DESIGN OF A GENERIC TRAINING DEVICE CONTROL CONSOLE USING ADA

V. Facontl
L. B. McDonald, Ph.D.
FHarris Government Support Systems Division
Winter Park, Florida

ABSTRACT

Several factors set the stage for control conscle designers who wish to_ compete in

today's training environment.

reduce the costs and increase effectiveness of training systems.
This paper decuments a program of research aimed at

use Ada* is a good example.

Chief among these are various DoD 1n1tlat1ves to”

The DoD mandate ﬁo_

developing a design approach to realize the DoD cost-effectiverness goals in the .
This appreach features increased use of _
modular generic sofware solutions which can be applied over a wide range of

training device control conscle area.

situations. At the same time,
specific requirements as needad.

the approach allows for medification to accommedate -
A functional baseline was developed based . upon

reported conscle design studies and then expanded through developmental testing and

user suarveys.

‘User reactions and Ada lessons learned are also discussed.

INTRODUCTION

Qver the pagt few years, the cost of
simulation hardware has plummeted while
the cost of software has skyrocketed.
While much of this hardware cost reduction
is due to advances in miniaturization, the
dominant efféct has been the resuit.of
modularization of hardware. @ Instead of
designing and building dedicated hardware
for specific applications, engineers
select modules that will perform the ~
required functions. In order to fulfill
the varying functional requirements, these
hardware modules must have a built-in
flexibility such as programmable functions
or expansion capabilities that can be
implemented by the end user without
hardware modification. Hardware modules
with this flexibility are used in a number
of applications, thus spreading the
development cost over a large number of
units and lowering unit cost.

To achieve lower costs in software, the
training systems industry must develop
flexible medular software packages that
can be used repeatedly in a number of
training system projects,
buting development costs over .a number of
applications. This emphasis on reusable
training system software modules is in
keeping with the larger DoD Ada Initiative
for weapon systems in general.

In corder for hardware manufacturers to
develop modules that will be used
repeatedly, they had to first determine
what functions must be performed
repeatedly. This same function analysis
is required by software developers in
order to determine what software functions
will be used repeatedly in training
systems. The U.S. Air Force has performed
an analysis of f£light simulator functions
and has developed the following list of
simulation (functional) medules for a
weapon systems trainer {(as defined in the
SOW for Modular Simulation Design.):

*ada is a registered trademark of the
U.S. Government, Ada Joint Program’
Office.

thereby, distri-

108

Aerodynamics Visual
Fllght Controls Navigation
Flight Station Support

Instructional System ~ Electronic Combat

Motion Radar

Propulsion Weapons

In order to be flexible enough to be
used repeatedly on separate f{light
similators, these simulation scftware
modules must consist of a large number of
packages that will carry out the various
functions likely to be needed in the
diverse appllcatlons of the future.

In this paper we will concentrate on the
médule labeled by the Air Force as
Instruttional System. To achieve the .
needed flexibility for the module, we must
first determine the functicrns the module
must perform in the future. Since the
primary purpose of the instructiocnal
system is to support the simulator
lnstructor/operator, these functions can
be derived by decing an analysis of
instructor/operator functions.

- BACKGROUND

The imposition of Ada fully supports a
generic instructor console, concept, and
further, even simplifies its implementa-
tion. Flgure 1 illustrates the advantages
realized by reusability of Ada scoftware.

Since Ada software is designed to compile

and execute on any Ada-compatible
processor,
source code need only be developed cnce.
Each subsequent implementation requires
only compilation on the target processor
and the writing of driver packages to meet
the specific needs of the instructor and
interface hardware.

