REUSING FORTRAN IN AN ADA DESIGN

William F. Parrish, Jr.
Haval Training Systems Center
*Orlando, FL. 32813-7100 - . . -

Kent G. Trewick

Naval Training Systems Center

Orlando, FL 32813-7100 R o

ABSTRACT

Many simulator processes and algorithms have been implemented in FORTRAN. Some examples are oceanmodels,

aircraft avionics models, and sonar sensor models.

important that we consider reusing existing FORTRAN ccde.

vndergoing major software modifications. -
investigated..
FORTRAN/Ada implementation.
and vice versa are explored.

As we begin writing training device software in Ada , it is
! This is particularly true for FORTRAN based. trainers
Various techniques for interfacing Ada and FORTRAN designs are
Benchmarks are presented comparing an all FORTRAN or all Ada. implementation to a combined
Problems concerned with calling FORTRAN subroutines from 2da procedures and tasks
Differences in arithmetic types between the two larnguages are also explored.

Particular emphasis is placed on the effect that a combined Ada/FORTRAN implementation has on computer

resources.
memory may be very limited.

INTRODUCTION

Current Navy and DOD instructions reguire that
weapon system training device software be written
in bda. In some instances the reuse of existing
FORTRAN code should be considered. There are
‘primarily two cases where this reguires
consideration. The first case is that of a major
software medification where most of the existing
software is written in FORTRAN, OPNAVINST 5200.28
reguires that Ada be used for major upgrades. A
major upgrade is defined by DOD Directive 3405.2 as
a redesign or addition of cne—third or more of the
software. The other case where the reuse of
FORTRAN is important is in those instances where it
is desirable to use existing FORTRAN mocdels. Many
potentially reusable FORTRAN models exist. For
example, the Naval Training Systems Center has an
ccean model that is written in FORTRAN that has
been furnished as Govermment Furnished Information
on several training device contracts.

Numercus factors should be considered when
integrating FORTRAN and Ada designs and code. This
paper examines many of these factors. A series of
benchmarks were run and results are compared.
Memory requirements and execution times are
compared between languages.

BENCHMARE DESCRIPTIONS AND RESULTS

Three benchmark programs were used. The first
benchmark program is a simple program that computes
the number of prime numbers in a specified range.
This program was chosen because of simplicity and
the ease with which execution time can be varied.
The prime number program also facilitates easy
comparison of arithmetic types. The second
benchmark program is a mathematical routine that
calcunlates a simple sine and exponential function
using infinite series. This program was chosen
because it represents a cyclic activity when used
to generate a table of values. The third benchmark
is a modified version of the Phrystone (9)
benchmark. Modifications were made to the
benchmark by the University of Central Florida to
closely approximate the mix of high level language
statements found in a typical training simulator
program,

The first two benchmarks were implemented with

49

-procedure or subroutine.

This consideraticn is of major importance when modifying an existing trainer where spare time and

and without Ada tasks. This was done so that a
comparison could be made between the execution
times with tasks on a parallel processor machine

-and a single processor machine,

Several different implementations were
considered. Each benchmark was implemented in both
Ada and FORTRAKN as well as a combination of Ada and
FORTRAN where appropriate. In the combination
implementations the aAda program calls a FORTRAN
subroutine and the FORTRAN program calls an Ada
A1l benchmarks were run
on a VAX 11/780 and many of the benchmarks were run -
on a Sequent Balance B0OO, and a Zenith Z-248 with
an 80287 math coprocessor. Sufficient time was not
available to run all benchmarks on the Sequent
Balance 8000 and the pragma INTERFACE for FORTRAN
was not implemented in the Alsys compiler used on
the Zenith Z-248. The results of these campariscns
are shown in Tables 1 and 2. Table 1 shows the
execution times and Table 2 shows the storage
requirements for the varicus implementations. BAs
can be seen from Table 1 the execution times are
similar for all implementations on the same machine
but vary greatly between machines. Notice that the
MATH TASKS benchmark tock longer on all machines.
This is due to task switching. Each task is called
gseveral hundred times in the MATH TASKS benchmark.
The tasks in the PRIME TASKS benchmark are only
called once. ' Therefore, it ran in approximately
the same amownt of time as the other
implementations. The time penalty asscciated with
task context switching for the MATH TASKS benchmark
should disappear if run on a parallel processor
architecture with each task executing on its own
processor. However, allocation of tasks to
processors does not happen auvtomatically. The
MATH TASKS benchmark.alsc took longer to run cn the
Sequent Balance machine even though it has a
parallel processor architecture. = The benchmark
executed as if it were running on a seguential
Processor . -

