SOFTWARE ENGINEERING FOR ADA-BASED TRAINING SYSTEMS:

LESSONS LEARNED FROM THE ADA SIMULATOR VALIDATION PROGRAM

Michael Caffey
- Marshall Westerby

BURTEK
Tulsa, Oklahamna

ABSTRACT

This paper presents lessons learned from a Gevernment funded research .project to investigate
the impact of using Ada for f£light. simulators. The DOD directive requiring the use of Ada
for all mission eritical software systems will cause a significant change in the way software

is designed in the future. In order to study the impact of using Ada and software

engineering techniques, the DOD funded the Ada Simuiator Validation Program (ASVP)., For the

ASVP, simulation software previously written in FORTRAN was redesigned using software
engineering methods and coded in 2Ada. The software was fully integrated and tested to

evaluate the usefulness of Ada and software englneerang practices. This paper presents the

lessons learned by Burtek while redeveloping the software on the Ada Simulatop Valldationf

Progran.

The four main topics that will be addressed are the design approach, computer system support
environment, software maintainability, and training. The discussion on the design approach
will address the use of object oriented design for designing real=time software, the role
rapid prototyping plays in the design process, and the benefits that were derived” from the
rigorous design effort. The computer system support environment discussion will cpover APSE
tcols required for developing simulation software as well as the need for operating systems
that are specifically designed to support Ada. Software maintainability will be addressed,

and special emphasis will be placed on the need for maintainability to be the driV1ng factor‘_f

during design. Tradeoffs between maintainabiliby and efficiency are discussed, and a word of
caution ‘iz given regarding the haphazard. use of Ada features. Finally, a discussion on

training will highlight the need for training in software engineering as well as in Adar

gyntax. The importance of training in the area of application will also be addressad.

INTRCDUCTION

This paper presents the lessons learned from a

government funded research project to investigate .

the ‘impact of using Ada and software engineering’
techniques for developing real-time simulation

software. ‘The project, called the Ada Simulator
Validation Program (ASVP), was funded by the
Aeronautical Systems. Division (ASD/YWB} of the
United States Alr Force. The purpose of the ASVP
was to collect information for use in the future

orocurement of Ada-based training systems. ot .

primary -importamce was information ~on design
approaches, computer system support enviromment,
training required for Ada programmers, and the
maintainability of simulation software written in
Ada.

During _the ASVP, simulation sof'tware
previously developed iIn FORTRAN for a C-141B
Operational Flight Trainer was redeveloped in
Ada. This redevelopment was Ilar more than a mere
transiaktion from FORTRAN to Ada. The requirements
of the ASVP called for the software to bhe
redesigned to implement, as much as possible, the
software engineering concepts supporfed by the Ada
language. Thus, the FORTRAN software was used as
a source of math models for the simulator systems,
however, ~the software structure used in the
FORTRAN impiementation was discarded and a new

81.

structure reflecting software engineering. concepts
was developed. The redeveloped software was fully
integrated and tested, and a demonstration of the

worklng simulator was performed in December 1987

- at Altus Air Force Base. The final product
~consisted of approximately 65,000 lines of Ada
_software running ch & dual processor Gould 5780 ..

coRputer system.

The experience on the ASVP indicates that the
use of Ada will have a signifieant effect on the
way software is designed in the future. Project
schedules, the distribution of marpower, and the
Work Breakdown Structure used for tracking charges
myst all be modified to effectively manage the
development of Ada software. In addition, - .
engineers, managers, and quality agsurance
persannel will all requireé training in the use of
software engineering techniques snd how these
techniques affect their responsibilities in the
software deveiopment process. Confractors will be
forced to deal with the cost of a significant
learning curve on their first Ada project. The
real bhenefits of using Ada will not be realized
until late in the rirst project, or perhaps even
the second. T

This paper describes gsome of the main lessons
learned by Burtek While developing software on the
ASVP. The four topics that will be addressed are .
the design apprecach, the computer system sUppoOFt”

environment, the maintainability of Ada software,
and the training required for Ada programmers.
This information is intended te provide engineers,
managers, guality assurance personnel, and others
with some insight iInto the coritical -issues
asgociated with developing software in Ada.

