PARALLEL - PROCESSORS FOR MILITARY TRAINING SYSTEMS — A LABORATORY PROOF-OF-CONCEPT. MODEL

W. J. Rowan, b. M. Rotick,
M. W. Layten, €. E. Ruiz and C. N. Pope

Naval Training Systems Center
12350 Research Parkway

Orlando, FL 32826-3224 - =T -

ABSTRACT

Military simulators require very large amounts of high speed computational power.
Traditionally, the need has been met by assemblages of minicomputers. The laboratory project
described was undertaken to explere the feasibility of employing low-cost microcomputers instead.
The paper details the considerations dictating the architectupral design, describes the
partitioning tool used to assign modules te processors, and discusses methods employed to

overcome real-time synchromization probiems.

Recommendations are presented for system features

which would result in the flexibility and expandability required for this application.

IRTRODUCTION

Sophisticated military training systems have
a seemingly insatiable appetite for computing
power. While today's procurement regquirements
can be met by aggragates of speedy minicomputers,
demands for lower life~cycle expenditures and for
greater realism are forcing a look at
computational alternatives. Parallel
microprocessors offer the promise of abundant
processing power necessary for greater realism in
increasingly complex warfare scenarios. ' Lower
initial costs, easy expandability, and the
opportunity for fault tolerance should contribute
significantly to meetinyg the budgetary o .
constraints. The project described in this paper
was undertaken to examine the feagibility of
employing arrays of microcomputers to. meet the
computational demands of such real-time systems
and to examine the suitability of alternative
architectural features in this application.

Before large scale use. is made of this
technology in military trainers, the potential
advantages need to be confirmed and, to the
degree possible, guantified. Similaxly,
disadvantages need to be identified and
characterized. The most obvious guestion to bhe
addressed is that of multiplicity of processing
powex as a function of number of elements. On
the other side of the ledger is the issue of
software development times which, intuitively,
must be more extensive. Other concerns in the
simulation environment are synchronization
methods and real-time input/output capabilities,

LABORATORY PROJECT DESCRIPTION

To examine these issues, a real-time
operational f£light trainex {(OPT}) was designed
using Motorola 68020-based microcemputers in
‘place of more conventional minicomputers. The
OFT is shown in Figure 1. Since the goal of the
Project was to investigate the feasibility of
melti-micro architectures for training systems, a
complete software development effort was desmed
ingppropriate. Instead, it was decided to use
proven software from an existing T2-C aircraft
simulation and modify it as requized. The use of
exigting simelation software offered the added
advantage of providing a basis of comparison for
the project results. 'The aircraft model is a 6
‘degree-of-freedom, rigid body aircraft simulation
using Euler explicit techniques for mathematical

integratien. Linear interpolation of functiong
of one and two variables is used extensively in
both the aerodynamics and engine modules. The
software package was originally developed as a

mix of SEL (Systems Engineering Labs} Fortran and _

assembler languages. Complete conversion was
made to FORTRAN using a Vax 11,/780.

FIGURE l. LABORATORY PROQF-OF-CONCEPT
OPERATIONAL FLIGHT TRAINER

The architectural features were dictated by
real-time requirements of the flight trainer
which mandated a minimum computational task te be
computed 30 times per second. The need for an
efficient means of communicaticns among
computational elements led to the selection of
the 32-bit, nen-proprietary VME bus which alsc
accommodated the system-wide real-time intexrupt.
Four Motorola MVME-130 boards provided: the
required processing power with a fifth serving as
the controller which is responsible for
maintaining the time base, handling lexception
processing, and interfacing with the
instructor/operatox. To realize the high
computational power reguired, local access to
memory-resident instructions was considered a
necessity. VMX bus interfaces provided on the
MVMB-130's were used for local -access to

l-megabyte dynamic rawm boards. These memory hoards

are dual-perted, with the other port used by VME .
bus for interprocessor data.

126.

Synchropization had to be addressed at two
levels, the First of which invelves the rumnning
of programs such as engines and weights-and-
balances in a coordinated fashion s¢ that

differential times used. in mathematical equations’

are accurate and that the results of each module
accurately reflect dependencies on other modules.
This requirement is met through the interaction
of the control program and kexnels resident in
each of the application preocessors which execute
one of six lists of modules upon zeceipt of the
real time interxupt. The list to be executed is
dependent upon a "frame" number passed to all
applications processors in a control wezrd
accompanying the interrupt. An interesting
problem arises in generating ome interrupt which
must be serviced by several VME-resident
processors in that all would respond with an
interrupt acknowledge cyele in response to the
one interrupting device. The interrupting device
f{in this case the control processeor) weuld have
to be tailored to complete a number of interrupt
acknowledge cycles exactly equal to the number of
interrupt handlers on the bus. There would alsc
be some adverse time skewing. To overcone these
problems, use was made of the Multiprocessor
Interrupt Reguest (MPIRQ*) line of the MVME-130
which permits the handling of IRQL* via a Zilog
8036 timer port set up for input, resulting in
the appearance of a local hoard interrupt {level
6) free of the VME handshake requirement. The
same part, configured for output, is used by the
intexrrupter to taggle IRQL*.