Table 2 shows that the object code generated
by the Ada cempilers is considerably more than the
dbject code generated by the FORTRAN compillers.
Programs with Ada tasks reguire even more object
code as one might expect. As can be seen from .
Table 2 different vendor's compilers generate
significantly different amounts of object code,
This finding is consistent with an Ada research
report written by the University of Central Florida
(7).

L]

Table 1 Comparison of Execution Times

Implerentation
Machine/Medel FOR E/A F 2da
DEC VAX 11/780 .
PRIME PROC 30.05 33.19 - 30.29 33.15 .
PRIME TASKS WA K/A WA 32,59
MATH PRCC 9.07 9.87 8.87 9.97
MATH TASKS NA N/A Na 22.93
SEQUENT BALANCE 8000
PRIME PROC 94.1 NA A 184.8
PRIME_TASKS N/ B N/A WA 184,32
MATH PROC 15.8 N/A WA 3.0
MATH TASKS WA /A WA 41.%
ZENITH Z-248
PRIME PROC 546.46 N/A N‘A 802.96 .
‘PRIME_TASKS N/A N/A /A 696.29
MATH PROC 63.27 N/& N/A 92.10
MATH TASKS - WA WA KA 99,72

Times are in seconds

FOR: All FORTRAN Implementation -

E/A: = FORTRAN Implementation Calling an aAda
Procedure

A/F: Ada Implementation Calling & FORTRAN
Subroutine

Ada: All Ada Implementaticn

Wa: Not available

PRIME PRCC: . Prime Number Program with Procedures
PRIME TASKS: Prime Number Program with Tasks
MATH PROC: Math Program with. Procedures

MATH TASKS: Math Program with Tasks

Table 2 Comparischn of Storage Requirements

{Bytes)

Implementation .
Machine/Model FOR E/A AE Ada
DEC VAX 11/780
PRIME FROC 2,764 5,592 7,570 7,464
PRIME TASKS WA WA N/A 8,308
MATH PROC 2,864 3,652 4,772 4,928
MATH TASKS : N/A N/A WA 6,196
SEQUENT BALANCE 8000 T
FRIME PROC 24,576 N/A N/ A 97,292
PRIME TASKS WA . WA WA 120,220
MATH PROC 14,336 WA WA 18,524
MATH TASKS N/A WA WA 41,432
ZENITH Z-248
FRIME PROC 35,528 N/B NA 43,257
PRIME_TASKS N/A Wa NAa 61,137
MATH FROC 32,152 N/B Wa 14,577
MATH TASEKS wa WA - WA 33,821

FOR: All FORTRAN Implementation

F/h: FORTRAN Implementation Calling an Ada
Procedure

A/F: Ada Implementation Calling & FORTRAN
Subroutine

Ada: A1l Ada Implementation

N/A: Not available

PRIME PROC: Prime Number Program with Procedures
PRIME_TASKS: Prime Number Program with Tasks
MATH PRCC: Math Program with Procedures

MATH TASKS: Math Program with Tasks

Table 3 shows the results cbtained from
running the medified Dhrystone benchmark on all
three machines. The modified Dhrystone consists of
the original Dhrystone with scme of the integer
cperations changed to floating point cperaticns. In
addition a FORTRAN version of the modified
Dhrystone was prepared in order to facilitate
comparison of FORTRAN and Ada ccde. The medifisd.
Dhrystone was originally available only in an 2da