- DESIGN APPROACH

The primary emphasis of the ASVP was the

evaluation of .design approaches/methods that could -

be used for developing real-time aoftware in
Ada. . Thus, .early in the project, considerable
effort -was devoted to atudying software

engineering. concepts and the design methods, such
az Object Oriented Design (00D}, that support
thase concepts, Puring this study Burtek found
that classical 00D was diffieult to understand and
not entirely appropriate for designing complex
critical . real-time @ systems. A3 a result,
considerable effort was devoted to elarifying the

. begin

Ada language features prevented many of
the problems experienced during typical
FORTRAN projects. These reatures, such
as strong typing checking and strong
library checking, prevented many of the
mistakes that are frequently made when
developing FORTRAN software. This
significantly reduced the time required
for testing and integration.

In the early stages of the redevelopment
effort the project management made a concerted
effort to ensure that the engineering team did not
cading until the software design was
comple te. Though they successfully prevented. the
engineers from coding, it was very difficult to
convince the engineers that a requirements
analysis should be performed before any design is

- attempted. Requirements analysis is a difficult,
tedious task that enginsers are peluctant to
perform. Nevertheless this task iz very
important. The requirements should drive the
design. The lack of an understandable

steps in 00D and enhancing the method for use in -

designing real-time software. The result was the
development of a modified version of (0D that was
used to redesign the simulator software.

During the redevelopment effort, the -design
team found that the use of Ada and 00D increased
the effort required for software design, .but
reduced the effort required for coding, testing,
and integration.-
the ASVP was primarily due to three factors :

carefully choose the components of their
systems. 00D provided well defined
eriteria for choosing objects during. the
design processa. A3 a result, the
individual components of the ASVP
software were well-bounded and haé well
defined interfaces. This increased the

effort required for design, but
significantly reduced the number of
probiems encountered - during test and
integration.

More effort was required to define the
structure of the Ada software than is
typically reguired Lo define the
strueture of a FORTRAN system. For the
most part, simulation software written in
FORTRAN has been architecturally
simple,. These - systems ‘have usually
congisted of a relatively small niimber of
large . subroutines that communicate
through a few common blocks. Very little
effort was required to define the
software structure.

To effectively use Ada and generate
object~oriented: software, considerable
effort must be devoted to developing a
software structure that enforces software
engineering concepts, and also - works
within the implementation copstrainis of
the computer aystem. While this
increases . design time, the software
design is more robust and maintainable.
Thus less effort is required for gest and
integration.

The use of 00D encouraged engineers to..

The redistribution of effort on .

8z,

‘decisions

comprehenéive reqguirements document indicates that
the goals .of the project are not adequately
defined.

During the design phase, the engineering team
found that . the concepts enforced by a design
method - are far more important than the agtual
steps in the method. In order to effectively use
00D, an engineer must clearly understand the
characteristics of a "good gbfect." The engineer
must be able to visualize the system as a
collection of objects and relationships between
the objects. Once the engineer understands these
corcepts the design method provides structure and
discipline for the thought process. Without a
good understanding of these concepts an engineer
can use an object-oriented design method to
produce a design that Is not object-oriented at
all.

Progress was very difficult to measure during
the early stages of design. It was often
dirficult te discern whether the design team was
making progress or merely experiencing "analysis
paralysis." Requiring documentation for certain
steps during each iteration of - the design method
can provide some means of measuring progress.
However, management must reallize that the
made early in design can have_ a
significant affect on -the elegance of the software
design. Foreing the design team to hurriedly make
these decisions could have an undesirable affect
on the qualify of the final product and the affert
required during the latter phases of the project.

