Ll T

2 ROTORCRAFT FLIGHT SIMULATION
~ INTHE
PARALLEL MICROPROCESSOR ENVIRONMENT

Jeff McFarland*
Don Monroe*
Cindy Maher*

Engineering and Training Simulation Department
MecDonnell Douglas Helicopter Company
5000 East McDowell Road
Mesa, Arizona 85205

ABSTRACT

Our multiple microprocessor approach to application processing provides an open architecture
that permits computing resources to be expanded and customized to meet simulator/training require-
ments Migrating computing resources from the minicomputer to the microprocessor environment
results in an enormous savings in simulation costs. These savings are realized in the initial hardware
investment and again in the reduction of facility requirements, including pewer, space and cooling.
This was particularly evident in our parallel microproeessor implementation of the rotoreraft flight
model at McDonnell Douglas Helicopter Company, Mesa, AZ, for engineering simulation.

Our rotorcraft simulation was migrated from the GOULD 32/9780 to the Motorola 68020 miecro-
processor environment. The required frame rate exceeded-the capabilities of a single microprocessor. ~
Therefore, the rotorcraft simulation, previously running in serial, was divided into three small models
running in parallel on three microprocessors: the main rotor/tail rotor and eguations of motion, the
stabilization systems, and the engines. The VME bus was selected as the backplane for the system
because of high speed data transfer capabilities of this bus and the large selection of devices available
for VME. . The Motorola 68020 CPU was selected as the target microprocessor. Development was done
on the VAX/VMS systemn using FORTRAN 77 and C cross-compilers. for the MC68020 target.
Although it was initially uncertain whether the flight model could remain stable running on parallel
processors, the parallel portage resulted in insignificant variance from. the serial model. Timing
results were easily within the required frame rate. This paper discusses the advantages of the micro-
processor approach over the minicomputer approach for our rotoreraft flight simulation, the migration

- of the serial flight model to parallel pracessing, and how this approach can further enhance rotoreraft
flight simulation.

ADVANTAGES OF MICROPROCESSOR

OVERMINICOMPUTER

The migration {rom the minicomputer to the miero-
processor at MDHC was driven by the capital cost per
MIP advantage of the microprocessor and the
modularity of the microprocessor, The development of
denser and faster microprocessors and the introduction
of & wider range of support toels has complemented the
migration to microprocessor at MDHC and provides a
bright outlock for our future systems.

Cost Per MIP

The cost advantage of the microprocessor over the
minicomputer was defined by looking at three areas:
hardware capital invesiment, overhead associated with
the equipment investment, and software tools capital
investment.

The hardware investment ' advantage was
determined by studies done at MDHC comparing the
processing speed, memory capacity, and hardware
investment betwsen the mainframe and the micro-

*Member Technical Staff
#*MDHCETSD 5-year plan

136,

. processor,

These studies concluded that “when
comparing mainframe and microprocessor costs along a
comrnon metric of ‘millions of instructions per second’
(MIPS), the ratio of costs is in the neighborhood of 16:1
in favor of the microproesssor.”**

The microprocessor holds an even larger advantage
in reduced overhead. A fully loaded 21 slot VME
chassis housing 16 CPU boards and 5 peripheral boards
(approximately the equivalent computing power as the
mainframe) has a power requirement of only 960 watts
and a space reguirement of a mere 2.25 cubic feet of
simulation real estate. This is a power advantapge of
100:1 and a real estate advantage of 80:1 in favor of the
microprocessing system.

The cost advantage of software development tools
for the microprocessor varied based on the development
machine. Microprocessor software development tools
were available for many different software environ-
ments - VAX/VMS, SUN/UNIX, PC/MS-DOS, ete. For

- a large development effort, the cost of software tools for

either system was competitive. For small projects, the
cost was much less for the microprocessor tools because
they could be housed in a smaller development environ-
ment, Over the past two years, a wide selection of
support tools have been introduced to the market.

