A PARALLEL PROCESSOR ALTERNATIVE TO THE i .

MODULAR SIMULATOR ARCHITECTURE ’ _

Edward Kulakowski
David J. Kramer — ’ B

Reflectone, Inc. : - Sz

5125 Tampa West Boulevard

Tampa,

FL 33614

ABSTRACT

The modular simulator concept has been proposed as a means of reducing the cost of

training devices.

function subsystems consisting of a processor, T
A local area network is used to link the subsystems into a

hardware are combined.

With this approach a number of dJdifferent

self-contained, 'single

local memory, I/0,

complete trainex. There are a number of practical difficulties with implementing this

appreoach. As an alternative,

a parallel processor architecture is proposed in which a

single parallel computer is used with a single I/0 system. All processors share tasks

and have equal access to shared memory and to the I/0 bus. An experiment was conducted
existing helicopter .
experiment indicate that the parallel processor approach is a more practicai,

employing this architecture in an

of the
cost

OFT. The results

effective solution than the modular simulator approach. A major benefit is that Spare
processors can be available on-line to replace failed processors automatically with no

interruption of training.

INTRCDUCTION

The cost of providing computing resources

for today's training devices has been
rapidly increasing even though the
cost/performance ratio of computers has
been steadily declining. There are many

factors = involved. Perhaps the most
important is the nearly universal
perception on the part of the user

community that greater fidelity provides
(at least the possibility of) better
training. This perception has served to
increase both the acguisition and 1life
¢cycle costs of training devices of all
types, offsetting to some
operational savings achieved
better training.

through

The modular simulator architecture has
been proposed as a& way to reduce the total
cost of trainer computational systems. The

essence of this architecture is to
substitute several {and perhaps many)
self-contained low cost microprocessors
for traditional super-minicomputer(s}.
While .this modular design appears to
fulfill +the desire for lower <cost, a
parallel microprocessor.. architecture

offers most of the same advantages with
fewer risks and with potentially greater
cost savings.

THE MODULAR SIMULATOR ARCHITECTURE
Basic Features

With the modular simulater approach, one
discrete processor is assigned to each
trainer function or node. For example,
there may be one £light processocr, one
aircraft systems processor, an instruactor
station processor, and so forth (1) (See
Figure l.). Each processor is physically
located near the trainer hardware %hat it
controls and is sized +to perform its

assigned function with reasonable spare.”

T All data are

degree the .

capacity. All of these processors are
connected by an extended bus or local area
network. Ethernet* has. been proposed for

this purpose, as have other proprietary
bus structures. ’ R

transmitted via = the
interconnect Dbus and stored din 1local
memory. There 1s no shared memory in this
architecture, nor 1is there a general
purpose operating system in each of the
node processors. Stand-dlone programs aze.
the norm. o

Each processor has its own L1/0 subsystem
designed to drive only those signals which
it computes. This approach is taken in
order Lo provide sufficient I/0 throughput
without overloading the network. . _

A separate processor 1s usually supplied
to download programs

working processors, and to control
execution of the system at large. This
processor 1is often used for software

development work when the trainer is not
in operation.

With this architecture it is anticipated
that the node processors can be obtained
from different vendors, each one complete
with software, I/0, and associated trainer
hardware. The processors can then be
‘integrated by the end user or a prime
contractor. : : .

Areas of Difficulty

Connecting multiple preocessors via an -
extended-length bus or network is
difficult due to the need £for high
communicaticn bandwidth between

processors. A significant design effort
may be encountered just in determining the

*Ethernet is a trademark of Xerox
Corporation.

296 ’ -) -

and related trainer

and data to the .

true bandwidth reguirement for the system.
Most of the current literature describes
the requirement in +terms of raw data
transfer rate.

toc add to this figure all relevant
overhead factors including “controller
handler execution time, message format .

time, channel bid time, and message decode
and storage time (2).