- It. is important to realize that no one design
method will solve every problem. Throughout the
design phase on the ASVP, engineers were Strongly
encouraged to follow the steps in the design
method exactly. Although this is generally & good
practice, there were times when it was necessary
for the engineers to make design decisions that
did not naturally follow the application of the
design method. The strong emphasis on performing
every step of the method sometimas caused
engineers. to spend considerable time trying to _
show how these decisions fit the methods steps.

In retrospect, the steps in the design method
should be . viewed as -guidelines rather than
rules. Engineers should be prepared to justify

any deviation from the design method, however,
‘management and qualiity assuramnce must be willing

to . accept that some design decisions will not .

perfectly fit the steps in the design metheod.

During the design phase, prototyping should be
performed to verify that the design being
generated is feasible. There s a definite
conflict between many of the goals of scftware
engineering, such as maintainability and
reusability, and the unicue requirements of real-
time systems. Systems designed Lo fully enforce
software engineering corncepts are usually highly
meodular and architeeturally complex. These
systems perform extensive run-time checking to
verify the correctness of computations and to
prevent sysfem malfunctions.
sharing of common data between subsystems, which
i3 common in real-time systems, {Is° usually
minimized in favor of parameter passing where the
interfaces between the subsystems can be verified
during complilation. While these characteristics

In addition the .

can jmprove the maintainability and the integrity .

of the software, they c¢an also introduce
unacceptable run-time overheads and are not always
aasily. implemented in a multiprocessaing
environment.

The design team made a concerted effort to
fully enforce software engineering concepts during
the design phase of the ASV?P. The Engineers

attempted to ignore implementation detalls and
focus their - atiention on identifying desigh
abstractions {objects) and characterizing the
relationships (actions) that exist between These
abstractions. Figure 1 illustrates this concept.
The ohject c¢alled the Hydraulle System performs
the action of pressurizing the Flight Controels.
The Engines System performs the action of powering
the Hydraulic System, JImplementation details for
the system were not to be considered during the
design.
MACTION
HYDRAULIG PRESSURIZE FLIGHT |
SYSTEM 1 CONTROLS
[e j .
"OBJECTSY /
POWER

Software Design

Figure 1.

A relatively straightforward and elegant
transformation c¢an be performed to convert this
type of design to code. However, during the
implementation phase, the team found that, due to
real~time considerations and the constraints of a
multiprocessor -computer system, the straight-
forward elegant implementation of the design was
not suitable. An additional -software 1ink was
required for the interface between the components.
Figure 2 1illustrates the use of this 1lin .,

£3.

_real-time requirements of the device.

Prototyping during the design phase could have

highlighted the problems with the design approach. _

The design, and the associated documentation,
could have been tailored to provide a smooth
transition from design to cede.

YINTERFACE SOFTWARE"

HYDRAULICS /
FLTCTRLS
INTERFACE

PRESSURE DATA

PRESSURE DATA

HYDRAULIC FLIGHT
3
POWER DATA

ENGINES/
HYDRAULICS
INTERFACE

POWER DATA ENGINES

Figure 2. Software Implementaticn

The goal of the prototyping activity should be _

to develop a design approach that enforces
software engineering concepts, while also working
satisractorily within the implementation
constraints of the computer system to satisfy the
Figure 3
illustrates the role prototyping should play in
the design process. r
of the design method may be tailored to yield a
design that ils easily tranaformed into code. If
protobyping . Is not performed, the transformation
from design to code may not be straightforward.

