go unused, however
fancy and feature—laden. :

Making Productive Use of a System

The degree to which an author can make
use of a system relates to the degree to
which the author knows the system. -
Experienced authors may “whiz” through a
system, whereas novice users grope and grow
anxious. This phenomenon applies generally
to any computer application: accounting,
word processing, graphics editing,
statistical analysis, and database
management. The increased productivity
promised by computer systems only begins to
appear when users finally understand the
hows and whys of what they are doing.

The Ideal Scenario

if you visit a foreign land and do not
know the native tongue, you quickly will
realize how helpless and alene you are.
Little can be accomplished when people
cannot communicate. The ideal solution to
language problems is having an interpreter,
who speaks both languages, constantly at
your side. Most of us cannot afford such a
luxury. Hence, we rely on quick-reference
bilingual dictionaries, complete with lists
of common idioms and phrases.

In many cases of training, the ideal
scenario for individualized instruction ’
would consist of one live, expert tutor for
every student. Since there will always be
many more students than teachers, the only
way to approach this ideal is to automate
the tutor —- hence, CBT.

In the realm of using computers in_any
application, the ideal scenario for
learning to maximally utilize a system
would consist of one live, expert “"helper”
for every computer user. Again, such a
scenario seems unlikely. Computer
programmers, courseware developers
included, generally rely on help from
peers, training seminars, reference
materials, and general trial-and-error
experience. Automating the reference
material has proven to be.a great boost to
any user's productivity: hence, on-line
“help” programs.

Natural language interfaces (Dear,
1986; Rich, 1884; Harris, 1984) are another
method for improving communication and

understanding between human and computer.

This method involves a computer program
that takes English {(or some other human
language) requests from a user, translates
them into a language that the computer can
understand, and then converts the results
back into human langauge for the user.

On-Line Help

On-line, embedded help programs have
become “standard equipment” in many
computer applications. Uswally, the on-
line material comprises a subset of a
larger group of printed reference manuals.
The trend seems to favor inclusion of both
in 2 software package. There are
advantages to both on-line and off-line
materials. The first advantage to on-
line help programs is the very fact of
their being on-line. Reference manuals
take up physical space, and in the typical
courseware developer's work environment,
desk space is scarce. In most cases, on—-
line programs can be revised and

292

distributed at less cost than republishing

printed manuals. Computer software is

constantly heing updated; version numbers _
change frequently. Obviously, reference : .
material must match the software it refers

to. Typically, on-line help can bhe updated

easier than off-line manuals.

Two Examples: PLATO and TICCIT

In the mid-1960s, the PLATO system was
only a few years old. Anyone interested in
developing lesson material for delivery on
PLATO had to first understand machine and
assembly language (Lyman, 1981).
Eventually the TUTOR language and its set
of editors was born. As the PLATO system
grew, so did the number and complexity of
TUTOR commands. The developers of PLATO at
the University of lllinois realized the
need for documenting TUTOR 'in an on-line
help program. The result was a program
called "Aids,” still in use today. The
Aids program (Control Data Corporation,
1981) allows FLATQO authors to find i
definitions and explanations of most of the
PLATO system features, and all of the TUTOR
language commands. For ‘example, if an

‘—author needed help on the —~compute- : -

command, Aids would offer a set of
different examples of the comrmand, an
explanation of what it does, and a
description of the effects of executing the
command.

The TICCIT systern {(Merrili et al,
1879; Wilson, 1984), while maintaining a
different philosophy and approach to
‘developing courseware, as compared to
PLATO, had a similar on-line “help” program-
available. The authoring environment on
TICCIT has changed over the years. The
origina!l APT (Authoring Procedure for
TICCIT) system grew into an authoring
language called TAL, which has in the last
five years evolved into ADAPT {Mudrick &
Stone, 1884). ADAPT, on the current
MicroTICCIT system, includes a set of
author language commands which posses the
same syniax and sequence attributes as
those of PLATO’s TUTOR language. "Advice,” "
as the on-line help program is called on . -
MicroTICCIT, hasically serves as a -
reference for authors who need quick,
concise infeormation about a feature of the
system.
Revising “Advice”

The ADAPT language is designed as a
multi-level authoring system. The menu-
based Level 1 of ADAPT permits novice
authors to develop courseware with no

= W py——

programming skill. Level 2, while
maintaining a menu format, is designed to
provide a more complete set of tools,
including some programming and syntax. At
Level 3, advanced authors are able to use
the authoring language directly, with

access to all the powerful programming
functions.