reusable instructional seftware ~

WITHOUT ab R

EXECUTES ON
INSTRUGTIONAL COMPILED pnoggsscn
SOFTWARE ON TARGET FOH SPECIFIC
FORTRANETC SOUACE | rocesson] T SYSTEM A
DEVELOPMENT SYSTEM A DISPLAY/
CONTROL
DEVICES
EXECUTES ON
ot ol I Iy F‘E’,‘;?gafes&nc
FORTRAN/ETC SauACE La PEOCESSO Rt AT
DEVELOPMENT SYSTEM B DISPLAY/
. CONTROL
DEVICES
EXECUTES ON
INSTRUCTIONAL COMPILED Pnogssgon
FTWARE ON TARGET FOR SPECIFIC
FORTRAN/ETC ssE?‘%nce - PHOCESSOR P SySTEM ©
DEVELGPMENT SYSTEM DISFLAY)
CONTROL
DEVICES
. . .
. . .
. . .
EXECUTES ON
e |] soreee || apeliien
FORTRANETC SOURGE - pnocsps‘gon - SyStem 2
DEVELOPMENT SYSTEM 2 DISPLAY/
GONTROL
DEVICES

WiTH ADA

DEVELOPMENT SYSTEM —J» TARGET SYSTEM

LA [—exscute sysTem &

INSTRUCTIONAL —EXECUTE SYSTEM B
A FTWARE
OURCE [~ ENERIC
DEVELOPMENT SOFTWARE|
[EXECUTE SYSTEM C

E F~EXECUTE S5YSTEM Z

XS132-1180-07
A, Z ARE BRIVER PACKAGES

Figure 1. Advantage of Ada

Accordingly, we are now presented the
tools needed to explore the concept of a
Generic Instructor/Operator System
{I05). The combination of microprecessor
power/cost, advanced raster or .flat panel
display technolcgy and Ada Offers this
opportunity.

As a more pragmatic understanding of
training technelogy has evolved over the
years, so has an understanding of the
instructer's role in a simulation training
environment, and with that, a clearer
understanding of the functions that are .
concomitant with this role. Much of the
material discussed below provides an
understanding of the functions performed
by current and future instructors. The
premise of this work is based on an
understanding that the role of the
instructor station is to provide a
mechanism by which the instructor can view
and alter the training problem.

Many desirable features of control
consoles have been well decumented in the
literature, several are listed in Table 1.
Figure 2 is a sequential flow of
instructor/operator functions and how they
interact with the other modules and
functions of a flight simulater. Ceneric
I05 software must perform the functions
labeled as IOS functions in order to be
reusable on a large number of flight
simulators as other classes of simulation
training devices.

The design approach followed here was
driven by a desire to capitalize on :
technolegy, and at the same time meet the

109

-a central performance requirement.

--for building the system.

needs of a great number of training
situations. Therefore, modularity became
With
the performance aims. understood, the next
step was to lay out the functional basis
The functions of
a.generic control console should be commen
to_a great many control situations.

Summary of Desirab&%ig;t'ml Console Features
.L%%%%%EQNAL i B LISTED BY (SEE REFERENCES)
"RECORD/PLAYBACEK 1,4,7 _ e
REMOTE REPEATEE DISPLAY 1
HARDCOPY 14 S
-MANUAL FREEZE 1.4
AUTOMATIC FREEZE 14
PARAMETER FREEZE 1,4 _
DEMONSTRATION 1,4
DEMONS‘I'RATION- P;i_El; 1 —
BIEMAREMETNTON | 147 i
NERNONERE T | e A
INITIALIZE EUNCTION %857 —
FERERIINCE AN | 25,7 —
DEBR!EB STUDENT 2,3,7
RORAASNACEMENT 2957

