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ABSTRACT

The advent of 32-bit busses which support full 32-bit microprocessors has signaled a coming of age
of microcomputer technolegy for simdlation applications. The VME-bus, a fully non-proprietary bus
standard developed through a cooperative effort of major semiconductor mamufacturers, has board-level
product offerings from over 200 vendors. As this number continues to grow, so does the competitive base
of the various components (in low cost, general purpose form) needed to build high fidelity simulators.
Although the growing availability and varlety of these off-the—shelf components do not minimize the need
for sound system integration, they can facilitate this crucial process, and more importantly, afford an
opportunity to rethink hew it can be done better. For example, in the past, shared memory has been
widely used to commmnicate between multiple cpu’s im a training system. Should this concept be adopted
in microprocessor-based systems, or will emerging message passing and data broadcasting methods serve
our needs more effectively? Once the best communications mechanism has been selected, what intelligence
will be needed to partition the simulation, determine the data that must be transferred, and synchronize
the distributed software modules of the system such that the fidelity of the simnlation math model is
preserved? - Research has been wndertaken both within the government and by military contractors to
answer these questions. The Systems and Computer Technology Division of NISC has contributed through
the building of an advanced development model based on the VME-bus and commercially available

conponents.

INTRODUCTION - - -

Advances in VLSI technology contimme to. 0 It is completely non-proprietary, i.e., there
increase the power and density of general purpose are no associated company trademarks,
microcomputers. Naturally these advances are __ patents, or copyrights to encumber product
expanding their role in training systems from developers Or users.
non-real-time peripheral equipment to real-time o Bus operation is asynchronous, meaning that
subsystems. The ability te integrate large - boards of wvastly differing performance can
portions o©of new training systems _ from reside on the same bus and each is still
inexpensive, commercially available components allowed to fumction at its own optimal speed
has the potential for revolutionary impact. without impeding the others. S
Becauge the capital investment can be drastically o The bus architecture establighes a continuous
reduced, increasing numbers of progressive {memory-mapped) 4 Gigabyte address space.
smaller (as well as larger) companies with o The VME-bus has been &embraced as an
microcomputer savvy will begin to vie for intermational electronics industry standard.
simulation contracts. This coupled with the As of spring 1986, approximately 1500 VME
inherent modularity of these systems can result board-level products were available from 200
in innovative solutions to  simulatjion - manufacturers, and were being wused by over
requirements. On the other hand, there is the 2000 OEM's. )
potential for a proliferation of non-maintainable o The flexibility of the WVME-bus architecture
microcomputer training systems that could easily combined with the wariety of off-the-shelf
eclipse that being experienced with components avallable for it facilitate the
minicomputers. Which of these presently develorment of general purpose turnkey
contervailing forces will ultimately prevail systems. It also provides the basic building
depends upon the effectiveness of hardware ‘and . blocks needed for “the construction of more
software Iintegration methods which are evolving specialized machines. Irrespective of
for microcomputer system development. ) whether the system is turnkey or one of a

kind, it is a distinct advantage to the user
when a delivered EyStemn comprises
HARTWARE INTEGRATION commercially available parts as opposed to
hardware and software components that have

In 1981, a significant breakthrough occurred been custom designed by a single manufacturer
that is helping to bring unity to the diversity for their products {and theirs alone), not
of microcomputer system design. This was the the otherwise being purchasable separately.
introduction of the VME-bus (standing for Versa o The rapidly growing competitive base of VME
Module European), the first standard 32-bit bus compatible products assures a lower initial
supporting the new generation of full 32-hit cost . of hardware components and greatly
miCroprocessors, There are geveral increases the probability that a product with
characteristice that make this bus very the required functicnality and of equal or
attractive for simulation applications. : superior performance will be available for
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upgrading or replacement if this becomes
necessary later in the system’s life cycle.

o The VME-bus standard neither favors nor
excludes the wuse of any particular 32-bit
microprocessor family.
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{Representative VME-bus System)

Pigure 1 shows a basic VME-bus system. A
wide selection of off-the-shelf single-board
computers, memcries, and interface cards from
mmercus manufacturers can be mixed and matched
to meet system reguirements.