The other synchronization issue is that of
data coherency, a term used here to denote the
requirement that elements of a definitive set be
calculated in the same time frame. The term 1s
applicable in flight simulation to transformation
matrices, vectors, ete. In sequential
simulations, ccherency is assured whereas in
.concurrent processors, the user of a particulax
vector, for example, could access the complete

vector in the middle of an update by ancther
processor. Where coherency is vital, valmdlty
flags attached to the vectors are negated during
the update process and checked before access.

A similar problem is that of data currency,
in which there exists a mandatory seguence of
calculations being performed by multiple
processors. In this project,.a semaphore
mechanism was employed te prevent the usage of
stale data. Careful attention had to be paid to
idle times attributable to "egmputational
skew." £ was necessary in most cases to make
empirical ebservations of module execution times
and adjust module run orders accordingly.
Predictive methods would, of course, be more
desirable, but the use of a higher order language
coupled with the .pipelined 68020 makes the metkod
hard te come by.

For the actual exchange of data, two
potential methods were inherent in the chosen
architecture. The £irst of these resulted from.
the accessibility of VME bus to all memory, which
readily supported a tightly coupled shared memory
approach. In fact, with each processor having
dedicated VMX access to a subset of this total
memory, parameters could be updated without the
incurrence of VME bus penalties. Using

processors would read via VME bus, however. In

127,

time interrupt.

this scheme, then, each time a processor reguired
a parameter, it would have to access VME with a
possible arbitration cycle involved. To aveid.
the adverse impacts of this method on module
execution times, especially as the nomber of
processors increased, a message passing mechanism
was employed. All regunired transfers were
accomplished by the control processor dur;ng the
interval between the completion of all
applications software and the end of the time.
frame as signaled by the occurrence of the :ea%_nf
ARpplications processors flagged
the control processor upon completion eof all
required modules. Although twe global bus
accesses are required for each parameter, this
method offers the advantages of efficient block
moves and elimination of multiple VME accesses by
each processox. With two applications

ProQcessors, the requlred transfers consumed 1.87 -
milliseconds. This time increased to 2.20 ms for
three processors and 2.9 ms for four processors.
Although no other processors were available to
enlarge this data base, it would seem that for
this particula¥ application, where 13 ms time
frames must be honored, seven or eight processors
would be a pract;cahle llmlt

PARTITIONING TOOL

obviously, with the static partitioning
scheme employed, a determinaticn has te be made
of the parameters which must be passed between
processors. To provide automation of this
function as well as the identification of
critical timing relationships, a VAX-resident
off-1line partltlonlng tool was develéped as part
of this project. The tool was designed to- result
in a rather course grained parallelism in which
fhe basic unit was a functional medule of the)
operational flight trainer software. A major =~
exception to the rule was the consigning of =
linear function interpolations to separate
processors. For the architecture adopted, it was
felt that finer grained parallelism would have
overwhelmed the data transfer capabilities. _Qnce
the modules are identified and coded, the
remaining tasks are to identify the imput/output _
parameters and establish mandatory timing
relationships.

The partitioning tool algorikthm uses the VAX
11/780 Fortran cobpilez's cross referéence
information to automate the determination of
module input and cuiput parameters. To avold
oversights by the algorithm, it is first
necessary to convert subroutines to in-line
programming. The result of this step is a table
ligting each simulation parameter and the modules
referencing it together with flags denoting 1nput
or output. The algorithm then determines the
source of each module's input parameters and, —
conversely, all destinations of output -
parameters. The physical locations of parameters
were ordered for efficient block tramsfers
between processcrs. This ordering was
accomplished using Fortran Common statements.

Establishment of timing relationships
invelves the examination of every pair of modules
in the system with a data interface. Timing
requirements are identified in terms of time
frames (33 ms periods for this 30 iteration per
sacond simulation) with the mogt critical data

g

element timing requirement determining the
necessary relationship between the two modules.
For example, if it is sufficient to pass one data
element from Module A to Module B every tenth
frame while another must be passed every frame,
both are then transferred every frame. This
analysis is unavoidabkle in training system
applications if the fidelity of the simnlation is
to be maintained.