XS-13:2 110107

| I
PRE-EXERCISE SETUP PHASE i SIMULATION EXECUTION PHASE —-POST-EXERCISE ™1
1 1 DEBRIEF PHASE
Nmare
AERD- AIRCRAFT
3 — MAL- —
REVIEW! DYRAMICS FUNCTIONS | suvmanize |-
FLIGH EZE/ |
PARAMETERS 1 CONYROLS 1 conTINUE
INITIATE
FREEZE/ INITIATE MANEUVER
FLIGHT | o | - .
POWER - U':{rg—:fs = Fo cTATION THREATS Plagg?g:w
ue PARAMETERS: P
1 REP
'L SELECT B‘ = ™1 momoN prmepen ™1 iSPLAY AT
TROUBLE- wmat | mmare | § SFEATE L L L3 cTobenT |-+] OPERSTATION | |] enp END
SHOOTING |- CONDITIONS EXERCISE TABLES INPUTS EXERCISE SESSION
SET ‘1 1 eropuLsion | DISPLAY
—] TRamR
ATUS
ﬁ#ﬁfL INFORMATION
=y =1 3 =
VISUAL e
CONSIET‘!QNS HARD CQPY
*|__Recorns
1 NAVIGATION |7 DISPLAY
SELECGT L GAMING AREA
AL~ ARE
FUNCTIONS DISPLAY
] SUPPORT [} DETAIL AREA
SELECT IMITIATE
|} automaTc | | |} eLecironic | - manNguveR |
PARAMETERS COMBAT RECORD
FREEZE/
" RADAR || unFReeze |
; FLIGHT
PARAMETERS
—-‘ RECORD AUDID
MANEUVER : =
RECORD/ ACCEPT
Lol paveack | L« NsTRUCTOR |-
DEMG INPUTS
FUNCTICN
- fp———— 105 FUNCITONS } SIMULATION FUNCTIONS «——1} 10$ FUNCTIONS w—m——ri

Figure 2.. Required Generic 108 Functions

XP-076-855-07-2

DESIGN MODEL FOR A GENERIC 105

wWhile the functions in Figure 2 are all
different, many of the underlying software
tasks are the same. Consequently, the
list of functions can be distilled down to
the following elements. -

1.- Display data to the instructor_ in
textual format. This function can be used
to not only display data resident in the
simulation data pool but also to display
data contained in mass memory for elements
such as initial conditions, mission
scenarios, envirormental data sets,
navigation data sets, tactical data sets,
etc.-

2. Display data to the instructor in
symbolic format. There are several .
variations of this kind of a display,
e.g., navigation maps, tactigcal maps, GCA,
formation flying, weapens loading, etc.
However, this task is essentially reduced
to mapping state data pertinent to the
student's positicn into a symbolic view of
the problem.

3. Accept data sinmgularly from the
instructor to alter the instantaneous
state of the simulation. This functieon
can be used to execute initial conditions,

. simulated data.

insertion of malfunctions, reset tralning
scenarios, alter specific symbol values

znd other basic functions in the system. ~

4. Accept data in blocks to redefine
the problem. This Function can be thought
of to serve several different features
listed in Table 1. Initial condition

ata, environmental data sets, reset,
recard/playback and demonstrations are a
few examples.

5. Store data in blocks for later
retrieval. Again,
several of the features listed in the
reference Table. In particular, scenario
generation functions can be performed by
this type of a generic element. In
addition, sterihg data for - j
record/playback, demonstration and
initialization is also perfeormed by thkis
element.

6. Perform mathematical funciiens on
This capabkility would be
used te display massaged data to an
instructor either on a CRT format or via
some hard copy mechanism.

Takle 2 lists the required I0S functions
and indicates which software shell element
satisfies that requirement.