MDHC was able to customize our microprocessor
development environment to our requirements by
selecting tools from a variety of sources and housing
these tools on our centralized development systems.
Although the cost of the software tools for the micro-
processor and the cost of software tools for the

" mainframe are competitive, the flexibility of the micro-

processor software tools provided the advantage in this
area.

Modularity

Modularity plays a key role in the design and
development of training and simulation devices at

. MDHC. The modular cockpit has heen a much praised

approach. A large part of the modular cockpit has been
achievable through the use of microprocessors.. The
microprocessor provided modularity of the computing
hardware by allowing hardware to be_dedicated to an
application without having to archive a large and
scarce resource. MDHC has seen the advantage of this
approach when reconfiguring the simulation arena for
simulations of unigue rotoreraft.

Future Development

The ‘microprocessor industry is producing faster
and denser microprocessors. In the two years MDHC
ETSD has been involved with the Motorola micro-
processors, the speed of the 68020/68881 VME CPU
board has doubled.- Thig board is expected to double
again with the introduction of the MC88030/68882.
Also, there are many produets being released this year
that boost 2-10 MIP speeds. Cross-compilers and cross-
debuggers are now available for most languages
including Ada. The only negative in the microprocessor
market has been the lag of guality software tools by
6-12 months from the introduction of the
microprocessor.

MDHC’S EXPERIMENTAL PROJECT

A major obstacle in the migration from the main-
frame to the miecroprocessor for the ETSD simulation
was the portage of the MDHC rotorcraft flight model.
The flight model was the largest of several tasks
residing on a GOULD 32/9780 minicomputer. During
rontime, the IPU (one of the two GOULD 32/9780
processors) was dedicated solely to the flight model.
The rotorcraft handling qualities required by the
simulation dictated that the rotoreraft flight model
complete a frame 60 times a second. - Our design goal
was to move the MDHC rotorerafi flight model from the
GOULD to the microprocessing environment with no
degradation in performance. The success of this design
goal would reduce the cost of processing hardware for
the rotorcraft flight mode! by a facter of 16. Also, it
would provide proof of concept for the migration from
miniecomputer to microprocessor in sirmulation.

Parallel iImplementation

A MDHC study determined that the current
rotorcraft flight model would run at a 38 Hz frame rate
on a single Motorola 68020/68881 microprocessor.
Therefore, the 60 Hz frame rate requirement dictated
the use of parallel processing, Parallel processing
allows a2 modular system to be expanded to meet the

computational . requirements of the project. - The
modularity of microprocessors has made parallel
processing aecessible,

-Moving to a parallel processing environment
involved porting the distribution of the flight model
into multiple CPUs, hardware integration of the CPUs
info the system, software integration with the cross-

compiler and target download, and developing a real-

time operating system to handle system calls,
synchronize tasks and monitor communications
between processors.

The Flight Model o

A significant challenge in porting the MDIC flight
model to the microprocessor environment was the dis-
tribution of the model across multiple processcrs. The

MDEC flight model for the AH-64A is a serial rotor-

map model developed in the early 1980s for use by the

~ Research and Engineering division at MDHC. This

moedel is integral to several unique systems throughout
the company for test and evaluation of the AH-G4A
flight performance, subsystem interaction evaluation,
simulation, and training. The portage to a parallel
environment was in support of simulation and training.

‘The rotorcraft flight model consists of components
modeling the airframe, rotor systems, the engines and
the control systems. The model’s main components and
their associated dynamic inputs and outputs are shown
in Table 1. These moduies are listed in their calling
order within the serial model,

The dynamic I/0 table illustrates that the flight
model is heavily tied into a serial structure. Many of
the modules listed in Table 1 -required the. outputs of
preceding medules gg inputs. Initially, we . were
concerned with modules receiving a combination of past
and current data in the same frame. We could maintain
a serial structure within each processer which
alleviated some concerns about the stability of the
model. Intuitively, we felt that if the model could run
fast enough, any remaining stability problems would
dissolve. We were able to run at 60 Hz with no apparent
stability problems.