Since all data is transferred via bus
instead of shared memory, there _can be
significant problems with transport delay
and processor synchronization. To deal
with these problems, some proposed designs
involve transmission of computed resulis
tn all other processeors as soon as they

are computed. With other designs, data are

transmitted by all processors only at a
fixed time within each frame. Many designs

are predicated on fixed size transmission
But if. variable size transmission

blocks.
blocks are used, randomness is introduced,
into the data transfer times. This means’

that fresh data may not be available. for _

all calculaticns in a frame if a "transmit,
when ready" scheme is used, or excessive.
delays may be incurred if a "transmit at
the beginning of eac¢h frame" scheme is

used. Common examples of variable sizée
transmission blocks include ~ parameter
monitoring data displayed at the
TO OTHER
PROCESSORS
™
MOTION MOTION
PROCESSOR } ELECTRONICS
MEMORY
INSTRUCTOR INSTRUCTOR
STATICN] STATION
PROCESSOR >
i
MEMORY
£
= AIRCRAFT
=
] SYSTEMS
= PROCESSOR
S
Z MEMORY
=
§ CACKPIT
=l
FLIGHT
PROCESSOR }
| enory

FIGURE 1. BASIC MODULAR
SIMULATOR ARCHITECTURE

in reality it 1s necessary

;determlnatlon
cOnsdists
"FP3. Fach function executes at_a dlfférénﬁ

“three proceSsors are reguired

instructor station
measurement

acceptance

and perfeormance
.. data collected during
tests. The usé of " variable
block sizes tends to " increajse the .
bandwidth reguirement _ for the

Interconnection network. . oo T

Since each modular processoxr is s;zad to
perform its dedicated function, there may
be significant processing capacity
inefficiencies due” to. the allocatlon of
functions. For example, suppose’ that a
functional analysis_ . resulted .in . the
_that. a _given _ trainer
of three EUnctlons. Fl, F2 and

ra;é but consumes the following time (with

_ spare) per sacond: Fl =. 960 msec.,
F2 = 420 msec., and F3 = 540 msec.
Clearly, two processors are capable of the
task {see Figure ZA) .7 7 Howevar, the

functional allocatlon has determined that
{see Flgure

2Bj, so an unneeded processor is included
. in the trainer. Unfortunately, this
unneeded processor cannot gerve ‘as &
spare. ' ' .
There~ can also be _a significant

duplication of hardware with the modular.
simulator approach. Most obvious is_ the”
requirement for multiple I/O systems with

= 980 HSEC 4441

PROCESSOR 1

F2 = 420 MSEC I F3 = 540 MSEC |

PROCESSOR 2

FIGURE 2A. OPTIMAL ASSIGNMENT QF
FUNCTIONS TOD PROCE£SSORS

= 960 MSEC _J
PROCESSCR 1

F2 = 420 MSEC l

PROCESSOR 2

F3 = 540 MSEC ‘
- PROCESSOR 3

FIGURE 2B. MODULAR ASSIGHMENT OF
FPUNCTIONS TO PROCESSORS -

297

their associated controllers, power
supplies, and c¢abinetry. Less obvious is
the proliferation of power supplies and

cabinetry needed for the Processors
themselves.
Software development issues become

significant when a separate host processor
is supplied to do development and
configuration management work. There will
usually be a different operating system
used for development (perhaps UNIX**) than
for real-time operation (perhaps a custom
executive) (3). The integration staff and
maintenance personnel will need to be
familiar with both systems. Effective. on-—
line testing may not be possible on the
target system since there may be no system
services availlable. In addition, it may be
difficult to debug on the development
machine ‘'since it has no access to .the IL/0
equipment of the various real-time
processors or to their internal memory.

Logistic support factors to _be considered

include spare parts provisicning,
training, documentation cost, and finally,
special test and support equipment.
Logistic support can be very expensive

since there will 1likely be a number of
different processoxr, 1/0, and power supply
types included in a trainer. developed
under the modular simulator approach.