this function can serve

B Lk | | ol

R

AL Ll

Table 2.
Feature Comparison

SHELL ELEMENTS
1 2 3 4 5 5

INSTRUCTIONAL
FEATURES

AECORD/PLAYBACK X

REMOTE REPEATER DISPL!\-\" x X

HARDCOPY . . X X

MANUAL FREEZE X

AUTOMATIC FREEZE

PARAMETER FREEZE X

DEMONSTRATION X

DEMONSTRATION PREP X

AUTOMATIC MALFUNCTION %
FAULT INSERTION

AUTOMATIC MALFUNCTION X
INSERTION EXERCISE PREP

INITIALIZE FUNCTION ~ X
PERFORMANGE EVALUATION X
FUNCTION

DEBRIEF STUDENT
FUNCTION o X

DATA MSNAGEMENT
FUNCTION

X5.132:1192-07

Implemeantation Considerations) -

One of the key issues briefly mentioned
earlier which allows this approach to be
fully achievable is the use of a data
driven system. This means that all . -
interaction from the instructor to the
simulation problem can occur through data
pool variakbles {(in the traditional sense).
Thus, a textual page is simply a
cellection of ASCII characters with
pointers to variables in the simulation
datapocol. Alteration of these variables
oceurs through seme mechanism (be it
keyboard, touchscreen, mouse, voice, etc.}
mapped to that page. A data driven
approach allows the instructer to identify
data he wishes to modify and to actually
modify that data. This concept is
illustrated schematically in Pigure 3. A
similar analogy can be drawn for
activation of mission segments, for
example. By using a data driven
methodology te index into mission data
sets, a fextual page can be used in the
same manner as mentioned above to identify
the data set to be recalled from mass
storage as illustrated in Figure 3. -

Organizing the instructional function in
a training device in this manner clearly
supports the object oriented definition ..
required for design using the Ada
programming -language. Each generic
element in this system can functicn as an
object, with other elements of hardware
also serving as objects in the design of
the overall object model.

The following discussion addresses a
generic model and how it is defined in
order to implement the instructional

111

TRAINING DEVICE DATAPOOL
. _SMULATIONWENVIRONMENT VARIABLES

PAGE NUMBER X POS see

—hj ¥ POS (XN

PAGE POSITION l____ ZPOS i
b g VELQCITY sae

PAGE NUMBER TEMP i
w] POWER ‘e
>

ae e *ew

PAGE POSITION
- LE X] L X ¥]
ETC. "ee

X5132-1183.07

Figure 2. Display and Modification
of Datapool Variables)

features needed in a training device. a -
typical model is illustrated in Figure 4.
All elements except the simulation state
block are part of the generic process.
This presentation shows a single input
device which takes some action on the
simulator state by, for example, changing
the.value of the altitude. Similarly, it
could affect the instructional state
itself by activating a new display image
on either of the twe displays shown or
activating the store/retrieve data blocks
shown. To further illustrate, considér
the block marked "Store data blocks".

-This would handle stering data for

record/playback, storing data for CRT page
usage, storing data for missions, ‘eta.

As shown in Figure 5, the block from.the

- previous illustration can be broken down

further into sub-blocks, each performing a
generic function. For example, block #1
is responsible for storing sequential data
at a prescribed frequency rate onto some
mass storage devica. Feor record/playback

-and demonstration the frequency rate would

be a number greater than 1. - However, when
used for initializaticn and reset, the
frequency would be set to 1 and one bleck
of data would be stored. Block 2 is a CRT
page index for textual pages, while block
3 is the block for. symbolic or graphic
pages. "The last bleck shown is the
training scenario-ystem where scemaris =
design is structured in hierarchical Sets.
In a typical case, these sets would
consist of a set of initial conditions, a
set of environmental conditions, .a set of
navigation aids required to support the
problem, and a set of automated features
needed such as malfunction insertion,
procedures menitoring, etc. The next
level .in the hierarchy then would be a .
definition of those sets to bé used. This
flexibility in design allows the users to
customize the seftware package to fit

their needs and makes the package reusable
in a large number of applications.:

INSTR!

2
mg
F
A

-4

DR B ol 2R
H VARIABLES VARIABLES DEVICE

f i

CiSPLAY 1
TEXT

ooy W [T SRR
GRAPHICS 7. +.' o
ISELAY SIMULATION | STUDENT
STATE
s?gg%lc] STATE | f—— INPUT <0 + 1
STIMULUS - - A
STUDENT
noet
STORE MASS
| DATAL P sToRAGE
Ldb nEmmvs‘4___“‘J
BLOCKS

L

- W5SA132-118407

Figure 4. High Leve! Simulation Model

Feature Methodology

The implementation methodelogies
required by this approach are very)
flexible in that, by adhering to a striect
data driven approach on many of the
functions, variations of those functions
are simple to implement., A few eXamples
will be presented to illustrate this point.
Consider first, textual CRT pages, pages
with descriptive text identifying
variables within the simulation problem as
well as field location on a display screen.
A data-driven approach requires that
textual pages are subdivided into . two
pieces similar to Singer-Link's ASPT .
approach. First would be a fixed portlon
ASCIT string which would centain all of
the non-changing infermation on the screen
such as variable identificatien, units and
other similar items.

