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ABSTRACT ’ ST o -

A multiprocessor real-time Ada-based environment is becoming increasingly necessary to
support the growing class of complex simulation and training applications. The Bare Machine Ada
runtime, or BMA, project at Gould C.S.D. is an effort to produce such an environment. The results
of this development effort are providing valuable insights into the mechanisms required to adequately
and efficiently support Ada on multiple processors.

Variations of a distributed real-time environment are evaluated with respect to very tightly
coupled pracessors running with a single (common) local memory, tightly coupled processors
equipped with 2 range of commeon memory, and loosely coupled processors containing no common

- memory. Finally, we consider methods for obtaining a processing system able to distribute Ada
tasks figely over multiple processors. Each processor in the system maintains its own local memory,
but entire ranges .of local memories shadow each other’s contents, forming a single common address

range with-a minimum of contention.

INTRODUCTION

Ag the machinery or vehicles for which Iarge scale
simulations, monitors, training facilities, or control programs
are written become more complex, so too does the application
program. Programs which once required a single task have
become increasingly complex and, in general, can no longer be
considered as a single design problem. To produce a truly
efficient and open ended design, the problem must now be
broken down into a set of logically related subpreblems, each
of which is relatively independent of the others and has the
potential fo execute with a degree of paraliclism, so that real-
time response becomes a reality. This has led vendors to a
multiprocessor bare machine solution for an Ada target
computer systent. Typically, a simulator will divide the
simulated functions up into tasks executed on separate
processors. The bare machine approach isolates the
application from proprietary operating systems, which
sumplifies programmer training, maintenance, and future
porting efforts. For a more detailed deseription of the
advantages of a bare machine Ada implementation, refer to (1).

The implementor of a simulation system needs to

consider many factors that will affect the application. A few of”

the items that need to be considered are:

1} Synchronization:; The Ada rendezvous is the
mechanism to synchronize the tasks within the
program. ‘The speed and limitations of -
interprocessor rendezvous should be considered.
ion: The limit to the number of
processors that are available for Ada task
distribution and the ability and complexity of task
distribution and the impact of task assignment.
3) Data Sharing: The method of establishing common
data areas between tasks executing on different
Processors.,

2

These considerations are evaluated on very tightly
coupled, tightly coupled, and loosely coupled multiprocessor
computer systems. We consider the possibilities with respect
to the possible hardware capabilitics. The usermust also
consider whether or not the vendor has taken advantage of the
possibilities,

»

Definiti
Configuration - the particular set of hardware that the program

© i5 to be executed on.

LRM - Language Reference Manual for Ada; ANSEMIL-STD-
1815A; the specification that defines the Ada language.
Processor - A piece of hardware that can execute the

- instruciions of a program, also called a "CPU."

Task - an Ada entity of execution which may proceed in

- parallel with other tasks in the same program. A rask is not to
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be confused with a "job" or "process" in an operating system
sense.

YERY TIGHTLY COUPLED SYSTEMS
System Architecture

A very tightly coupled multiprocessor system is a
system where the processors share all of memory, all of the
memory is cacheable, both processors execute with cache
coherency, and either processor may prompt the other. The
processors on the bus may not zll have the same capabilities.
A typical block diagram of the system appears below in Figure
1z
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FIGURE1. MULTIPLE PROCESSORS CONTENDING .

FOR LOCAL MEMORY ACCESS.

. I the vendor's runtime kernel provides the capability
to distribute the Ada tasks over the multiple processors in the
system, then the application can use the facilitieg designed into
the language to solve the problems of syachronization,
distribution, and data sharing. Typically, the program will
tnitially be loaded onto one of the processors on the target



system, which will begin elaborating the main program. As
tasks in the program are elaborated, they are scheduled on the
other processors in the system by the runtime kernel. Figure 2
shows how the memory will be used in the systen.

Code for all tasks
Individual stack space
{local data) for each task
All areas
are visible to
Global variables (objects every task in
in outermost scopes the application
of packages) program.
Heap space

Figure 2: Memory map fora
very tightly coupled system.