These tasks having been accomplished,
modules must be assigned teo the available
applications processors in a manner which will
not exceed the local memory capacity of any
processer, will allow all processors to complete
execution within the frame time, and accommodate
the identified critical data timing
relationships. The optimization of module
assignments is an iterative process of agsigning
and reassigning until agceptable results aze
achieved, ' To facilitate this process, a program
was written to grade the anticipated performance
of a given partitioning scheme. This program
generates a parameter and time interrelationship
list for each module. which serves as feedback for
determining more optimal assignments.

SYSTEM PERFORMANCE

It was found -in the performance of this
project that the computer system constructed did
not execute the simulation software as guickly as
originally estimated. Estimates had been based
on articles in technical periodicals suggesting
processing powar of at least 1.5 million
instructions per second (MIFPS) for the 68020. 1In
the design process, proper consideration was not
given to all the factors which go into the
derivation of such figures.: Actuwal performance
measurements in the envirenment of this
particular project point to an execution rate of
approximately .75 MIPS. The most significant
factor in this discrepancy is,. perhaps, the use
in this project of dymamic ram boards which
introduced memory access wait states of 2 for VMX
{1 clock cycle) and 4 for VME (2 clock cycles).
Another contributing factor was the instruction
mix which is rich in floating point operations
for which the on-board Motorola 68881 was used.
As an aggregate, neglecting end-of-frame
interprocessor communications, the computing
system was able to execute the simulation program
in 62 ms, 38 ms, 26 ms, and 23 ms for one, two,
three, and four processors, respectively.
Computing power inereased, then, from .75 MIPS
for one processor to 1.22 for twe, 1.79 for
three, and 2.0 for four. The failure to realize
a lineaxr function is attributable to the coarse -
grain parallelism preventing perfect load
balancing, the largest module consuming 23 ms.

It is felt that with more work, this module and
others could be subdivided to achieve somewhat
better results. Of more significance are those
figures which include interprocessor
communications times. and, as such, represent
usable computing power. This real power

increased from .75 MIPS for .one processor to 1.186

for two, 1.65 for three, and 1.8 for three
processors. These resulis are plotted in
Figure 2.

The static partitioning/scheduling scheme
was designed primarily to minimize associated

overhead so that real time frame boundaries would
not be exceeded. Major drawbacks are the lack of
flexibility in moving modules ameonyg processors
and the sheer effoxt involved in producing a
working load. BAnother problem is the requirement
to maintain two separate source programs, one
representing the actual software and the other,
with subroutines brought in-line, used for
identification of module inputs and outputs. It
can be seen that a major modification to a
fielded training system.could result in a very
significant repartitioning effort: It would be
very desirable in developing and debugging such a
modification to have the flexibility to reassign
modules on—-line and be provided performance
figures by the operating system. The
implementation of such a capability would be very
difficult_in a system employing message passing
for data sharing. In a system amploying shared
memory. for this purpose, however, -implementation .
prablems ‘should be manageable since reagsignment
of modules would not affect the physical

- locations of common variables.

2,2

2.0

1.8 EXCLUSIVE OF
INTER-PROCESSOR

15 ~ COMMUNICATIONS

1.4

COMPUTING 1-2—
POWER

MIPS _ ‘[NCLUSIVE OF
{MIPS) 1.0 INTER-PROCESSOR
COMMUNICATIONS
0.8
0.5
0.4
0.2-
0 T T T T
| 1 2 3 4

NUMBER OF APPLICATIONS PROCESSORS

FIGURE 2. AGGREGATE COMPUTING POWER,

AN ALTERNATIVE TQO STATIC PARTITTONING

A mere desirable method of assigning modules

© to processors in the simnlation environment would

be on the basis of availability. Here, as a

- Processor becomes available, it executes the next

task in the quewe provided that all pregedence
conditions have been satisfied.
would be the execution of tasks which must
precede the queue task. This method can be
implemented by having all processors execute out
of a single lvad in common memory which would .
alse contain all data. Obviously, results would
be completely processor-independent. Provision
te all processors of fast instruction caches
could. reduce bus traffiec to acceptable levels.
Data caches could also contzibute to this goal,
but maintaining currency in a multiprocessor
environment could be tricky. With the
availability of very inexpensive memoxy, it
becomes possible to provide a complete copy of
all software to each processor's lacal REMOTY .

128.

-

Such conditions o

Thus, execution of accepted tasks would nhot put
any load on common memoxy busses which could be
kept free for data accesses. In order to avoid
loss of data as frame-to-frame execution of
modules takes place on different processors, it
would be necessary to COMMON all local variables.
Retention of local data could also be assured by

complete context switching, but in this real-timeb

environment, the overhead penalties incurred
conld probably not be tolerated.