The second part is an update table which
is maintained whenever a particular page.
is activated, and this data is outpuil to.
the screen surface on some cyclic basis,
for example, twices/second. This feature
can be easily implemented by constructing
the desired page layouts in an off-line
mode. The pages are constructed by using
the actual fixed textual information
required in the proper screen locations
and by utilizing a method to identify the
data fields where simulation parameters
are to be displayed threugh the use of
either the defined symbol dictionary name
or some superset of that name tailored for
the user population. In addition, by~
defining action codes located on the .
screen, it is pessible to implement a
coding mechanism by defining variables in

112

STORE DATA BLOCK
H»| A, UPDATE INDEX

2

- environmental conditions sets, etc.

Examples of Model Application

FROM TO MASS
INSTRUCTOR =P —p P0G
CONTROL
STORE DATA
= ~ 8, UPDATE IND —
a
STORE DATA BLOCK
P! ” ¢, UPDATE INDEX ~ [
4
1. RECORDPLAYBACK/DEMO:
INITIALIZATION AND RESET
2. CRT TEXT PAGES
3. CRT SYMBOLIC PAGES
£5-132-5185-07

4. SCENARIOQ SETS/SUBSETS
Figure 5. Detail of Store Data Block

the datapool which activate many functions.
For example, in one case a symbol i
dictjionary location might have an action
code which directs, when selected, that a
numeric keybeoard input will provide data
to be inserted inte the simulation problem
in a certain location in memory. ,
Alternatively, on a different séreen or on
the same screen for that matter, a)
location could have the action code, that

“ when activated, adds 1 to the page number

being displayed. The result of this would

-ba the selection ¢f a new CRT page.

This approach can be extended to
scenario generation by first defining a

- series of subsets consisting of, as

mentiened, initialization sets,)
The
structure of the scenarioc can be created

- by collecting these séts into segments,

usually numerically coded. Therefore, the
same operators that are used for creation
of CRT pages may also be used for creation

of scenarlos with the exception of their

storage structure.

The discussion to this point has, of
course, been theoretical.and abstract.
However, this concept has been implemented’
recently as part of an R&D project —
conducted by the Harris Corporatien in -~
conjunetisn with the Naval Training
Systems Center. The system model was
based on_the experimentef/operator Systéd
{E0S) currently used in conjunction with

_the Visual Technology Research Simulator
(VTRS) located at Maval Training Systems

Center. The VIRS itself served as a test
bed for evaluation of not only this
abstract_concept of develcoping an
instructor control system, but also the
implementation of a microprocessor-based
medular instructor console programmed

_using Ada.

The system recently developed in Ada is
shown in Figure 6 and consists of a series
of Ada tasks and packages that are invoked
by a series of events. There are four
events that control the execution of the
software programs, namely, a timer which
activates tasks on an iterative basis, the
touchscreen, change data from the
simulation, and a keyboard. Once.
execution occurs, the preocessing tasks
being cued by the event tasks would then
output information to one cof three ocutput
elements. One task, of cocurse, is to
modify data for CRT pages themselves,
either alphanumeric or graphic. Another
task would be to provide hard copy of CRT
page data and the third task is to
transmit data to the simulator to alte
its particular state. -

Most of what is shown in Figure 6 is '
generic in the sense that it can be used
en any training simulator which follows
certain precepts. That is, a simulation
data pool or similar repository for
current data must be available and a CRT
system is used for contrel. It must be
pointed out that, of course, the graphics
are unique to the hardware used except in
the structure of the model. Only one task
would have to be replaced, and that is the
task that deals directly with the
input/output to the graphics processors.
In fact, the entire model is based on this
approach and there are, of course, certain
graphic depictions which are unique to
this training device. However, the
methodology for implementation allows
insertien and removal of different tasks

fairly simply. This technique was also
demonstrated during the current research
project. . I

Figure 7 is an example of the
application in Ada of the concept of a
generic task. As mentioned previously,
the function of the CRT pagé and related
control hardware is to provide inforhmation
to the instructer and further to allow the
instructeor to insert information intc the
simulation problem by creating an online
page editor. The page created simply
defines data associated with a particular
function and the generic display task can
instantiate any type ¢f page. As cin be
seen from the figure, all actions =~ .~
associated with the page are defined in
the generic task. Thus, by creating a
specific and unique data base for each
function, a variety of display pages can
be created.