Contention for the 40 Mbyte/sec VME-bus can
be reduced by "clustering” boards (in groups of
up to six boards) in VMX-bus configurations. The
ViDt-bue is an auxiliary parallel bus, and is
fully defined within the VME-bus archltecture
through its own specification. -

SOQFTWARE INTEGRATION

Software Partitioning

Regardless of the interprocessor
communication strateqy chosen (see next section},
the process of mapping the software modules of
the system onto its hardware resources will be
largely the same. This process, known as
partiticning, can be broken up into three steps
which are performed iteratively until a
satisfactory configuration is achieved. As a
mneumonic aid we will refer to these steps as
define, align, and consign.

Define. The wvarious functions comprising
the sSimulation are first coded into software
tasks and procedures (modules). This process has
been eloguently described by numerous seminal
software engineering papers and texts and would
be superfluous to review in any detail here. Let
it suffice to say that these principles are of
equal if not greater importance in multiple
microprocessor systems because of their typically
distributed nature, An important rule of thumb
for multiple microprocessor software design is to
avoid binding large parallel functions within a
single module. This will permit the full
inhersnt parallelism of the simulation to be
exploited.

"In the old days,” we are told by wizened
similation veterans, ‘“when analog conputers
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“inexorable conquest.

roamed and ruled the earth,” the inherent
parallelism and feedback in systems flowed
naturally through networks of potentiometers,
integrators, and summing amplifiers. But then
came the digital computer juggernaut, and in the
words of a Binghamton philosopher, “they
serialized the parallel.. universe” through
Yet, even now a sea of
powerful mnicrocomputers assemble outside the

gates of a rigid, centralized minicomputer
empire. Will the real-time computing world be
thrown into chaotic dark ages, or will a

renaissance dawn with the rediscovery of the
parallel essence of simulated systems. Certainly
innovation is needed in the areas of math
medeling and software definition. Promising new

approaches such as state variables, object .

“oriented design, and the Ada programming language

have been proposed. The distributed nature of
microcomputer systems will mandate the use of
such advanced simulation design and software
engineering implements and, perhaps, will be
responsible for bringing them to an earlier
fruition.

Align. With the simulation coded in task
and procedure form, the data and time interfaces
between these structures must be determined. In
the analytical (math) model of the simulation
fimctions are typically depicted graphically with
block diagrams (see figure 2)}. The parameters
received as inputs and sent as cutputs from and
to other blocks are listed on the outside of each
block using appropriate mathematical symbols.,

THRUST FORCES THRUST MOMENTYS
= 0
Fx = cos a({FL+FR) Fx _Mx
_F\'=D MY:.-(Fx] dz
£, = -Sp a(FLeFR) M, = cos a{FL- FR)dy
FIGURE 2

(Partial Math Mcdel Block Diagram)

when the model is translated into software
some of these blocks ars combined, some divided,
while others remain the same. Therefore, there
is now a need to find an analogous representation
of the relationships between the @ functional
software "blocks" {or modules) of the simulation
(see figure 3}, This is accomplished, Ffirst of

all, by
1) identifying explicitly the high level
language symbolic variable names that are the
inputs and/or outputs of each module, and
associating with each input a fixed time
constant (if the input provides feedback
information to .the module, e.g., in
performing an integration) or a bounded time
canstant (if the parameter provides simple
precedence information which is always valid
as long as it has been updated within a
reasonable time period).
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(Interfacing of a Simulation Software Module)
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Next, the parameters which will ke passed
between each pair of modules in the system are
identified, and a binding time relationship is
established. For example, assume Module A passes
two parameters to Module B. IEf one of these
parameters must be exactly one real-time frame
period old when received by B from A, and the
other is valid as long as it is not more than ten
frame times old, then a fixed lag of exactly one
frame time is to be established as the reguired
time relationship between Module A and Module B,
It is the only one that will satisfy the time
relationship constraints of both input
parameters. This procedure is repeated for each
pair of modules in the simulation that have a
data interface. The end result is this - the
flow of . data and the real-time constraints
between the modules of the entire system are
precigely specified. Without this analysis the
integrity of the simulation canmnot be guaranteed
when the modules comprising it are scheduled for
execution by one or more processors.

Consign. One more step is needed before the
software modules can be allocated intelligently
to processing elements. It is now known which
parameters are shared between modules and what
the corresponding intermodule time relationships
are. Now we must find reliable values for the
time it will take to execute each individual
module on the target processor(s). Rather than
develop sophisticated estimating programs, it may
be easier to bring up the simulation directly on
a single microcomputer and determine best, worst

and average case timings for each module as it

interacts in its ultimate enviromment. Software
callable timers on single-board microccmputers
simplify this task greatly. With this data in
hand, it is now possible to decide how the
nodules of the simulation should be divvied up so
that real-time processing is achieved.