.. version included in a research report written by
© the University of Central Florida. The results

obtained on the VAX 11/780 indicated that VAX ada
ard VAX FORTRAN were almost identical in execution
speed, with VAX Ada having a slight edge. The

results obtained with the Zenith 2—248 would

suggest that the Alsys Ada compiled code executes
twice as fast as Microsoft's Fortran compiled code.
This conclusion is at variance with the resguits
obtained from executing the other benchmarks, which
showed that the Ada programs took significantly
longer to execute than the FORTRAN programs. A

closer look at the figures shows even more

discrepancies. For example the Ada modified
Dhrystone benchwark ran at approximately three
guarters -the speed of the same program on the VAX
11/780, but the prime numbers program tock 24 times
as long to execute on the Zenith as on the VaX.
Similarly, the FORTRAN version of the modified
Dhrystone program tock approximately one third the
time on the Zenith as it did on the VAX, while the
FORTRAN version of the prime numbers program tock
approximately 18 times as long on the Zenith as it
did on the VAX. It should be noted that both the
prime numbers and the math benchmarks are floating

_point intensive, while the meodified Dhrystone does

very few floating peoint operations. However; the

prime numbers and the math benchmarks give results

which can be checked for accuracy. In arder to give
accurate results, they must perform the same
operations on’ all machines. The modified Dhrystone
does not provide results other than timing data,
and in order to verify that each step is being
executed, some sort of debugging toel would be
needed. No debugging tools were availeble for the
Zenith to investigate the possibility that some
modified Dhrystone steps were not being performed.
Table 4 contains a list of execution times compared
to the VAX 11/780 for all the benchmarks. The VAX
has been assigned an execution time of 1 as a
reference.

Table 3 Modified Dhrystone Execution Times. -

Machine - Ada* ~ FORTRAN**
VAX 11/780 ' 94,131 93,743
Sequent Balance 8000 22,740 - 26,061
Zenith z-248 72,209 35,685

* Lines of Ada code executed per second. T
** Lines of Fortran equivalent Ada Code executed
per secordl.

Digital Equipment Corporation's Ada compiler
versicn 1.1 and FORTRAN compiler 'ﬁersion' 4.6 were
used. VERDIX Corporation's VADS Ada compiler
version 5.41 and DYNI FORTRAN compller version
2.6 were vsed on the Sequent Balance running the
DYNIX operating system. DYNIX is a version of
UNIX", The Alsys Ada compiler version 1.2, and the
Mierosoft Fortran compiler version 3.2 were used on
the Zenith 2-248. ’

PNUM MATH MODDHRY
MACHINE ADA ADA
FORTRAN FORTRAN | ADA | FORTRAN
TASK |PROCS TASK [PROCS
VAX 11/780 .00 1.00 1.00 1.00 1.00 100 1.00 100
SEQ. BAL 8000 5.66 5.57 313 1.83 311 1.74 4.14 359
ZENITH Z-248 | 21.37 | 24.22 18.18 435 9.24 6.98 1.30 . 263
PNUM: PRIME NUMBER PROGRAM
MATH: MATH PROGRAM
MODDHRY: MODIFIED__DHRYSTONE PROGRAM R

SEQUNT BAL 8000: SEQUENT BALANCE 3000

ADA: ADA IMPLEMENTATION

FORTRAN: FORTHAN IMPLEMENTATION

TASK: TASK IMPLEMENTATION IN ADA

PROC: PROCEDURE IMPLEMENTATION IN ADA

Table 4 Execution Times Compared to the VAX 11/780 , .