"In an effort to make the software as
flexible and reusable as possible, the
display task was designed such that the
usér can create and modify screens of data
{called frames) without re-compiling the
code. To create a display frame, the user
will select the CREATE FRAME opticn from a
menu, respond to the prompt and name the
new frame. The user will then see the
Edit Field menu in Figure 8. From this
menu the user can insert, delete, copy and
move fields on the frame as well as create
and deleie other frames. If the user
selects INSERT FIELD, the Insert Field
menu in Figure 9 will appear. To monitor
a certain value in the simulator datapool,

DEVICES

IMULATOR
DATA

CLOCK

TOUCH
SCREEN

? TOUCH {

TOUCH

HIT_KEY

™
KEYBOARD

- WINDOW _ DISPLAY DISPLAY
“TASKS , SOFTWARE DEVICES
/ NORFOLK o
/ GCA
FORMAT_C
FOOTPRINT CRT 1
, / PAGE__EDITOR
_ . CORE //ﬁ
/ CONTROL__PANEL GSSEE,'Q%S ——\
ALPHANUMERIC :
PAGE _ —
i CRT 2
DISPLAY TEXT
DISPLAY “ACTION
DISPLAY VALUE
) DISPLAY _GRAPHIC
- - XV-037-891-07-1

Figure 6. Current MODIOS Software

113

‘MODIOS EDITOR . B _'
® EDIT FIELD MENU

INSERT FIELD
DELETE FIELD
MOVE FIELD
COPY FELD
MODIFY FIELD
CREATE FRAME
"DELETE FRAME
NEXT FRAME N

PREVIQUS FRAME

EXIT EDITOR

XP-0G7-887.07
Flgure 7. A Generic Display Task

SAVE AND EXIT

, 100000000000

SAVE AND CONTINUE
XS132:1186-07

such as altitude, the user will touch the
appropriate square and see a prompt to _ .
enter the datapool variable name. A Figure 8. Screen Editor Optlons Menu
prompt will then appear te touch the . .
desired location. The user will touch the
desired location on the screen and the

value for the desired parameter will be - .~ . .. MODIOS EDITOR
displayed at that location whenever that o
frame is displayed. The user will then ® INSERT FIELD MENU
touch the INSERT TEXT optien, insert via ' T . i)
keyboard the desired text and touch the D INSERT DATAPOOL VARIABLE
desired location. To insert a control)
function, such as NEXT PAGE, the user will D INSERT TOUCHSCREEN
touch the INSERT TOUCH SCREEN option, -
designate the location on the frame, D .INSERT TEXT
select the desired action (GO TO FRAME X)° ’
from a menu and name the desired frame. D SAVE AND CONTINUE
With this:level of flexibility in frame _ . - '
design the reusability of the software is E] CONTINUE
assured. %§3321187.07
LESSONS LEARNED Figure 9. Insert Field Cptions Menu
The work discussed in this paper was c. User reaction to the ability of the
conducted as an IR&D project by the Harris design to effectively train and operate -
Corpeoraticon and utilized the facilities of . the Visual Technology Research Simulator
the Visual Technology Research Simulator - (VTRS}.
(VIRS} at NTSC facilities inh Crlando,
Florida. The purpose of the evaluation was to
. . develop data to validate the instructer
In the pursuit of completing the overall console station concept, and provide
design and the resulting implementatien, | feedback for system improvement. The
many lessons were learned. These included . . scope of the evaluation was established by
a much deeper appreciation for the power a list of twenty-two evaluation questions
of Ada and more insight into the design of which covered both general and specific
a generic instructor station conscle. . - areas of investigation. ~Participants in
Throughout the design and development,) the evaluation, during the software
emphasis was placed on the use of Ada and development and hardware/software =
Ada design methodologies. Results were | " . integration phases, included both Harris
gathered throughout the project and more .. and Naval Training Systems Center o
specifically during a user evaluation. technical team members.
The following paragraphs summarize these . - : o -
findings.
Software Development and Ada .
Data were gathered during three phases] } L
of the preoject. Findings with respect to Ada as an '
implementaticn tool are consistent with
a. Software Development; those being reported with other Ada
projects. Ada is a robust language that
b. Hardware/Software Integraticn;) offers many ¢apabilities that did not’ -