Task Synchronization

The well-defined standard Ada synchronization
mechanism, rendezvous, can be used for inter-task
comumunication. There is no need to use mechanisms outside
the language. The logic for doing so is provided in the vendor
runtime kernel. Not only does this make the program easier to
maintain, but it will also be easier to port to a different bare
machine environment. The vendor may or may not provide
for interprocessor preemptive scheduling and still conform to
the LRM. Preemptive scheduling is normally implemented

with traps or interrupts between the processors in the system.

There is no limitation on the rendezvous construct. Any task
may rendezvous with any other task in the system.

Task Distributi

Task assignment to processors can be dynamic; that is,
tasks can migrate among the processors at runtime without
losing visibility to data, local or global. Since all of memory is
equally aceessible by all processors, the task is not impacted
by & migration, except for scheduling overhead of prompting
the other processor. The code for the task is equally visible to
- all processors. This would allow dynamic load balancing.
The user need not be concerned with memory segmentation
since all memory is.cached by the processors. When a task is

migrated to a different processor, its local data (stack) will still

be in the same memory with the same address, so no memory
copy or address translation is required. The tasks may migrate
to any of the processors that are available on the bus. .

Data Sharing

There are three categories of data that may be shared
among tasks: local data, global data, and heap data:

Local data, Yocal data are considered to be any objects
that are normally only visible to the task at hand, This is
normally data that are allocated on the stack for that task. If
multiple tasks are executing a procedure concurrently, each
will have its own set of local data items for that procedure.
However, the language allows a task to pass a local data item
as a parameter through rendezvous to another task which may
be executing on a different processor. - It is common for Ada
implementations to pass these parameters by reference instead
of by value, This is not a2 problem under this particular
configuration because the reference pointer will point to the
same data on the other processors.
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Global data. Global data are considered to be any
objects that are neither local data or from the heap. Typically
these are objects residing in package bodies and specifications
but ountside the declarative part of any subprograms (in the
outermost scope). In the configuration under consideration,
all tasks may share global data at any level of scoping. Since
all memory is essentially global, all package data 1s visible to
all tasks in the system. There is no performance penalty for
the sharing of data because the shared memory operates at full
speed.

Heap data, Heap data are data that are dynamically
allocated from free memory, known as access types. The very
tightly coupled system allows all tasks to share heap data.
Parameters may be passed through rendezvous (or global data
areas) which contain pointers (access types) to heap data. All
of the heap area js common to all processors, 50 an access
value on one processor will point to the same item on a
different processor.

Possible linitations

The Ada runtime kernel provided by the vendor may
not have the capability to distribute the tasks of a single )
program across the multiple processors of the system. In this
case, the user has more of a burden, especially in the areas of
task synchronization, task distribution, and data sharing. Tu
this alternative, there are typically muldple Ada programs
executing in the system, each on a different processor. The
user is required to-use facilities outside of the language to
share data. The complexity added by having multiple separate
programs can be minimized by making the number of
programs equal to the number of processors. All tasks within
each program execute on the associated processor. )

Synchronization between processors cannot be done
with the standard Ada mechanisms, but must be implemented
by the user with the shared memory area and some semaphore
facility.

Task distribution among the processors must be static.
To move a task from one processor to another, the program
must be edited and recompiled.

There are several different dpproaches to establishing
global data sharing. It is desirable to preserve the Ada strong
typing so that all units reference the same data in the same
way. A Hbrary comrnon to each program in the system may be
established which contains packages that declare global data.
These data may be placed in specific locations in the system
remory using representation clauses or some other
implementation dependent facility. Then all tasksineach
program would see the same global data in the same area of
menzory.

‘The sharing of local data is not applicable since
interprocessor rendezvous is not possible. The sharing of
heap data is only possible if the mintime kemel can establish a
common heap area from which all programs can allocate -
dynamic objects.

TIGHTLY COUPLED SYSTEMS
Systern Architecture

As the application becomes larger and more complex,
the number of concurrent tasks needed to support the
application in real-time will also increase. ‘This will require
additional processor support.  The methods chosen to increase
the number of processors need to be evaluated very carefully,
however, as there are several key issues that must be resolved,
some of which are:



1) Speed: Can processors be added so that they are
tightly coupled with 4 minimum of bus contention
to provide a real-time response?

2) Inter-processor Communication using shared
memery: Will processors share a single common
memory or will each processor be provided with a
separate local memory? ¥f individual local
memories, will all or a region of these memories
be shared among processors (globally accessible)?