MACHINE ENVIRONMENTAL CONSIDERATIONS

The most important censideration is that the
Ada compiler being used must implement the pragma
INTERFACE. Equally important the FORTRAN compiler
must allow subroutine calls to and from other
languages. The linker or program that generates an
execotable module must be able to resclve address
entries and the passing of parameters. Another
nentrivial conslderation is differences in
arithmetic speed between Ada and FORTRAN for
assentially the same precision. A compariscn o©
floating point types is shown in Table 5 for D
Ada and FORTRAN. Table 6 shows the CPU time
required to compute the number of prime numbers
between 1 and 100,000 using the various floating
point representations. The PRIME PROC benchmark was
used to compute the prime numbers on a VAX 11/780
with a floating point processor. LONG FLOAT took
more than l43 times as much time as REAL*8 even
though they are both 64 bits and essentially the
same machine reprasentation. Apparently the
FORTRAN compiler uses the bardware floating point
processor and the Ada compller does not. Hopefully
this difference will be corrected in a later
version of the Ada compiler. As can be seen from
Table 6, very high precision arithmetic takes a
long time in both languages.

Ada features strong data typing of objects.
However, the Ada compiler camnot check the type of
a variakle in another language, Hence it is easy
to get erroneous results due to a type mismatch,
For example, a FORTRAN subroutine can return an
integer result to an object of type Fleat in Ada.

OTHER CONSTIDERATIONS

Uswally the government buys trainers with 50
percent spare execution time and main mwemory.
Sometimes the spare capacity. is less than 50
percent., Figure 1l shows tlie relative cost per
instructicon versus spare time and memory capacity.
It can be seen that cost gees up considerably for
additional instructions that must be writkten once
the 50 percent spare capacity is exceeded. Cost
increases for several reascns. Probably the most
significant reason is that code must be written
more efficiently. It may even be necessary to
rewrite some of the code that was not intended to
be medified in order for an upgrade to fit.
Therefore, when considering doing an upgrade in

51

2da, a thorouwgh timing and sizing analysis is a’
must., A trade off analysis should be done to
determine if it would be more cost effective to
change hardware to stay helow the 50 percent spare
capacity point.

Table 5 Comparison of Arithmetic Types

Language .
Tvpe Ada FORTRAN
FIOAT and 32 bits 32 bits
REAL*4 Precision recision
6 decimal 7 decimal
digits . digits
Range 0.29E-38 Range (.29E-38
to 1.7E38 to 1.7E38
LONG FLOAT 64 bits T84 bits
and REAL*S Precision Precision .
15 decimal 15 decimal
digits digits
Range 0.6E-308 Range 0.56G-308
to 0.38308 to 0.9G308
LONG_LONG_FLOAT 128 bits 128 bits _
and REAL*1é Precision Precision
33 decimal 33 decimal
digits digits
Range 0.84E-4932 Range 0.840Q-4932
to 0.59E4932 to 0.5904932

Note: Ranges include both positive and negative.
nmbers

Table 6 Execution Time Versus Arithmetic Types

- FORTRAN DA
RERL*4 00:00:26.80° FLOAT 00:00326.60
REAL*8 00:00:39.81 IONG FIOAT 0l:35:54.54

REAL*16 01:46:43.49 LONG LONG FLOAT 01:54:27.33
211 times are in Hours:Minutes:Seconds .
Model: Prime Mumbers with Procedures i

4
RELATIVE SOFTWARE ’-
COST
‘PER INSTRUCTION 3|

SOQURCE: 2
BERARD H. RUDWICK
DSMC-MANAGEMENT 1 s
OF SOFTWARE
ACQUISITION FOLELORE
COURSE
0 1 —L 1 |
0 25 50 78 00

UTILIZATION OF SPEED AND MEMORY CAPACITY, %

FIGURE 1. HARDWARE CONSTRAINTS VERSUS SOFTWARE
COsT

Benchmarks representative of the Ada code to .

be -implemented should be run to obtain timing and
sizing estimates. Differences in execution times
are expected for different computers. However,
this paper and others show that different Ada
compilers generate significantly different amounts
of cbject code for the same source code. -

another important ccnsideration is that of the
real time debugger to be used. Does it support the

use of source cede in two:different languages? Of -

course, it is important that the debugger support
the host/target environment to be used. However,
this issue is independent of the high order
language being used.