114

previcusly exist in many high lével
languages. Since an object oriented
design approach was utilized on this
project, project perscnnel had to learn
Ada as well as how to design with object
definitions in mind. Ada provided a
direct application of the design in which
objects were mapped easily into a
programming selution. A very strorg front
end definition was obtained. The major
finding with respect to Ada is that the
training of Ada and Ada design
methodologies is less painful than
originally expected. Additionally, the
software integration took approximately
two weeks to complete. This quick
integration process can be directly
attributed to the front end definition and
the level of abstraction that was
attainable with the use of the Ada
language. Debug time was minimal znd
strongly aided with an effective symbolic
debugger. The use of generics expedited
the addition of program units. A new task
that consisted of a color driven graphics
display was designed, coded and tested in
less than one week. This was achievable
due to the highly structured code, as well
as reusable scfiware- packages designed
inte the framework of the instructor
conscle software.

Hardware/Software Integration

The software system was developed on a
SUN 3/160C computer system utilizing the
Verdix Ada compiler. The system offered
an excellent toeol in which to do software
development. It has the power of the Unix
operating system, and the processing power
to comfortably support four te five
software engineers. This system served as
both the development platform and the
target run-time system. The conclusion
reached is that the Sun workstation
offered an excellent development
environment but could nat provide the
processing power required to achieve the
iteration rate required for real-time
operations in the configuratieon used.
Table 3 summarizes the results of the
execution speeds. The slow updates are
attributed to the Unix operating system
and how input/output is now implemented by
the operating system. Bypassing Unix I/0

Table 3. Execution Times

MEASUREMENT TFIME (MSECS)
SYSTEM TIME CALL 383
GRAPHIC WINDOW TASKS:
ALPHANUMERICS
. DISPLAY A PAGE 2208.000
DISPLAY MAIN MENU 2141.000
CONTROL PANEL
CLOCK UPBATE (ENTIRE) (0:00:00) §3.060
FORMAT CC DATA TABLE
ENTIRE DISPLAY UPDATE 158B.000
GCA GRAPHIG
ENTIRE DISPLAY UPDATE 249.000
GRAPHICS UPDATE ONLY 422.000
MAP GRAPHIC
EMTIRE DISPLAY IDATE 199.000
GRAPHICS UPDATE ONLY 189.000
XS-132.199847

115

drivers and directly &ddressirng the
graphics processor should speed up the
through-put rate to an acceptable level.
From all indications, given a different
I/0 interface, Ada is suitable for |
real-time applications. o

User Reaction

User reaction was outlined by utilizing

ten Marine Corps helicopter and fixed wing _

pilots. A short training scenario was
used to expose each instructer pilot te
the generic console. After each pilot
completed an exercise, detailed gquestions
were answered. User reaction to the use

of the generic instructor console was very f

positive. The operator console was used
te control a training mission involving
the SHE0B helicopter simulator. A limited.
selection of features incluyding: call up
of initial conditions,; in-flight store and
recall, change of instructer ceontrglled
parameters, hierarchical menus, and the
page editor were implementeéd successfully.
The generic instructor donsole station did
adapt to the centrol needs of the VTRS.
Specifically, the instructor pilot's

.. reaction can be summarized as follows:

a. ‘the. touchscreen approach with many
control features selectable by touching
the face of the display screen is an
efficient and effective way to conirol the
training problem. The instruttor pilots
particularly liked the way in which the
in-flight store feature was implemented.