3) Support for Ada tasks and global data: Will tasks
be allowed to migrate freely between processors,
and will the user be responsible for placing global
data in a globally accessible memory region (if
global regions are used), or will this be the
responsibility of the system?

The simplest method of increasing the number of
available processors is 1o add processors to the system bus,
which is just an expansion of the system described in the
previous section. ‘This preserves all of the capabilities
described above, however the number of processors that share
the system bus must be kept low to avoid bus contenrtion and
memoty contenton. A major bottleneck occurs as processors
are added and contend for the system bus. As the number of
Processers grows, contention delays increase accordingly,
severely impacting processor speed and response time.
Simply using faster processors for the application may be
i_)rohibitively expensive, 5o some other solution must be

ound.

To help combat high Ievels of processor contention,
processors are equipped with individual local memories along
with a shared memory segment accessible to all procassors.
Processors can communicate through the shared memory
range, and processor contention is reduced by providing
processors local storage for local data and code, ths
introducing contention delays only where there are loads and
stores to global data (figure 3). Support for Ada task '
migration and global data, which will be covered later,

Mes 4 more complex issue, since not all processors have
access to all data. More importantly, however, is that the
failure of any of the shared memory modules can inhibit the
uge of these modules by any or all of the participating
processors. . Furthermore, the demand for shared memery by
the application can stll cause a bottleneck on the shared
memory bus.
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Figure 3. Traditional shared memory system

An alternative 1o the traditional cormmon memory
segments s a distributed, or reflective, memory system. The
distributed memory system provides a real-time link between
the local memories of nodes (podes consisting of one or more
Pprocessors in a very tightly coupled configuration) and enables
themn to shadow each others' contents in real-time, forming a
single comrnon address range. Any processor writing to any
location in its reflected address range canses the real-time link
to irnage that samne transaction 1o all other processors
maintaining the appropriate reflected address range. Likewise,
any processor reading a shared location need only read the
Tocal copy of the global data from physical memory on its
node's bus. Access contention is thus further reduced, since
contention results only from processor writes ("stores”) to
global regions, but not from global reads of data or instruction
fetches. Also, any one processor reads/writes in the logically
shared portion and cycles at its full bandwidth without any
additional access latency or contention timing latencies,
Moreover, memory modnle failures, when they occur, are
localized. Any one memory module failure causes only its
associated node to fail, while the other nodes remain
operational (figure 4). 'We will consider the implementation
that does not provide cache coherency to the processors
through the distributed memory bus. In order for all
processors to register memory updates, they must not cache
the reflected area of memory. This will cause some memory
tming difference that must be considered.

Multiprocessor Multiprocessor
ode 1 Node 2
Local (private) Normal memory __o, Local (private)
memory arca systems memory area
Global (distributed) Dual ported Global (distributed)
memory area MIEmory systams memory area
Processor write operations
- .are copied onto the DMS bus

and get written into the memories
of all nodes on the bus

Disiributed Memory Systerm Bus

<

Figure 4. Distributed Memory System Architecture
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The most desirable Ada runtime environment for this
configuration is one in which the tasks of the program could
be distributed over al of the processors connected by the
disoibuted memory system. Then the application can be built
using similar features discussed in the very tightly coupled
systems but with some additional restrictions:

Task nizaf

Like in very tightly coupled systems, rendezvous can
be used for inter-task communication. Interprocesser
prezmptive scheduling may be available if cross-coupled
interrupts or the equivalent are available between the nodes.
Since all the tasks are in the same program, any task may
rendezvous with any other task in the system.

Task Diswributi

Task assignment to processors can sill be dynamic
amongst processors within the same node, bat becomes
impractical when taken across nodes in the system. Ttisnot
acceptable to keep all of the local data for tasks in the
distributed memory region of a node hecause that would
prevent the local data from being cached. This would cause
* oo much of a performance impact on the tasks, Thus a task
cannot move to a different node becausg the local stack for the
task would disappear. There are implementation alternatives,
such as copying the stack across to the new node, but that is
not considered practical.

The code for each task on a node must be kept in
private memory for reasonable performance. This allows the
instruction stream to be cached by the processors. Multipie
copies of the code will appear in each node, even though it is
not part of the distributed area of memory.