A PARALLEL PROCESSOR ALTERNATIVE
Proposed Architecture

become aware . of some . of the
potential difficulties with the modular
simalatoxr architecture, it occurred to us
that there is a somewhat different way to
structure a trainer computational system
to reduce its cost and complexity even
further: use a parallel computer .to
provide the total computing resource.

Having

A parallel c¢omputer consists of numerous
identical processors connected to a large
shared memory wvia a high speed parallel
bus {see Figure 3.). Each processor
operates independently,
central dispatch gueue to select a task. to
perform, until all tasks have . heen
execnted. Local processor c¢ache memory is
used_to reduce the regquired bus bandwidth.
A separate I/0 bus is accessible to all
processors. A single set of 1/0 hardware
is used to communicate with all parts of
the trainer. All processor hardware 1is
controlled by an operating system at all

times, vregardless of whether software
development or real-time +training {or
both) is in progress.

Relative Merits

The parallel processor . _ architecture
preserves most o©of . the benefits of the

modular simulator concept and provides the
following additional benefits. ’

**ONIX¥ is a trademark of AT&T Bell —
Laboratories.

working from a

Since _the interconnecting bus is
physically wvery short, it can be a
parallel data bus operating at wvery high
speed, providing excellent bandwidth. The
overhead for this type of bus is. _much

-lower +than for a communication network,

providing more usable bandwidth.

TO 1/0

'Ds?jgsf
L e

SYSTEM
MEMORY

PROCESSOR 1

CACHE

PROCESSOR 2

CACEE

PROCESSOR 3

1/0 BUS

CACHE

HIGH SPEED PARALLEL BUS

PROCESSOR N

CACHE

FTGURE 3. PARALLEL
COMPUTER ARCHITECTURE

298 _

if 1 aewl

Each processor 1is able to perform every
task since_ each has access through shared
memory to all instructions and data and
through the I/O0 bus +to_. all trainer
hardware. The system can be sized s¢ that
very 1little processing time is wasted.
Taking our previous example of the three
functions (Fl = 960 msec., F2 = 420 msec.,

and F3 = 540 msec.}, it.is possible to use

just two processcrs instead of three while
retaining the same functional software
allocation.

Since all data 1is available in shared
memoxry, the problems of transport delay
and processor synchronization become much
less significant, although they never
disappear entirely with either of these
architectures since simulation software is
by nature highly interactive.

The parallel approach eliminates. the
proliferation of power supplies, chasses,
and other hardware that occurs with the
medular simulator architecture since there
is a single 1I/0 system and a single
computer system.

Scftware development and debug activities
are greatly simplified. Software can be

developed on the same machine used to run

the trainer. A separate development system
is not reguired. With an appropriate

operating system, development can be done
trainer -_is_

in background while the.
running. Debuy is facilitated since. all
processors have access to all data and 1/0
hardware, and a spare _processor can: be
used to debuyg the full software load in
real time.

Logistic support is much
cheaper since there 1s one type of
processor and I/C system, and
compenents overall. The need for different
types of test and support eguipment is
reduced. Maintenance documentation

complexity and training time reguirements

for maintenance personnel are also
reduced. In addition, a parallel computer
can include extra processors Lo serve as
on-line - spares. Whenever a processor
fails, the operating system simply takes
it ofFf-line. and its workload is-
automatically assumed by a spare
processor. . At the next. __convenient
maintenance period, the failed processor
can be replaced or repaired. There are
some potential failures that would require
immediate attention, such as memory or_ I1/0
failures, but the most complex electronic
element in the system, the CPU, can be
spared on-line. : :

Expansion of
incorporate

processing
trainer modifications

capacity to

with the parallel processing approach than
with any other architecture: simply add
one or more additional . processors. to .
achieve the desired performance. No major
hardware or scftware changes are reguired.
The ability to easily and inexpensively
add processors at any time

299

simpler and .

fewer .