Parallel Distribution

Timing studies indicated that the flight model
would need to be distributed across three processors to
meet the 60 Hz frame rate requirement. Asa side note,
due to a system I/O requirement of 2 msecs per fra.me,

the flight model actually needed to run at over 70 Hz,

The module distribution displayed in Table 2 describes
the final distribution of the parallel flight model. In

this configuration, the flight model, executed at 80 Hz,

‘When executed with a 60 Hz system syne, 4.3 msecs of
dead time are available for system YO,

Processor 1. Top consideration was given to the
equations of motion meodule and integration module
since their outputs drive the simulator, The Main Rotor
module, Tail Rotor module, and Vertical Stabilizer
module have the largest impact on the Equations of
Motion medule. We wanted to maintain the serial
structure of the serial model with these modules and

also insure they ran within the same freme, Therefore, -

these modules were grouped on processor 1.

137,

T

TABLE 1 Flight Model Components Dynamic I/Q - Listed in Order of Serial Calling Sequence

Dypamic Inputs Module Dynamic Outputs
Rates, Velocities, Main Rotor Main Rotor ‘1 Forees and Moments, Main Rotor Wake:
Bwashplate Angles, Engina Torque Skew Angle and Downwash ‘Torque
Reguired
Rates, Velocities, Main Rotor Wake Fuselage Forces and Moments
Skew Angle and Downwash
1I‘!Eai;e.i,&*,, Velocities, Tail Rotor Swashplate | Vertical Stabilizer Forces and Moments
ngle
Rates, Velocities, Tail Rotor Swashplate |Tail Rotor Forces and Moments, Torque Required
Angle, Engine Torque
Rates, Velocities, Main Rotor Wake Horizontal Stabilator |Forces and Moments
Skew Angle and Downwash
Rates, Velocities, Ground Landing Gear |Farces and Moments .
Forces and Momerits Equations of Motion [Angular and Translational Accelerations
Main Rotor Torc%ue Req; Tail Rotor Engines. Engine Torgue
Torqlue Req, Collective Swashplate
Ang
Pilot’s Inputs, Rates, Velocities, Aircrafi | Control Laws Main Rotor Swashplate Angles, Tail Rotor
Attitude Swashplate Angle
Accelerations Integration Rates, Velocities, Euler Angles

Processor 3. Processor 3 was dedicated to the
engines. The engines were allotted their own processor
since their execution time was approximately equal to
the execution time of processorl. We were not
concerned with the stability of the engines since their
inputs arefairly static under normal flying conditions.

Processor 2. The grouping in Processor 2 was
derived by default. The parallel flight model executive

and all remaining modules were placed on Processor 2. -

The frame time of this grouping was close to the fra.me
time of the other two groupings.

System Integration: Hardware

The Motorola 20 MHz 68020/68881 VMEbus CPU
-board was chosen as the MDHC rotoreraft flight model

target environment. Of the high speed CPUs, the
MC68020/68881 was selected because of the availabil-
ity of VAX base cross-compilers, the department

familiarity with the microprocessor, and the
department familiarity with the VMEbus. .
Table 2 Parallel Flight Model
- Module Dlstrlbutmn
Processor1 Processor 2 Processor 3
Main Rotor Executive Control Engines

Tail Rotor Control Laws

Vertical Stahilizer Fuselage -

Equations of Motion | Horizontal Stabilator |.
Integration Landing Gear

The hardware integration of the multiple CPUs in
the VMEbus system involved jumper/switch configura- .
tion on the CPU board for the VMEbus memory map
address of the board and the VMEbus access priority
level. Qur hoards were 1M boards mapped into memory
for 32 bit addressing and 32 bit data words., Our beards
were configured as VMEbus slaves daisy chained
together at the same bus priority level. Peripherals
were added as additional boards in the system. The
MDHC - parallel processing rotorcraft flight. model

chassisis configured in Fig. 1.

Systems Integration: Sofiware

- Porting the application program to a micro-

-processing environment was essentially a port to the

microprocessor compiler, a scheme to downlead the

‘target microprocessor memory, and implementation of

the runtime operating system. Porting the application

‘program to a muliiprocessing environment involved

modifications for multitasking and muitiple processor
communication.