Daa Sharing

Again, three categories of data sharing among tasks
may be examined: local data, global data, and heap data. (An
explanation of each of these is in the previous section and will
not be repeated here.)

Local data. As already mentioned, the local data for a
task should be kept (by the runtime kernel implementation) in
the area of memery that is not shared amongst the nodes.
Furthermoore, the user must take care not to pass a local data
itemn as a parameter through rendezvous to another task which
may be execnting on a different node. If the implementation
passes these parameters by reference instead of by value, then
the internal reference pointer will not be valid on the
processors of other nodes.

Glgbal data. The logical place for global data to reside
is in shared memory. Thus all tasks in the system always have
access to the data no matter on which node they are executing.
The disadvantage to this simple placement is a loss of speed
because of the cache restriction. An alternative is the
segmentation of the global data. There may be global data that

Hezp data,  Like global data, heap space would
logically be in shared memory. - Yet for performance critical
data, some Testrictions may be applied to put some heap data in
faster local memory. However, heap data is even more
difficult to automatically localize than global data. As tasks in
the system pass pointer parameters amongst themselves, it is
not practical for the Tuntime to track what processor needs
access to what heap area. Furthermore, the heap can become -
fragmented with localizable data. If the user cannot tolerate
heap data in the slower memory, then an alternative is usex-
explicit allocation from a local memory heap. The runtime
kernel is then responsible to maintain the multiple heaps. If
this feature is available in a runtime kernel implementation, it
might have the interface of a procedure call ta select from
which heap the executing task is to allocate dynamic data.
Unless all of the heap is kept in the global distributed memory,
parameters should not be passed through rendezvous (or
global data areas) which contain pointers (access types) 10
heap data.

iffic i mentati

There are some drawbacks to implementing an Ada rontime ~
kernel capable of distributing the tasks across nodes on a
distributed memory bus. A few of the drawbacks that may

prevent vendors from implementing this system are listed here.

A slower kernel, Since the tasks in the system are
visible from all nodes, the kernel data structures, such as the

- task ready quene, must be kept in the global reflected area.

This prevents these items from being cached, causing the basic
tasking operations such as rendezvous to be slower.. The timte-
critical portions of a simulation system cannot tolerate slower
tasking operations. Also, rendezvous speed is often ’
considered a critical metric when selecting a runtime
eavirommnent.

ma rations, A rntime kernel which uses
the more flexible multiple master scheme for the scheduler
requires atomic test-and-set operations to protect the global
data. Such operations are not readily available on distributed
memory systems and the workarounds can be cumbersome.

Tool reguiremnents, For the system to-work

effectively; development tools must be implemented in
addition to the runtime kernel itself.

Liser caveats, The scheme requires the user to
manizally take precautions to stay out of trouble, which is not
consistent with Ada environments. Some of the performance
solutions are dangerous rom a software maintenance point of
view for obvious reasons and should be avoided.

" Clearly, these problems need a solution to provide the

* processing power of the tightly coupled system discussed plus

is only shared by tasks executing on the same node. Thatdata

may be kept in the cached memory local to that node. The user
must decide which packages should be distributed and which
should be localized to particular nodes. A host development
iool that ¢an analyze the use of each globat datum and segment
out any global data that are isolated to-one node would be
useful. A second aliernative to using the uncached memeory is
to identify read-only areas of global data and to keep those
areas In the private memory of each node. Again, a host
development tool to assist is in order.

the functionality, performance, and usability of the very tightly
coupled system. A proposed answer to these problems is
discussed in the final section of this paper.

1 tives for th

‘While vendors are working out the multiprocessor
problems, the user has many of the multiprocessor bare
machine Ada facilities available. The same solutions described
above for running separate programs on ¢ach processor can be
extended to the tightly coupled system. Each multiprocessor
node can run a single Ada program and the programs ¢an
commumnicate over the distmibuted memory system. The
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cornplexity added by having multiple separate programs is control to operate. For example, ethernet on bare

minimized by only having as many programs as there are machine Ada maintains two megabytes of its own
nodes. All of the capabilities described in the very tightly internal memory to temporarily hold incoming and
coupled processor section are available in each of the nodes. outgoing frame information. '