REAL=TIME

IMPLEMEN-
TAVIONS

SICE]

SOFTWARE
ENGINEERING
CONCEPTS

=~ AESPONSE TIME
« AVAILABLE
PROCESSING
TIME

- NUMBER OF PROCESSORS
=~ EFFICIENCY OF CODE
~ OPERATING SYSTEM

- ABSTRACTION
= MODULARZATION
~ GENERALIZATION __
~ INFORMATION HIDING

PROTOTYRING

POSSIBELE APPROACH ACCEPTABLE APPROACH

DESIGN METHOD

Figure 3. Prototyping During Design

Through prototyping, the uis

The . emphasis placed on software engineering
during the ASVP proved to be very worthwhile. By
far the most important btenefit of the rigorous
design process was a significant reduction in the
time required for integration and tesi compared to
the time required for these activities on mest
FORTRAN projects. Eleven - weeks wera originally
gcheduled for HSI based on the effort required to
perform HSI on similar FORTRAN projects. Actual
integration was accomplished in nine weeks by, on
the average, -three engineers on-site. The
engineers had access to the simulator eight hours
per day on weekdays, and twenty-four hours per day
on weekends.

The early completion of HSI left time for the
addition of two more simulator systems; a limifed
ground handling system, and the visual system.
These systems were not originally scheduled to be
redeveloped in Ada. Complete test and integration
of the visual system was acconplished in three
days, and integration of the ground handling
system was accomplished In two days. Figure U
showg ¢the family ftree of the software that was
developed for the ASVP.

Compared to the FCORTRAN scftware, the softwars
developed on the ASVP was more maintainable and
more robust. Problems were easily located due to
the dedicated interface between the aystems. In
addigion, the much dreaded "ripple effect" of
software modifications was minimized due to the
modular structure of the aystem.

COMPUTER SYSTEM SUPPORT ENVIHONMENT

During the redevelopment effort, the
engineering team learned. that the degree to which.
Ada programming support tocols are goordinated and
integrated in a developuent environment greatly
affects the ease with which a soffware system is
developed, tested, and maintained. - An environment
with a well integrated and fully documented tool
set allows the engineer to be productive and
efficient. Other factors that arffect the
usability of tools are compleienesas of
documentation, ease of use, and speed of the
tool. These three items determine the exteant to
which & tool will be used during the software
life-cycle. Therefore, the entire set of tools
supplied by a vendor may not be put to full use
simply due to the quality and eccordination of the
tools.

An Ada Programming Support Environment (APSE)
may contain a wide variety of tools to complement
any aspect of the software development process.
These tools may range from requirements analysis
tools to antomated test fools. Although the study
of tools was not a main thrust of %the ASVP, we
were able to evaluate a standard environment made
avalilable to us by Gould under MPX. The Gould
APSE consisted of the following toocls:

- Editor. _ The Gould Programmable Editer
was used throughcout the development and
integration of the software, This editor

EXECUTIVE
I l] [l 1
ENVIRONMENT AIRFRAME FUEL ELLECTRICAL ENGINES INSTRUMENTS]
ATMOSPHERE AERODYN L - PRIMARY FSTARTER CADC B
l:GEQGRAH-iY WEIGHT & HE’LWROLS, CENERATORS LrymoTTLE = FPITOT
BALANCE MERGENCY — LINLET ARNING
EOM AT FNL vpressor INSTRUMENTS ™~
DC POWER & oMPRESSOR
- IGNITION
- TURBINE
-EXHAUST
: t LFUEL CONTROL
I I I]
FLIGHT MASTER
HYDRAULICS| |CAUTION & MOTION /0 RTMD
CONTROLS LIGHTING
ELEVATOR YD. SYS. | MASTER t;LATFORM ANDLE DO 'S LRTMD Ma
AILERON MYD. SYS. 2 CAUTICN UFFET & AO'S)
RUDDER HYD. SYS. 3 LIGHTING 170 TRANSFER
HORIZ. STAB. ANDLE DI'S
FLAPS & Al'S
SPOILER
Figure 4. Software Family Tree

84.

could be reprogrammed Lo fit the user's

requirements, For example, a single key

could be . programmed to produce &
frequently Tused package name (IQ“MCL.
ELE IO, ete).. © The capability to
customize the editor greatly enhanced its
usabllity.

Syntax Checker. The syntax checker was

very ussful during the early coding

phases of the ASVP. It allowed the user
te quickly check for syntax errors
without leaving the editor. {The
altérnative was. to exit the editor and
invoke the compiler which would have
taken considerably longer.)