Cne of the problems with traditional
on-line help programs in authoring
environments such as those on PLATO and
MicroTICCIT is the preponderance of text-
based, page-turner type information.
“Screenfuis” of text that have been
transferred from a reference manual
generally do little to help a struggling
author. In regards 1o the student
environment, it has long been argued in the
field of CBT that transferring a textbook
to the computer does not make for better
instruction ~~ in fact, it is generally
agreed that in such cases textbooks are
still more effective.

It has been argued that books are a
passive medium (Merrill, 1988), whereas
computers should be highly interactive
media. Making help sequences inteéractive
and developing individualized, adaptive
help sequences for authors is an extremely,
usually prohibitively, costly endeavor,
Current trends seem to indicate that
creators of authoring systems are aware of
such problems and are beginning to improve
their systems.

The New Advice

In order to make on-line help truly
helpful for all authors, regardless of
skill level, we must spend a lot of effort
designing interactive programs that
ultimately become instructional courseware
for the author. The Advice program within
the ADAPT environment presents an
interesting case. During the past two
years, a large effort has been undertaken
to rewrite the help programs for the entire
ADAPT authoring system to make them more
interactive. The first working version of
this new Advice was recently released to
users.

The Advice package now consists of
three highly integrated components: a
"course” full of lessons covering every
ADAPT topic, a “TOPICS” program that gives
authors access to the entire “course,” and
a “Where Am 1" program which shows the
author where he or she is in the editor.

293

The Advice Course

It was decided that the vast
collection of Advice topic discussions use
the same course structure that actual ADAPT
courseware uses. The Course-Unit-Lesson—
Segment structure inherent in the
architecture of MicroTICCIT was implemented
for the new Advice course. Topics were
arranged in a hierarchy of related
subjects. Llessons and segments were
designed and developed like regular
courseware,]

Every suthar has a different reason
for requesting help. Because of this, it
is generally difficult to meet each
author's needs without impeding another
author's request. Authors press the ADVICE

-key for many reasons:

o to understand how to use a
command or feature

o to understand terminology

o to find out what to do next

o to find out where they are and
how to get to somewhere else.

Because of these and many other

_reasons for requesting help, the designers

of Advice decided to provide authors
initially with a menu of subtopics.
Typically, when an author requests Advice
about a feature of ADAFT the first thing he
or she sees is a short description of what
the feature is, followed by a menu of
further information, such as a full
description of the feature {including how
to use it, when to use it, and where to use
it), a set of examples of the feature, and
a description and solution of possible
error messages assoctated with the feature.
Authors may not actually need help on
the feature from whence their Advice
request originated. They may actually want
help on a completely different part of the
system. The Advice program allows authors
to access the TOPICS and Where Am |
programs from anywhere within the program.

TOPICS

The TOPICS option provides several
different lists of Advice topics. The
first lists, in alphabetical order, all
topics relating to the ADAPT authoring
environment. A second lists the same ADAPT
topics, but in a hierarchical order. The
third topic listing covers, in alphabetical
order, all topics concerning MicroTICCIT's
IBM-PC-based graphics editor. TOPICS
allows authors to access any Advice segment
at any time.

The PLATO system has a similar feature
in its Aids program (Control Data
Corporation, 1981). However, in Aids the
author must supply the name of the topic he
or she wishes to see: there is no one
central location where all “Aids” topics
are listed. The ADAPT designers chose to
provide two lists, one alphabetical and one
hierarchical, of all individual topics.