The Compiler o . . o e

The original MDHC rotoreraft flight model was
developed under VAX/VMS in VAX FORTRAN, The
Motorola 68020/68881 cross-compiler used by MDFHC

for the parallel processing flight model was the

Microtec FORTRAN 68X under VAX/VMS, ETSD was
among the first customers for the FORTRAN 68K and
the only customer using it for a floating point intensive
application. Microtec had a difficult time delivering an
acceptable product - particularly in support of the
68881 Math coprocessor. After ahout six menths, and
many revisions, most problems had been soived.

138,

SLOT 0: IRONICSSYSTEM CONTROLLER

SLOT 1. VMIVME HSD

SLOT2: loV6BCPU #1 - PFLYRT1

BLOT3: IoVEBCPU#2Z - PFLYRT2 B
SL.OT4: loVEBCPU#3 - PFLYRT3

SLOTS5: Yo VBRCPU #4 - DYNAMIC VARIABLE VIEW
SLOT 6: ETHERNET

SLOTT: EMSCPU4 - ETHERNET CONTROLLER
SLOT & ZICON A/D-D/A - FLIGHT CONTROLS /O
SLOT9: IRONICS 3201 CPU - IO CONTROLLER
SLOT 16-16. EMPTY

Fig. 1 MDHC Parallel Flight Model VMEbus
Configuration .

The compiler dictates the allowable extensions to a '

language. A highly portable program would contain no
extensions to the language. The “portability” of a
application is a significant issue. Two major portability
areas were addressed for the MDHC flight model
portage - from VAX FORTRAN to the Microtee
FORTRAN 68020 cross-compiler. The first was the

inability of Microtec FORTRAN to support local static .

variables. The flight model takes advantage of the fact
that on the VAX and on the SEL, local variables remain
static. - We created an equivalence to loeal static
variables by using a global data block with access to
only the local module. A VAX/VMS resident utility was
developed to search for the local variables required to
remain static and to group them into one common block
for each module. This utility greatly reduced the
difficulty and chance for errors in this port. The second
issue was with uninitialized data. The 63020 runtime
operating system does not clear all of the memory that
has been allocated for the application. before the
program is downloaded - primarily because the
operating system is downloaded with the application.
This causes a discrepancy with the way VAX/VMS
executes a program. To alleviate this discrepancy we
call a FORTRAN subroutine that initializes all data at
the start of the application.

As a final word about the compiler portage, the
decision to port the original flight model to Ada was
rescinded - after a MDHC study found the ETSD
standard Ada compiler to be four (4) times slower than
the ETSD standard FORTRAN compiler for the
-MC68020/68881. As Ada becomes faster through
maturity, the flight model portage to Ada will become
feasible.

Target Download
At MDHC, the target load of the application was

done using the Ethernet bus between the DEC VAX

CLUSTER and the VME chassis. The VME Ethernet
control was customized to our requirements bhased on
the TCP command protocol. The VME : Ethernet
controller acecepted Motorola 8 Records. Basically, each
Srecord contained an address and a data segment.

- interrupt and costs only 1bus cyele (write).

During a valid communicaiion, the address was
modified fo a VME 32-bit address within the target
board’s memory and the data segment was written to
that address. The last 8 record contained the. start
address of the application. Witk a little bit of hand-
shaking between the Ethernet controller and the CPU
monitor, the application woild autoboot upon download
completion.

Runtime Operating System

The operating system is a single tasking environ-
ment whose duties include: terminal IO, system clocl,
task exit, and memory management, The operating
system was linked {¢ each application as a runtime
environment. The CPU monitor (or MDHC ETSD
Ethernet Downloader) controlled the start of the
application. Upon the start of the application, the
operating system initialized hardware and defined the
memory segments. During the run the runtime
environment handled any system calls as direct calls
from the application. Finally, upon normal completion,
the operating system halied the CPU. :

The multiple processor issues of communications
and tasking were handled by the application. Mailbox
interrupts, polled /O, and shared memory were the
three -methods of processor communication. Tasking
was hardeoded as discussed in the parallel flight model
module distribution.