AS in other real-time envizonments, downtime
in training systems is very disruptive and needs
to be kept o an absolute minimum. The dynamic
task alleocation scheme discussed offers the added
advantage of inherent fault tolerance. After
executing all simulation tasks, each processor
could then perform confidence checks, the failure
of which would be conveyed to the comtrol . __
processor which would take appropriate action.
The other result of the failure would be that neo
further tasks would be accepted from the queue.
Provided spare processing power is available, the
failure would be transparent. A mechanism would
have to be incorporated into the system for an
"orderly transition of powexr" should the control
processor fail.

SUMMARY

This project truly demenstrated the

feasibility of using parallel microprocessors to

satisfy the computational requirements of cemplex
real-time training systems. The hardware
architecture and software partitioning algorithms
employed, while not optimal for achieving such
advantages as flexibility in meodule
reassignments, computing power expandability, and
fault tolerance, did permit studies of these
issues, thereby bringing into focus
characteristics which should be possessed by any
such system used in government training systems.

RECOMMENDATION

Perhaps the most important characteristic of
a parallel microcomputer system used for
simulation is its degree of. expandability. There
ars numercus examples of undersizing of computer
systems in simulator desligns. Easily expanded
systems would eliminate such problems as well as
reduce the impact of major modifications to
fielded systems. Keys to such expandability are
the avoidance in the architectural design of
bottlenecks such as shared-memory busses, the
ability of the control algerithm to accommodate
reassignments of software modules, and the
inherent granuiarity of the simulaticn software.
The achlevable granularity is actually wvery
dependent on the interprocessor communications
capacity of the system since this requirement
increases as modules are divided into ever
asmaller pieces.
lend itself to very fine grain parallelism
(although certain aspects of visual simulation
and digital radar landmass simulatiom might).
Consequently, it is doubtful that massively
parallel architectures would need to be employed.
With this premise, the need to avoid bottlenacks
seems to faver architectures employing dedicated
communications paths between all palrs of
microprocessors. Each microprocessor would
operate out of local memory. The optimum

In reality, simalation does not

129,

_Unlversity of Central Flerida.

operating system would facilitate module
reassignments, possibly. dynamically, and would
incorporate fault tolerant features. This latter
reguirement would probably dictate a need for
complete. coples of all modules in each)
microcomputer's memory. Real-time I/0 could be
asslgned to cne or more processors witich would
communicate with applicable applications
processers. Employing such an ideal machine in
military training systems simulators would result
in the realization of lLower life-cycle costs.

ABOUT THE AUTHORS

MR. WILLIAM J. ROWAN is an Electroniecs)
Eng;neer with the Naval Training Systems Cehterfs
Research and Development Department. He is
currently assigned to the Systems and Computer
Technology Division working on the application of
new computer atchitectures to training systems'
computational reguirements. He hLolds a B.S.
degree in Engineering Science from Hofstra
University. He has previously held engineering
positions with the Boeing Company, Singer's Link
Division and the Harris corporation.

MR. DAVID M. KOTICK is an Electxonics Des;qn
Engineer with the Systems and Computer Techndlogy
bivision of the Naval Training Systems Center.
Eis principal responsibilities include the
integration, evaluaticn and design of
micreoprocessor-based board-ievel products.
has received both a B.S5.E. and M.S.E. in
Electrical Engineexring from the Unlver51ty of
Central Florida. He has worked in the area of
real-time multi-microprocessing at NTSC siuce
1983. Mz. Kotick is a member of the IEEE a
IEEE Cdiiputer Society..

Her

MR. MARX W. LAYTON is currently
participating in the Undergraduate Air Force
Pilot Training Program. Prior to his select;on
for this program, he weorked as a Computer
Scientist with the Systems and Computer
Techpology Division of the Waval Training Systems
Center. He has applied operating syatems and
graphics expertise to the area of’ microcomputer
simulation design. Ee received his B.S. in___ .. |
Computer Science from the University of Central T
Florida in 1933. -

MS. CARIDAD E. RUIZ is a Computer Scientist

"with the Systems and Computer Technology Division

of the Naval Training Systems Centex. 5She has
applied graphics expertise to the area of
nicrocomputer simulation design. She received
her B.S. in Computer Science from the University
of Central Fleorida in 1984 apd is currently.
pursuing her M.S. in computer Engineering
specializing in Artificial Intelligence.

MR. CHARLES N. POPE is an Electronics _
Engineer currently workirpg in the field of visual
techiology research at the Naval Training Systems
Center. He received the B.S.E. degree with a =~
major in Electrical Engineering from the
He has worked
extens;vely with the design of mlcrocomputer~
based simulators, particularly in the area of
software partitioning tool development.