b. All subjects noted that the use of
c&lor for CRT displays added to the
readability and presentation of the. . __
training mission parameters. ’

c. No subject experienced difficulty in™”

console operations. Four of the subjects
remarked that the console was easier to
operate than those that they had used
before. The menu driven approach allowed
access to all infermatior within a -
hierarchical structure.

d. All subjects were able to use the

. instructer console station within a 135

minute training and orientation periocd.
CONCLUSION

The results of this work lead the
authors tc two basic conclusicns. First,
the concept of a generic.IOS is certainly
feasible. Hardware technology has reached
a level where common modules can be o
structured to implement all requirements
in an. instruction consvle, particularly :if
designers maintain open architecture such
as VME, multi-BUS, PC, BUS, STD bus, etc.
Further, by designing the software using a
data driven methodology, major elements of
the instructional software itself can be
used in a variety of trainers.

The second conclusion deals with the use
of Ada. Our experience has been that Ada
allows you to reach an ‘operation state
much quicker than was previocusly
experienced. The problem of servicing I/0
must be overcome and from indications =~

amonyg the commercial software developers
this is happening. Adding new tasks to an
Ada system is as advertised, i.e., simple
and easy, thus lending more credence to
the generic IOS concept.

BIBLIOGRAPHY

1. Caro, Paul W., Pohlmann, Lawrence D.,
and Isley, Robert M. (1979)
Development of Simulator Instructicnal

Feature Design Guides, Seville
Technical Report TR 79-12, seville:

Pensacola, Florida 32505

2. Charles, John P. {1983) Device 2F119
(EA-6B) WST Instructor "Censole
Review, Technical Report:
NAVTRAEQUIPCEN §1-M-1083-1, Naval
Training Systems Center, Orlando,
Florida 32813 B

3. Charles John P. {1984) pesign
Guidelines for Trainer
Instructor/Operator Stations,
Technical Report: NAVTRASYSCEN
83-C-0087-1, Naval Training Systems
Center, Orlande, Florida 32813

4. Faconti, V., Mortimer, C. P. L.,
Simpson, D. W. (1970} Automated
Instruction and Performance Monitoring

in Flight Simulator Training,
AFHRL-TR-69-29, Alr Force Human

Resources Laboratory, Air Force
Systems Command, Wright-Patterson Air
Force Base, Ohio

5. ©Stark, E. A., Faconti, V., Mortimer, =
C. (1971) Study to Determine the
Requlrements for an Experimental
Training Simulation System,
NATRADEVCEN 69-C-0D207-1, Naval
Training Systems Center, Orlando,
Florida 32813

116

~ projects.

- simulation system design.

6. Charles, John P., (1983) Device T
2E6 {ACMS) Air Combat Maneuvering
Simulator Tnstructor Console Review,
Technical Report: NAVIRAEQUIPCEN
B82-M-0767-1, Naval Training Systems
Center, Orlando, Florida 32813

7. Osborne, S. R., et al. (1983) Three
Reviews of the Instructicnal Support
System (ISS) Concept, Technical
Report: NATRAEQUPCEN 81-C-0081-1,
Naval Training Systenis Center,
Orlande, Florida 32817

-JABQUTTHEAQTHQFS

ME . VICTOR FACONTI is the Manager of

Advanced Engineering, Harris-GSsDh/Orlando.

He is respensible for system analysis and
design for the simulation product line,

and has technical and financial responsi- .- .
‘bility for operation IR&D program, direct

support to all Business Development
activities and system design for ongoing
Mr. Faconti has over twenty
yvears experience in the design: of flight
simulation systems. He was technical
champien in the aréé of "ihstructor
stations and features_design. He holds a
BS (1964} and M5 {1968) from Adelphi
University and and has several paténts and
publications in the area of flight

DR. BRUCE MCDONALD received his Ph.D. in
Industrial Engineering from Texas A&M
University. As a Program Engineer with
Harris Corporation, he manages programs in
the advanced Engineering Division.

Or. McDonald has extensive research and

" applications experience in training device

concept formation, design and evaluation
as well as user-computer interaction.