Where Am |

A common problem faced by computer
users is knowing “where” they are in the
program. Most systems fail to provide a
sense of “where,” in relation to everywhere
else. The designers of Advice decided to
borrow the “You Are Here” maps found in
airports and shopping malls, and implement
them as “Where Am [” in the authoring
environment. Where Am | allows authors to
find out exactly where they are in relation
to everywhere else in the editor. This is
accomplished using a series of high
resolution graphical displays depicting
maps of the editor. In addition, authors
can mark {with a light pen or touch screen)
any location on the map to instantly access
information on that feature of the editor.
A future option will allow authors to be
able to move directly from one location to
another using the Where Am | maps.

The Future of Authoring Environments

Much has been written about the future
of authoring systems and the impact of
techniques borrowed from the field of
artificial intelligence {Al} (Dear, 19885;
Kearsley, 1985; Tennyson and Park, 1984).
There is a growing consensus among
developers of CBT that more on-line
pedagogical help is needed. Few on-line
help programs have much to say on the
instructional aspects of courseware. It is
generally assumed that all instructional
design considerations have been thought out
before the programming stage. In most
cases, however, there is no fine line
between where the design ends and the
development and implementation begin, it
is hoped by many that future courseware
development environments will exhibit a
blending of “help program* and "programming
tool” into one highly interactive system.

Conclusion

The techniques described in the
"Advice” program on MicroTICCIT and the
“Aids” program on PLATO can be applied to a
wide variety of computer uses. Options like
“Where Am |” and “TOPICS” give users a
better understanding of the system and make
the system more non~threatening.

In the CBT environment, the student

and the author both have jobs to perform.. -

A student’s job is to sit down in front of
the computer and use it to get information,
learn new concepts, and master new skills.
To do this the student needs to first know
tow to use the system —-— not just the
external shell of log-ons and log-offs, but
also the actual courseware itself. An
author’s job is to sit down in front of the
computer and use its set of authoring tools
to create instructional material for
students. To do this an author first needs
to know what tools are available and how to
use them. With good, understandabie on—
line help and reference programs, we can
accomplish these jobs soconer and more
effectively.

REFERENCES

Control Data Corporat:on {1981) PLATO

User's Guide. _) P

Dear, B.L. {1986) Artificial Intelligence
Techniques: Applications for
Courseware Development. Educational

Technology. 26{7).7-15. - -

Harris, L. {1384} Natural Language
Simplifies Computer Access. Systems &

Software, 3(1), 206~ 212 , oo

Kearslev, G.P. (1985) Training for L
Tomorrow. Reading, Mass.: Addison-
Waeasley.

Locatis, C., & Carr., V. (1985} Selecting
Authoring Systems. Journal of
Computer—Based Instruction, 12(2),

- 28-33. .. .

Lyman, ER. (1981) PLATO Highlights __
Computer—- based Education Research

Laboratory, University of llinois.

Merrill, M.D.. (1985) Where is the Authoring

in Authoring Systems? Joumal of
Computer-Based Instruction, 12{4),
90-96.

Merrill, M.D., Fletcher, K, & Schneider,
E. TICCIT Englewcod Cliffs, NJ:
Educational Technqlogv Publications.

Mudrick, D., & Stone, D. An Adaptive
Authoring System for Computer—Based
instruction. Journal of Computer— _ o=
Based Instruction, 11(3), 82-84. T

Rich, E. Natural Language Interfaces. JEEE
Computer, 17(2), 39—47.

Wilson, L. {1984} Presenting TICCIT: State-
of-the-Art Computer-Based Instruction.
Training Technology Journal, 1(2),
27-32. '

ABOUT THE AUTHOR

Brian L. Dear is a Senior Courseware
Developer at Hazeltine Corporation’s

Training Systems Center in Reston,

Virginia. His current responsibility is
developing the Advice program for the ADAPT
authoring environment. Prior to waorking at
Hazeltine, Mr. Dear was a PLATO Systems
Analyst at the University of Maryland, He

is a member of the Association for the
Development of Computer—based instructional
Systems, the IEEE Computer Society, and the
American Association for Artificial
Intelligence.

295