Library Management Tools. These tools

allow the user to perform a wide range of

operations on the Ada libraries. These
tools enabled the user to:look at several
characteristies of an Ada library {size,
components, dependencies, ete.) as well
as create and delete libraries and their
components. Iri addition, these tools
allowed the user to move =z compilation
units from one library to another.

-Prefty Printer. This tool was only

minimally useful on the ASVF. Had we
been required to produce ‘documentztion
and hold eritical reviews of Ada code, It
would have been beneficial to have all
source flles printed out in the same
format. It is important for the pretty
printer to ‘allow the wuser -to easlly

customize the feormat of the output as one |

format will not be satisfactory for every
application.

Compller and Linker. The Aplex Compiler

TRev. 1.0) and Aplex Prelinker were used =

£o process all of the Ada source. code
generated. We found that the speed of
the compiler was adequate throughout the
entire program. The linker, however, was
not as efficient as we would have liked.

During the development of the software

system it Dbecame evident that several
additional tools would have been useful:

Automatic Recompilation Tool. This tool

should detfermine what units need to be
recompiled and the order of the
compilation. As a software system grows,
the compilation dependencies = between
units do not always remain obvious. The
modular architecture that results from
using Ada complicates -the compilation
problem by increasing the number of
compilation units within each system. A
tool which handled this problem
automatically would reduce the time an
engineer would need Lo spend tracking
dependencies. On ASVP, indirect command
files were established to provide
automatic recompilation. This aystem was
workable, but an automatic recompilation
tool would have been far beiter, .

Library Management Tools. A teol is

needed in this area that allows the user

to compress an Ada library after numerous

recompilations have occurred. During
software development, Ada libraries grew
larger and larger after each

recdmpilation of =& unit into the
library., The only way to recapbture any

_space in the library was to delete the

Source Line Debugger.

Tool. Configuration management of source
Files is not a new problem with Ada. UDue
to the many compilation units produced by
Ada architectures, the number of source
files that must be main;g;ned
increases. 4 tool which automatically

keeps track of version and. revision

“Humbers, program structure trees, and

past configurations would greatly ease

the programmers job. - Relying upon manual

insertion of revision numbers deces not
ensure that accurate records will be kept
regarding date, name, and reason for
change.

Because of the

modular structure that "ecan be #hleved

with Ada, it is easy to test many Swall

starid-alone units. Teating these Units
with a source levél debugger "is an ealy
way to verify math ‘medels and
algorithms. Burtek ported much of the

aimulation code to a MigroVax computer in

order to make use of the VAX debugger.

(At the *time there was no sotGrée line

debugger available for use on the Gould

system.)

Real-Time Monitor, Despite theé short

library, ~Trecreate it, and marually
recompile 411 Ada units intc the new
library. T T T T
" hutomaged Configuration - Management

integration time required by T well-

developed Ada code, there is still a need

for a real-time monitor. This teol is an

essential part of any sizeable real-time
time - software system. Burtek made
extensive use of a real-time monitor
developed in-house. This tool allowed
for monitoring and changing of values
during real-time execution.

In real-time: applications, the operating
system can have a significant impact om
the design alternatives that are
available to the designer. Ada systenms
aré “very ~different than most older

software systems, and therefore make ~

different
system.

demands on the operating
To make optimum use of Ada in

real-time, operating systems will need to

be tailored to handle Ada tasking and the
architectural complexity of Ada-based
software syatems.

MAINTAINABILITY

Maintainability is defined as the ease with
which software can be changed or modified oVer the —
entire life-cycle of the system. Software must be’

deaigned to be maintainable. Simply coding in Ada
will not ensure that the end product will lend
itzelf tec easy maintenance.

Maintairnability must Dbe considered at the
earliest stages of design and should be the main
thrust throughout the design process. Qualities
that will make the software maintainable should be

defined early in the design process and
communicated. to the design team. Some of these
qualities include: small Tobject-oriented"

modules, clese mapping of the medules to actual
aircraft components, and dedicated interfaces
between the various systems.