Three classes of analytical technigques have
been proposed to aild in this determination.

1} Linear Programming : a linear programuing
model of the simuilation is developed, i.e.,
an objective function is formmlated which
will either be minimized or maximized subject
to the satisfying of a set of constraint
equations. For example, it may be desired to
minimize the total time required to execute a

"3} Heuristic :
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complete cycle of the simulation software,

. while keeping interprocessor communications
and the number of microcomputers needed below
acceptable levels.

2) Graphical : this technique involves creating
a directed-arc network of  the similation
software. Using a comercially available
software package, the partitioner either
enters the individual modules of the system
as nodes in the diagram and the flow of data
as arrows interconnecting the nodes {Critical
Path Methcd - CFM model} or vice versa
(Program Evaluation and Review Technique -
PERT model) depending on  the model
irplemented by the software package. The
partitioner then enters the relative
execution times for each of the modules. The
software is instructed to calculate the total
time to execute one pass of the simalation,
as well as the critical path. If real-time
censtraints carmot be  satisfied, the
partitioner proceeds by reassigning modules
on the critical path to . other resources,
i.e., microcomputers, after which a new
critical path and total execution time is
calculated. The partiticner continues this
iterative process until a partitioning scheme
results by which real-time can be achisved.

heuristic medels attempt. to
strike a ‘T"happy medium" between unwieldy
linear programing models (where solution
time grows exponentially with the number of
independent variables, i.e., the number of .
software modules}) and _intuitive graphical
technigques. Analysis is more rigorous than
graphical methods, however, less rigorous
than linear programming formulations because
arn  optimal solution cannot usually be
attained.

In the cyclical type similations found in

training systems, there is usually nothing to be

gained by achieving some absolute  minimum
execution time of the software. Instead, it is
quite satisfactory to operate comfortably wunder
some maximam real-time frame limit while
preserving the logical integrity (proper sequence
of execution) of the simulation programs. The
exception is the case when the only way real-time
can be achieved is to operate at that absolute
minimm execution time or very close to it. This

may be reason enough to consider .higher
performance ({albeit higher price} hardware
alternatives. In general, however, it will be
satisfactory to use any method _ {graphical,
heuristic, or linear programming) for

partitioning the software as long as it can_ be
made efficient from a design standpoint
{efficiency in this case is synonomous with the
degree of automation).

With allocation cholices made, it now remains
only to schedule the distributed software medules
on their elect microcomputers. Scheduling is
simply the process of calling or activating the
software modules assigned to a computer in the
proper secuences and at the right freguencies
such that the required time relationship between
each pair of commmicating modules, whether
located on the same or separate computers,
remains satisfied. This is a process that is
also performed routinely for simulations
targetted for a single minicomputer.



Implementation of a communications strategy
(next section) will ensure that when each module
is activated the data it needs as input from each
of its scurce modules is available and valid.

INTERPROCESSOR COMMUNICATIONS

Except for the smallest of applications, the
software computational load, as determined by the
partitioning process, will Tmendate the use of
multiple microcomputer wunits. The resulting
communications between these wunits/nodes will
take one of two forms - commnications between
parts of a single task (e.g., flight dynamics)
distributed over multiple cpu’s, or commmication
between separate tasks also resident on multiple
cpu's {e.g., £light dynamics and cockpit analog
inpots).

For a single task reguiring ne more than
three or four single-bocard microcomputers a
traditional shared memory confiquration is still
achievable and even viable for the same reasons
that have made it a popular approach in
minicomputer systems, i.e., the convenience with
which minor software changes can be made, and the
intuitive gratification of having the most
significant software parameters of a system in a
central location.

A variation of the shared memory approach is
that of data broadcasting. A system employing
this method would replicate the parameters of a
traditional shared memory so that an identical
version existe in each microcomputer cooperating
to accomplish a single task. Whenever any of the
participating microcomputers modifies the  wvalue
of a shared parameter, the new value is
transferred (sometimes referred to as reflected)
to others through a special hardware
interconnection. Although this approach is being
pursued by simulation companies in specific cases
(e.g., by Singer and Triad Microsystems) it has
not as yet resulted .in any commercially
cbtainable off-the-ghelf products.