To allow consistent sharing of global datz, the same «  support for transfer controls, such as collision
technique described above of using a common set of packages avoidance mechanisms and automatic reiries on
for each program may be used-in this configuration. The unsuccessful frame transfers.
representation clauses (or equivalent) are used to place global
data in the distributed memory range, +  allows all tasks to pass packet data at any level of

. scoping (by value},
SUPPLEMENTAL COMMUNICATIONS NEEDS.
It is not feasible to assurne that a LAN can provide
The distributed memory system provides the : real-time support equivalent to a tightly-coupled shared
hecessary real-time communication needs of a tightly coupled memory system. The LAN is, howaver, a useful
system. However, there are other applications which are not communications tool capable of providing the target
as time critical, that have less stringent cormmunication needs. application with an alternative level of processor
Among these needs are: communication.
. the ability to communicate with systems beyond
the range of distributed memory.
THE FINAL OBJECTIVE - COMPLETE

- an alternate method of node-to-node MULTIPROCESSOR SUPPORT FOR ADA

comrmmication that does not require a dedicated

region of local memory. Svstem Architecture

- acommunication medium that provides built-in Consider the implementation problems of the tightly
semaphore control. coupled system (discussed above) based on the distributed
memory systemn. The difficylties arise from two reswictions. _
This alternative form of commuanication is foosely on the shared memory area: 1) Those areas cannot be cached
coupled and most likely implemented via some type of packet by the processors and 2) Those areas do not support atomic
switched mechanism such as a Local Area Network. In test-and-set operations.
particular, the current implementation of bare machine Ada
supports ethemnet as the solution to its additional A system which provides these two capabilities on the
communications needs. distributed memory system will support an Ada runtime
environment that is:
The LAN is not capable of addressing the real-time - - standardized, executing as a single logical Ada
needs in the way possible with-a very tightly coupled systemn machine (bare).
or tightly coupled system, discussed above. However, a LAN - expandable, as processors can be added to the system
does provide a supplemental form of communication while _ without rapidly ¢onsuming bus bandwidth.
supporting some additional, useful features: Some of the - parallel, with a two-level hierarchy of processors
more useful features provided by the LAN are: I availghle to execute tasks within the program.
- consistent, with all tasks and data contained within a
a means of communicating with cuiside systems single program. -
beyond the local configuration. - high performance, using parallel memories to reduce
central bottlenecks.
.« elimination of the global/local memory control
needed for node-te-node communication. In fact, " Such 2 system is depicted in Figure 5. Each node's
most LAN's, need little or no local memory memory represents a copy of the one Iogical memory available
to the program.

yall One Ada program — -

Muitiprocessor Multiprocessor
Node 1 Node 2

' B Distributed )

CPU | CPU2 CPU 1 CPU2 a— .ldicsia taéks
’ ‘ in each CFU )

Dual ported Dual ported
memory system - memory system i
Distributed Memory System Bus %

Figure 5. Complete mulitprocesser Ada environment
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The systemn will normally operate with all of the memory for
each node distributed, so that each node has the same memory
image. Only operand stores from the processors cause iraffic
on the central bus. Such a system offers the features named in
the full implementation of a very tightly coupled system
discussed above:
Task hronizatio
The simple Ada rendezvous can be used for inter-task
. communication between any two processors in the system,
whether or not they are in the same node. There is no need to
use mechanisms outside the language.
k Distribution
Task migration can occur frecly among the processors
- atruntime since all processors have the same memory image.

Data Sharing

Local data may be freely passed through interprocessor
rendezvous (by reference), because all tasks will have
visibility to them. Global data are also readily available to all
- tasks, so that the user does not have to be concerned about
where in memory it resides. There is only one heap that the
runtime must maintain, and all access types will be globally
visible.

CONCLUSION

Ada development environments increase the
productivity of simnlation and training system builders by
making multiprocessor primitives available in the language.
The most flexible and easily maintainable executon
environments place large demands on the memory sharing
capabilities of the underlying system hardware. This trend
makes the development of the cache-coherent distributed

memory system more desirable to Ada system vendors. The
development of these target computer systerns and the Ada

. runfie environment to fully utilize them will present the

advantages of Ada to the high-performance real-time
community. There are aiso alternative solutions that may be
implemented in scftware, but more responsibility is put on the
user as less language features are available,
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