after -

delivery can be accomplished more easily_. __The computer was

virtually

eliminates the risk that a trailner under
development will fall short of .its spare
processing time reguireménts. Congidering
the ease of expansion of the parallel
processor approach, less spare capacity

needs to be delivered initially, reducing
‘costs even further.] "

The one potential disadvantage of ‘the
parallel processor approach is that it is
not _easy to procure various parts of the
trainer, such as instructor station,
flight module, avieonics module, etc., from
various independent manufacturers - as
complete, self-¢ontained subsystems. This
has been stated as one goal of the modular

simylator architecture. However, it seems

doubtful that this goal can ever. achieve

real acquisition cost savings because of

the difficulty of properly testing and
jintegrating the many intimately connected

elements required to produce &
sophisticated trainer (4). Further, the
total 1ife «c¢ycle cost o6f a parallel .

processor . traifer will surely be much
lower than +that. of a similar modulax
trainer obtained from a collecticn of"
vendors.

A PROOF-OF-CONCEPT EXPERIMENT.

Description of the Experiment

Given the above observations ~ of the
modular simulator architecturg and a
parallel processing alternative, an
experiment . was planned te .use a
microprocessor-based .. commercially’
available parallel computer . as the
computational resource in ~ an actual "’

trainer. The experiment was c¢arried out
within the past year as an internal
research and development project. The plan
for the project was to convert an existing
minicomputer-hased trainer to .run on a
parallel microprocessor system.

The TH-57 helicopter OFT was selected as .
the test case. There were several reasons

for this choice:

--— The trainer is relatively simple in

terms of overall complexity., yet all

_important systems are represented.

.~ The trainer is designed usinyg the
most recent modeling concepts, 4RE
coded almost exclusively in Fortran-77.

'~ <The TH-57 development schedule fit

well with the experiment plans, with
Unit #3. available for use on an off-
shift, non-interference basis.

This _trainer was originally developed
using a Gould Concept 32/6780 computér.
interfaced
Computer Products RTP I/0C system. Trainer

‘subsystems include motion, digital contrel

loading, digital ™ aural cue, and an
instructer station with a single CRT
display. The Gould computer contains twe
processors, a CPU and an IPU, for a total

using &~

_aae BEL L LUULY

processing capacity of about._3 MIPS. The
basic frame rate for the trainer is 30 H=z.

A survey of available micro-based parallel
computer systems led wus teo Sequent
Computer Systems of Portland, Oregon.

The Seguent Balance B000 architecture is
shown in Pigure 4. The Balance 8000
consists of up to twelve processors (other
Sequent models offer up to 3D processors)
connected to a large shared memory via a
high-speed parallel bus. There are very
few circuit cards in the system.” Each CPU
card contains two. preocessors with a
floating point co-processor and 8 XB cache
memery for each processor. There is one
bus controlier card and "a Multibus***
interface card. Interface to the external
world for 1/0, peripheral access and other

needs is achieved through a sepdrate
Multibus = chassis housed in the sane
cabinet. The system memory - supports _ a

logical address space of up to 28 MB.

The Balance 8000 computer was the logical
¢hoice to use in this experiment, even
though the system had not been designed
specifically for +this sort. of real-time
application. Both hardware and software
werxe on the shelf and available. The
configuration wused in ‘the experiment
consisted of 10 processors (5 cards), 8 MB
memory (2 cards}, a diagnostic, Ethernet,
SC81 interface (1 card), and a Multibus
intexface {1 card} in the main chassis.
The Multibus chassis contained one DR-11
card used <to interface with the Ff£light
controls subsystem, one RTP interface for
the main trainer I1/0,
for the 400 MB winchester disc, one 9-
track magnetic tape controller, and a two-
card RS~232 interface for terminal
support. A 1l/4-inch cartridge tape and 40
MB winchester dJdisc were connected to the
SCS1I interface.