The alternative to shared memory is to use
some form of message passing. The fundamental
difference between the two is that wmessage
passing schemes avoid the potentially crippling
bus contention created by multiple cpu’s trying
to access the same memory area simultaneously.
This is accomplished by sending shared data from
cne memory to another, either in blocks or
parameter by parameter piecemeal fashion, only to
those locations where it is needed. Its not
unlike the girls in your high school english
class used to do. Writing messages to each other
using the front black-board (shared memory) would
have been unthinkable! For those preferring a
less frivolous explanation, wvisualize a shared
memory communication as always involving only one
physical memory and a nessage passing
commnication as always involving at least two
separate physical memories — the local memories
of the sending and receiving microcomputers, and
possibly of those acting solely as buffers {e.g.,
to route data from a memory on one card cage to a
memory residing in another card cage)}.
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A MULTI-MICROCCMPUTER CASE STUDY

In 1983, the Systems and Computer Technology
pivision of NTSC initlated an in-house project
{Multiple Microcomputer System Architecture
MMCSA) to explore the capabilities of
off~the-shelf microcomputer technology for
training systems. The approach taken was to
develop a representative trainer solely E£rom
microprocessor-based © components. System
‘development and integration followed the same
basic outline discussed earlier in this paper.

Hardware Integration

While the application software was being
analyzed and prepared for successful retargetting

‘on multi-microcomputers {i.e. partitioned),
hardware from rmerous vendors was being
evaluated, procured, configured and integrated

into a programmable system (see figure 4). The
required microcemputer boards, graphics cards and
controller, analeog/digital conwverters, “mass
storage interface board, and the actual two card
set VME-hus backplane were all purchased from
separate manufacturers. A simulation cockpit was
also obtained and interfaced to the systenm.
Graphics displays of instruments were then
brought up on three CRT's mounted at the fiont of
the cockpit in place of the instrument panel.
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FIGURE 4
(Multi-microprocessor OFT)

Software Integration

define. The MMCSA project team first ported
an existing FORTRAN operational flight trainer
(OFT) simulation with acceptable modularity
{76000 lines ~of source code excluding comments
bound in 75 subroutines) from a SEL 32/75 to the
Systems and Computer Technology Division’s vVAxX
11/780. Non~compatible language features were
remediated and the simgation subroutines
{modules) were all successfully compiled.



align. No acceptable commercially available
data ow tools were found so, rather than
perform this function manually, it was decided to
write the necessary programs for determining (and
organizing) module inputs and outputs, sources of
inputs, destinations of outputs, and the existing
Sme relationships between modules (see figure
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{MMCSA Scftware Partiticning Process)

consign. A commercially available software
package was found to assist in the process of
assigning the simulation software modules to
multiple microcomputers. This generic software
package implemented a graphical critical path
nethod analysis on a personal computer
workstation. Given an approximate execution
time, precedence constraints (which other modules
must be executed before a given module), and a
processor assigmment for each module, the program
calulated the time it would take to execute one
pass of the similation. Modules were moved from
processor to processor until an accepi::.ble
distribution was arrived at, i.e., one in which
modules were grouped in an 1ntu1t1vely pleasing
manner and vyet were still executable in
real-time.

It was decided to adhere as closely as
possible to the scheduling (the calling order and
frequencles in which the software modules are
executed) used by the system it was originally
designed for. ‘this reduced the mmber of
intermodule timing discrepancies that had to be
resolved for each separate partition' (unique
distribution of software modules to
microcomputers). As discussed before, changing
the exact time interval between the executicn of
any two given modules can change the
characteristics of the simtlation itself
adversely if a fixed or bounded time constraint
binding those modules is broken.

Interprocessor Commmmications

A communications strategy had to be chosen
and implemented so that the data needed by each

given module from modules on other microcomputers
would be transferred and valid when referenced.
Both message passing and shared memory schemes
were conceived. )

"In the case of wmessage passing, the
locations of parameters needing to be transferred
from one microcomputer to another had to he
sequenced precisely in memory so that efficient
transfer of data could occur. This was
accomplished in standard FORTRAN alone through
the ordering of parameters in the FORTRAN COMMON
statement. For the shared memory approach, the
exact sequence of parameter data in memory is
arbitrary.