In addition, Ada features must be used in a
straightforward fashion in order for software to
be maintainable. General guidelines should be
established early. in the program regarding the use
of Ada features to encourage consisteney in the
design,- The haphazard use of Ada rfeatures will
not produce a malntainable or efficient product.

Care must be taken in considering the
tradeeffs - involved in the selection of Ada
constructs to ensure run time efficiency and a
usable end product. -Benchmarking
performed t¢ evaluate .the the performamce of
various Ada constructs. This information is
helpful in resolving possible tradeoffs between
maintainability and efficiency. When a tradeoff
exis¢s, the more maintainable approach should be
taken provided the run-time penalties are not
excessive. If it becomes necessary to "speed-up
the code, it is fairly easy to:make maintainable
code fast. It is rarely easy to make efficient
code maintainable,

It was found on the ASYP that time devoted fo
designing maintainable scoftware reduced the time
required for testing and integration. In addition,
when some additional systems (the visual system
and a limited ground handling model) were added
following integration , the software was installed
and fested In a very short period of time (three
days for the visual, two. days for the ground
handling}.

Special c¢onsiderations should be given to
compilation . dependencies when . designing Ada
golftware. Compilation dependencies should be
minimized as much as possible, To accomplish this
the system designers must have a good
understanding of the visibilifty rules in Ada.

Ada compilers need to provide pragmas such as
INLINE and SUPPRESS to improve the execution speed
of' gode that has been designed to be maintainable.

Control of types is an important consideration
in code maintainability. It became obvious in the
early stages of development on ASVP that the
number and organization of types would need to be
controlled. A suggested approach would be to have
a high level type package containing the basic
types required for the project, such as the number
of engines on the aireraft, number of hydraulie
systems, ete., and packages at the system level
that contain system unique types. —

.~ members had

should be

The experience on the ASYP indicates that it
is possible to. produce eode that is . both
maintainable and efficient with sufficienf front-
end planning and corganization.

- TRAINING
“Training on the ASVP was accomplished
primarily through in-house training courses

conducted by a consultant. Prior to starting the
ASVP .the entire design team had completed an Ada
programming ccurse, however none of the team
received any formal training _in
goftware engineering. Thus, at the outset of the
project, software engineering training sessions
were conducted several times a week. Through the
first few months several. lessons were learfed
about training in software engineering methods.

Eariy in the project it was found that
teaching Ada syntax 13 merely the starting point
in training an engineer to design Ada software.
Software engineering concepts and design methods
are much more difficult to grasp than the language
syntax.

It .is very important not to be too abstract
when teaching software engineering methods. Tne
tendency in the early phases of the ASVP was to
study software engineering methods. only at very
high abstract levels. Implementations ' of the
abstract designs generated using methoads such as
COD were rarely eéver discussed. It iz much easier
for engineers to understand and accep:t a software
engineering method whenever the: implementation of
the design is understood.

Training in the area of appliecaticn is much
more worthwhile ! than training from textbook
examples. Actual use of the method in the
éngineers area of expertise will prove to the
engineer that the method is worthwhile. It is
often difficult to read simple textbook examples
and understand how these methods can be used on
larger more ¢omplex aystems.

- SUMMARY

The results of the ASVP indicate that Ada and
software engineering can provide a feasible means
ror preducing an efficient real-time application.
In addition, other important Tbenefits were
realized. Software designs were significantly
improved resulting in a more maintainable software
package. More ¢ime spent producing a structured
design was found to have the benefit of reducing
the time required for code and integration. The
time saved in the 2later phases of the program
offset the additional. time spent on design and
produced an overall time-savings. Integration and
testing of the ASVP was accomplished in much less
time than was required for integrating and testing
of comparable FORTRAN sSystenms.

Merely being a language expert does not
T qualify an individual to design Ada software.