For simplicity, we decided not @ to
interface the Sequent cémputer o the
digital aural cue system since” the aural
cue system uses a Gould parallel interface
{HSD) for which no Airect replacement was
immediately awvailable. The aural cue
system software was, however, included in
the test load. For safety, we decided not
to activate the motion system, but we

included the motion software in the load. .

Finally, lacking a replacement for the HSD
interface, the instructor CRT was
activated via a serial interface. All
instructor software was included, and

trainer contrxol was exercised via normal
instructor station commands.

The software environment provided with the
Balance 8000 is a parallel processing
derivative of Berkeley UNIX 4.2bsd, named
D¥YNIX, as supplied by Segquent. DYNIX has
several key features:

FrFMultibus 18 a trademark of Infel
Coxporation.

one digc interface’

- Automatic distribution of processing
tasks to_hardware processors.

- Support .0f shared memory partltlons
between tasks.

~ The ability to assign a task. to a
specific processor.

UNIX is usually considered undesirable for
a real-time environment due to its time—
slice nature and. large time overhead. In
order to make a ‘real-time application
feasible, a way had to be found to
eliminate the time overhead while still
retaining the cofivenient UNIX features for
software development and debug work,
this was judged to be p0551ble- R —
One of the most important considerations
in using any computer system is ease of
software - development. Good development
tools provide schedule benefits. DYNI¥Y
offers such toocls. There are full screen
aditing capabilities, a sophisticated file
‘system,
control access at many levels. Use of a
symbolic debugger such as Sequefit's™ dbx
offers greatly enhanced capability which

‘but

facilities to compare files "and .

results in meore rapid development. For
example, the manual method of determining
.the location of a run time error in the
source consists of finding the abort
address, subtracting the program bias
address, finding the address _in the’
pogram link map, and looking at. the
assembly language printout of the high
level language proggam. With dbx, the. ..

. source line is immediately printed at the

terminal. This capability made the Balance

8000 an especially good choice for this
: experiment.

Design Considerations B o s

OQur initial design concept was to create
an executive system which was subordinate.

. to DYNIX, and yet was able to use the full

. power of each hardware processor without

interruption. This idea grew inte a system
design with the following features:

- Control of simulation software
execution centered around a frainer
subroutine dispatch queue. This gueue
would reside in shared memory and be
acceEssible by all tasks. It .would
contain the usual dispatch gqueue data
" {e.g start address, iteration rate,
next execution frame number, etc.}.

- Use of the DYNIX fork service to make
as many identical copies, referred to
as c<¢hild processes, of a simulation
task as possible. For an HN-progessor
system there would be N~-2 processes,
leaving one processor for 1/0
operations and a second processof for
DYNIX. In normal operation the parent
and each child process
from here on as a logical process)
-would scan the subroutine gueue from
the. top and select. for execution the
first available subroutine that was

300

{(referred to”~

ETHEANEY
13}

et
OEM
DEVICES SYSTEM
CONSOLE
MULTIBUS MULTIBUS 2.12 Mﬁl;(;ﬂ\' SCED D
INTERFACE ADAPTER 32-BIT CPUs - BOARD —
MEGABYTES n
g BOARD BOARD —
©
1
2 DISK PISK
= — " SBBOND BUS] =
TAPE TAPE -
I S
- - w0
=
D m
@
L g
- OEM
MINAL 'Ef—“"
TE':AIUX - DEVICES
FIGURE 4. BALANCE 8000 ARCHITECTURE
ready to run. After the. subroutine The major design chalienge of any parallel

completed, the process would agéin scan
the gueue and select another subroutine
for execution. Quene scanning and
subroutine execution would be continued
until all subroutines scheduled for
execution in the current frame were
done. Each logical process would then
idle until the bkeginning of the next

frame. Suitable memory locks would be
provided to ensure dispatch gueue
integrity.

- Use of a shared memory partition
containing those data which would be
passed between modules.