~— In both chared memory and message passing

commmication systems, a mechanism is needed to
ensure that the execution of modules on one
microcomputer does not race ahead of
interdependent processing taking place on
cocperating microcomputers. This means that one
processor may need to suspend its execution until
required data arrives from another microcomputer
during the course of a real-time frame.
Otherwise, the integrity of the s:.mlat:.on will
be compromised.

A gsoftware tool was written to determine the
exact . parameters shared between microcomputers,
organize these parameters for efficient transfer

"(in the case of message passing), and insert wait

mechanisms where needed to control the execution
of modules across microcomputer boundaries.
Information generated by the programs shown in
figure 5 was used directly as input to this final
program.

Emilation

Before downloading the first partitioned
similation to the swltimicrocomputer environment,
an emulation facility was established on the VAX
11/780 using resident concurrent programming
utilities. This was needed to verify that data
would be transferred between microcomputers as
axpected and synchronization would be complete
when the simulation was ultimately brought up on
multiple microcomputers. The emulation was
accomplished through the creation of a separate
VAX preocess corresponding to each microcomputer
being used by the partition. Modules were called
and executed by each VAX process as they would on
the microcomputers they were eventually to run
on, except instead of communicating across a bus,
data was transferred through VAX "mailboxes" and
the processes were synchronized through software
"event flags" rather than interrupts. In this
way, a functioning simulation was assured before
downloading to the target hardware. This left
only problems unique to the VME-bus environment
to be reselved with the debug facilities
available at that level,

The End Therecf

At the time of this writing, the OFT
simulation had been run on one, two, and three
microcomputers using nessage passing
commnications. Current plans dre to expand the
hardware and develop additional partitions so
that total system performance and interprocessor
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communication times can be compared for message
passing and shared memory approaches in
similation subsystems having between twe and six
processors,

Initial expectations were that only one
32-bit single board microcomputer would be
necessary to execute the OFT simulation at the
required 33 millisecond per frame rate. The
services of a full three microcomputers had been
enlisted before this figure was finally met. The
SEL 32/75, on which it originally ran, is rated
at 0.7 MIPS (millions of instructions/sec), and
required only 17 milliseconds (average) of the 33
millisecond £frame to finish. On the other hand,
three "2 MIP" machines {(Motorola 6802075 with
68881 floating point coprocessors) were needed to

accomplish this same task in approximately 33.

milliseconds - an order of magnitude devaluation
of their rated performance relative to the SEL
computer. It is being investigated whether this
discrepancy is to be attributed to differences in
benchmarking of the raw machines, or other
factors, especially that of compiler efficiency.

A bright spot was the speed with which
interprocessor communications were performed on
the VME-bus. The nunber of words needing to be
transferred for two, three, and four processeor
partitions were determined to be 550, 650, and
850, respectively. Using the basic message
passing scheme, these parameters can be
transferred across the 40 Moyte/sec VME-bus in
1.3, 1.5, and 2.0 milliseconds, including
software overhead. 'This is perceived as a highly
tolerable figure for a typical 33 ms. OFT frame
time.

CONCLUSIONS

Evolving . general purpose 32-bit
microcomputer packaging technology and standards
are truly impressive. The competitive base of
preducts based on these standards continues to
grow rapidly. This does not mean, however, that
this technology should be turned to naively by
the simulation community. If the results of the
angoing study presented in this paper are any
indication, it may be some time before simulation
subsystems of large magnitudes {i.e., greater
than 10,000 lines of code) can be successfully

and

designed maintained using
multi-microcomputers. Presently, the lack of
optimized FORTRAN and 2Ada compilers, and
associated multiple processor software

development tools represent the greatest void.
As these products become available the power of
microcomputer technology to meet simulation needs
will increase dramatically. Several heads—up
simzlation houses, having recognized the
potential of this technology, are beginning to
£ill the existing void with their own proprietary
products. This will, of course, improve their
own capability, but will unfortunately leave the
promise of simulation subsystems integrated from
campletely non-proprietary components
unfulfilled.

There is a .need for continued commitment
both to expressing the needs of the simulation
community to the microcomputer industry, and to
evaluating the river of products they continue to
introduce. fThrough this process better and more
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maintainable microcomputer-based systems can be
built by specifying that commercially &vailable
products Dbe used first before turning to
proprietary components.,
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