Life cycle cost shoul@ be .given prime
consideration when performing a major software
upgrade. As more and more software is written in
Ada, we can expect the cost of maintaining FORTRAN
code to increase. Therefore, when considering a
major software upgrade, the program manager should
congider rewriting in Ada all of the code that is
likely to change during the life cycle of the
trainer.

FUTURE PLANS

In order to gain more experience integrating
FORTRAN -and Ada, the benchmarks will he run on
several other machines. Two parallel processor
machines as well as other microprocessors will be
used.

Plans are currently underway to rewrite some
of the Passive Acoustic Analysis Trainer's FORTRAN
medules in Ada. This will allow the Naval Training
Systems Center to gain practical experience
integrating Ada into a FORTRAN based trainer.

SIMRRARY

There appears to be no technical reascon why
Ada cammot be used for major upgrades of existing
FORTRAN designs. Also it -Bppears very feasible to
reuse FORTRAN models and ¢ode in a new Ada des:.gn.
However, some vendor's software products are easier
to interface than others. All séftware products
should improve in the future as it beccmes clearer
that interfacing Ada to FORTRAN and other languages
is very desirable. - Existing training device code
should be rsused when it is cost effect:i.ve to do
S0.

52

The purpose of this paper is to point. out
issues that shovld be considered when planning to
integrate FORTRAN and Ada. General assumptions
should not be made based on the data presented,
For example, it should rot be assumed that Ada
compilers produce twice as much object code as
FORTRAN compilers. The issues described in this
paper reqguiring censideration should be examined in
the context of the planned implementation. Of all
issues that should be ccnsidered, timing and sizing
appear to be the most critical.

REFERENCES

1. Ada Language Reference Manual,
ANSI/MIL-STD-1815A, 1983,

2. OPNAV INSTRUCTION 5200.28, 1986,

3. DOD Directive 3405.2, 1987.

4. Management of Software Acquisition Course,
Defense Systems Management College, Ft.
Belveoir, VA, 1987.

5. Cohen, Nonnal H., Ada as a Second Lanquage.
McGreﬁ—I-h.ll 1936.

6. VAX Ada Language Reference Manual,

Digital Equipwent Corperaticn, 1985,

7. Hughes, Charles E., Knowles, Henry and Lacy,
Iee, “Ada Risk Assessment Report", Umversity
of Central Florida, 1986,

B. VERDIX Ada Development System Sequent/DYNIX

.- Users Manual, VERDIX Cocperation, 1987. -

9. wWeicker. R., "Dhrystone: A Synthetic Systems -

. Programming Benchmark", CACHM 27,20, pp.
1013-1030, 1984, T

- &la is a registered trademark of the U.S.

. Govermment (Ada Joint Program Office). .

- VAX, VMS, and DEC are registered trademarks of
the bigital Equipment. Corporation. i

- VADS is a registered trademark of the VERDIX
‘Corporation.

= UNIX is a registered trademark of ATs®,

— DYNIX is a trademark of Sequent chr@uter
Systems, Inc.

About The Authors

William F. Parrish, Jr. is & Supervigsory

Electronics Engineexr’ in the Suxrface/Submarine
Warfare Software Branch at the Naval Training
Systems Center and is currently involved in
procuring trainers with Ada software. He has over
20 years of software development experience. Priar

to his employment with the Navy, he was a Senior

Staff Engineer with Sperry Rand Corporation. Mr,
Parrish holds a BSE degree in Electrical
Engineering and a MSE degree in Compute:.-

Engineering from the University of Alabama in

Huntsville,

Kent G. Trewick is an Electrecnics Engineer in
the Surface/Submarine Warfare Software Branch at
the Naval Training Systems Center where he is the
Software Engineer for several trainers that are
being procured. One of -his trainers is the HARPOON
HSCICS—-1A Operator Team Trainer whose software is
being written by McDonnell Douglas. Astronauvtics in

Ada. Mr. Trewick belds a BSE degree in Electrical . e
Engineering from Nerth Carolina AsT State _

University.