- A unigue executive task which would”
the _

keep track cof time and _signal
beginning of each frame to the logical
processes.]
detect processing overruns
error conditions.

anéd other

subroutines

_sufficlently

This executive would also-

environnment is |

In most cases functlonal

execute in a° short tlme

compared to the iteration rate, and are’

independent = to avoid

gsequencing problems. There are sohe ddSes
though, where the

execution order of
subroutlnes is of extreme importance.

computing
partitioning.

program

This

A ig¢ due to _the nature of the, ‘integration

(and sometlmes predictlon} algorithms. For

example., a particular formulation_ . of
asrodynamic model calculations zegquires
the presence .of both acceleratlon, and

. veloc1ty terms from the current frame in a
- single equatlon.

Use of previous
data does not glve adequate perfoffiance. A
way must be provided to. synchreonize
subroutine execution s that both

‘acceleration and velocity from the cufrent

"frame are available when needed. In the
experimental implementation this was
achievéd by the use of "a seguential

execution flag in the subroutine dlspatch=

301

framg

queuwe wWhich prevented any processor from
executing a sequential subroutine until
its predecessor had been completed.

The degree of dgifficulty experiencéd in
partitioning the software in a parallel

computer depends upon the speed of the .

chosen processor., A slow processor will
reguire that the problem be broken down
inte many small pieces. 1In
there may not be sufficient time-available
to do the job with a reascnable number of
Processors. One difficulty with the
specific Sequent computer used was that it
had poor floating point performance. More
powerful processors now becoming available
should eliminate any problem.

I/C operations presented a special design
problem since no~wait I/0 is not supported
in DYNIX. To overcome this Iiimitation a
design consisting of an 1/0 queue and a
number of I/0 processes was developed. In
this design the parent I/0 process is
forked until the number of logical
processes equals the number of supported
I/C channels. All the I/O processes are
assigned to a single hardware processor.
Each I/C process scans the I/0 queue,
begins the requested I/0 operation, and

then is suspended by DYNIX. wWhile this
Process ig suspended pending I/0
completion, the other 1I/0 processes are

free to scan the queus and begin the next
requested I/0 activity.

The design of system control for +this
experiment was simple and direct since
DYNIX provides all software needed to load
and control program execution for every
processor in the system. Hooks to allow
processes to float between processors or
to be tied to a specific processor did not
need to be developed; they are. standard
features. Processor synchronization was
achieved through a simple software flag
structure rather than through hardware
interrupts or through a communication
network. The overall result was reduced
development effort and risk.

Problems Encountered
As this experiment progressed, several
facts emerged that caused substantiail
design changes. The first and probably
most important was that we had to abandon
the strict subroutine dispatch queue idea.
The reason was that private or local data
is used extensively in the current version
of the TE-57 socftware to store
intermediate results from frame to frame.
Since each child process. created by the
DYNIX fork service has its own local data,
subsequent iterations of the
subroutine code in differént

processes .nmight produce different and
discontinuous results. The correct
solution to this problem would be to re-
code all the TH-57 software to eliminate
the local data. Unfortunately, we judged
that re-code was too large a task for this
experiment, and we decided to fall back to

302

some cases . .rather than as a parent/child.

relocate .the

same
logical . -

statically partitioned tasks for all
simulation code. o
In this fall-back static scheme, each
simulation subroutine was permanently
assigned to a specific . process. - Each
process was compiled and linked

separately, and loaded into system memory
as a complete and independent program
However,
since the I/0 code design was new anyway,
we retained the concept of having
maltiple, forked I/0 tasks which utlllze

_1/0 gueue scannlng.

A second order problem was created by
static partiticning. In a system where
child processes are created by the fork
service, = all executable images are
identical, and all data reside at the same
logical address. When the switch was made
to static partitiening, the data addresses
became different due to the differing fask
sizes. Fox normal program execution this
causes no problem, since all addresses are
consistent within a task, andg alil
addresses point to the correct physical

Rnemory locations. it rapidly becanme
apparent that there was a significant
problem for those tasks which exchange

peinter data. This proklem was resolved by
adding directives to the DYNIX lecader to
shared memory block to .a
statically defined address for 21! tasks.
To aveid overlap bhetween the task code
space. and shared data space +the shared
data was assigned to an address range
above the largest task address. ST

Another problem we encountered was in the
area of pregram debugging. In a sequential
system accesses to a particular wvariable
are controlled in such a way that the
programmer <an determine which subroutine
was last to update a value. In a parallel
system there is generally no way to s;ngle
step all Processors in unison. Any
subréitine can change any shared memory
variable at any time without restriction.
Error detection becomes a process of
elimination, where subroutines are
individually removed until the offending
one is found. While excellent source level
debug aids are avallable, debug control
over multiple processors” is mot yet a
reality. This problem, however, would alsc
be encountered with the modunlar simulator
approach.

The final problems we encountered were
with byte ordering and commen block
allocaticn. The byte ordering seguence in

the Balance 8000 is the reverse of that in

the Gould computers. Programs . Which
received integer word input and then used
it as an array of bytes had to be ra-
designed. Special attention was also paid
to converting the Gould DATAPOOL conmmon
block to a standard ANSI Fortran commen
block. While neither of these had anything
to do with the design appfoach we were
testing, a fair amount of time had to be
spent converting code. ce e

RESOLTS
The experiment has vielded very
encouraging results. Using a parallel
computer with the operating system

ass;gned to one processor, the operating
system's overhead had no negative impact

on the real-time trainer software and
zllowed us to use its convenient
development and debuy tools while the

trainer was on-line.
activities off-line werxre very efficient
using DYNIX.

The trainer software executed preperly as
anticipated. No problems with throughput
delay or bus bandwidth were cobserved. This
was undoubtedly due. in part to the fact
that each processor has local
MEeNOryY -

The I/0 design worked well, verifying the
approach of using ©parent and
processes working from a central gueue and
allowing us to successfully bkypass the
problem that a UNIX-style operating system
does not support no-wait 1/0.
debuyg was greatly facilitated becauss of
the use of shared memory for all ekchanged
data. This allowed us to use a bkackground
ntility to meonitor and set memory data in
resl time in order to isolate problens.
However, there is no avoiding the £fact

Software development

cache

child

Real-time _

that debug in any type of multiprocessor

envirconment in real time is challenging.

The net result of the experiment is that .

we were able to.accomplish the goal

using a parallel processor computer to

of

contrel a helicopter operational £light |

trainer using a computer costing about
two-thirds as much as an equivalent
minicomputer and having much lower support

costs. The amount of effort regquired for
the experiment convinced wus that the
parallel processor software ~-desiygn

approach is not any more complex than the
traditional approach.

RECOMMENDATIONS

The parallel processor
represents a way to reduce significantly

the life cycle cost of training devices
and simuitaneously improve their
reliability and expandability. However,

there are several developments we would
like to see occcur in order to reduce
engineering cost and risk:

- Parallel computers need to. be based
on processors _having fast

architecture .

floating

point capablllty in order to serve as

the basis for complex training devices.
Such improvements are currently
underway.

- Development of an operating system
having the tools
better real-time performance would be a
big plus. However, even with current
performance, a UNIX implementation
supporting parallel processors, such as
DY¥YNIX, is suitable for nse at the cost

of UNIX but with .

303

However,

whereby subroutine execution Iis

“worth the benefits obtained.

- Development of debug tools that allow
better control of multiple processors
would be a definite asset, although
_clearly a difficult undertaking. o
The conéept of forking a process and using
a central dispatch queue as a means of
running a parallel computer has been shown
to work effectively. However, this concept
requires that shared memory be used to
store all computational results that will.
be retained from one iteration to the
next. Local storage can only be used for’
loop counters and such._ This needs to be'
kept in mind when designing software.

The ability of .& parallel computer system
to replace a failed processor on~line is
perhaps its wWost significant benefit.

catastrophlc to cause the operating system
+g recognize the faulting procdesscr and
take it off-line.

The parallel architecture suggests a VYery
useful design approach to minimize the
effect of such minor faults. A _fault
tolerance scheme ‘could be implemented
rotated
between processors, including the spares.
For . hardware . failures that are not
catastrophic, the affected system changes
from frame to framée. The natural inertia
cf the simulated system will tend to.
diminish the importance of the error for
any specific -subroutine within any one

frame (5). Further, by including a
diagnostic sSubroutine in the real-time
software, the faulted procesgscr could be

identified to maintenance personnel and@ to _
the operating system. Upon recognition .of.
such a processor as faulted, the operating
system could take it offillne
automatically. o

Even though the design problem of dividing
the heavily sequential process of
simulation inte parallel units seems
destined te remain with us, we recommend
pursuing the parallesl approach . and
enicourage computer vendors to develop
machines with &even higher degrees of
parallelism as a means of further. reducing
cost. and development complex1ty for
training devices.

References -
1. = Steve "Modular
Simulators: _~
Architecture®,
National herospace
conference, 1983, pp.

‘Seidensticker, :
A Comprehensive Unified
Proceedings of +the IEEE
and Electronlc$,
1074-1079.

"Modulax
Network

2. Dbonald
Simulators:

gufficient?"”,
National Aerospace
Conference, 1985, PP-

L. Johnston,
Is A Leocal Area

Proceadings of the IEEE

and Electronics
1086-31093.

_of one processor. We feel this cost is .

not all faults are sufficiently

3. Bdward M. Holler, "Modular
Microcomputers for Trainers", Proceedings
of the Sixth I/ITEC Conference, Volume 1,
October 1984, pp. 353-357.

4. Mary-Ellen Hecker, Ph.D., "Modular
Simulators: How To Make It Weork™,
Proceedings of the IEEE Naticnal Aercspace
and Electronics Conference, 1985, ¥pp.
1080-1085. ']

5. Stenley J. Larimer and Scott L. Maher,
"R Continuously Reconfiguring Multi-
Microprocessor Flight Control System®,
Final Report, 1 Aug 19%7% - 30 April 1981,
Alr Force Wright Aeronautical Laboratories
(AFSC), Wright-Patterson AFB, Ohio. AD-
AlD1412, AFWAL-TR~81~3070. ’ T

ABOUT THE AUTHORS

MR. EDWARD KULAKOWSKI is the Manager of
Research and Development at Reflectone,
Inc. In this position he is responsible
for all asgpects of internal R&D activity
from concept development through technical
and administrative management. He has led
both the Computer. Systems - - and
Instructional Systems Groups at
Reflectone. Previously Mr. Kulakowski
worked as a software consultant and, while
at General Electric, on training devices
for sub-surface Navy tactical eguipment.
Mr. Kulakowski holds a Bachelor of
Engineering (Electrical) degree from Pratt
Institute, Brooklyn, N.Y.)

MR. DAVID J. KRAMER is a Project Engineer
with Reflectone, Inc. As Project Engineer
he is responsible for the design,
developnment, and ~ integratien = of "all
hardware and software for state-of-the-art
flight simulation training devices for
military and commercial aircraft. He has
served as Project Engineer on an EA-6B
Operational Flight and Navigation Trainer, -
a C-5a/C-141B Air Refueling Part Task '’
Trainer, and on B-~747 and A-310 Phase III
Operational . Flight Trainers. He was
formerly Leader o©f the Computer Systems
Group at Reflectone, having Jjoined the
company in 1977. Pricr -~ to Joining
Reflectone, he directed the development of
real-time computer-based systems for
ComGeneral Corporation in Dayton, Chio. He
holds a Bachelor of Science Degree (Summa
Cum Laude) 1in Computer and Information
Science from The Ohio State University. He
was a NATO Fellow in 1975, investigating
large~-scale simulation models.

304