Communications

Mailbox interrupts are a highly useful feature on
most 68020 CPU boards on the VMEbus. A hardware
interrupt is generated when a preassigned address
{mailbox) is written to from the VMEbus. This is a local
Upon
interrupt, the CPU can read the mail ~ learning sender
and message. In our parallel processing flight model,
the synchronization of all processors is maintained
using mailbox interrupts, = Some of the functions
controlled by mailbox interrupt were GO, HALT,
INITIALIZE, TRIM, RUN, RESET, and ABORT.

Shared memory can be accessed through the
VMEbus or through the CPU local bus. A data
structure of all data common to the processors was
located in VMEbus memory for access by all processors.
To meet speed requirements it was important to keep
this data structure small to minimize bus access cycles. -

Polied I/O of shared memory was another method used

to communicate between processors. To minimize
possible bus clashes, we never polled on a VMEbus
memory location, Qur rule was to write to VME
memory and read from local memory.

Data was communicated to the world outside of the
VMBE backplane through a HSD bus. The HSD busis a
parallel high speed data bus. This bus performs DMA
transfers between processing environments.

Debugging

The final phase in the software port was debugging
in-the microprocessor environment., The CPU monitor.

139,

= mrarm——

- provided memory view, register view, start instruction,

breakpoints, an assembler, and a disassembler. During
the rotorcraft flight model portage to the micro-
processor, MDHC developed: a FORTRAN common
block view routine that allows the display and modifica-
tion of any common varieble during runtime., This
routine is housed on a separate CPU in the VME
chassis and has proven to be an invaluable debug tool.
At the time of procurement for the MDHC micro-
processor FORTRAN cross-compiler, a source level
debugger was not available. MDHC has since imple-
mented a source level debugger for Ada applications but
has no plans for a FORTRAN debugger.

Results

The parallel processing rotorcraft flight model
maintained the 60 Hz frame rate with 4.3 msecs per
frame of dead time for system overhead, MDHC is
currently invelved in a qualitative evaluation of the
parallel flight model. Preliminary testing in the batch
mode compared values between the serial model and
the parallel model and the results looked very good.
Also, already several hours of flight time has been
logged on the parallel flight model. Pilot opinion has

been optimistic. The study should be concluded by

late 1988.

SIGNIFICANT ACCOMPLISHMENTS
AND FINDINGS

The MDHC rotorcraft flight model portage to the
multiprocessing microprocessor environment provided
significant accomplishments and findings for training
and simulation. There is parallel processing eapability
in rotorcraft flight modeling, even in an originally non-
parallel -design, that was used to our advantage to
reduce the “cost per MIP” of a real-time rotoreraft flight
model. This pertage has proved the validity of the
migration from minicomputer to microprocessor. Flight

model development of a blade-element model in the
multiprocessing microprocessor environment is feasible
using similar hardware and methodology discussed in
this paper. Hardware performance is advancing at a
rapid rate. For modeling work, the major hardware
performance improvement to come will be in the
performance of floating point intensive applications.
The parallel flight model aiso has made available the

© evaluation and implementation of the new high speed

multiprocessing hardware, such as the transputer and

other array processors. Thishardware can be evaluated

and integrated upon introduction,
ABOUT THE AUTHORS

Mr. McFarland holds a Bachelor of Science in

- Mechanical Engineering and is currently pursuing a

Master of Science degree. Mr. McFarland has 5 years
experience in realtime system software — including
system communications and electro-mechanical
controls. Since joining McDonnell Douglas Helicopter
Company in 1985, his primary responsibilities have _

- been -with the M68020/68881 processor and the

VMEDbus environment,

Ms. Maher is currently finishing an MS degree in

- Mathematies and Computer Science. Since joining

MDHC in the spring of 1985, she has been a integral
member of the Flight Dynamics group in the Training
and Simulation department. Her main contributions
have been in the areas of control laws and flight model
development and implementation.

Mr. Monroe holds a BS in Aeronautical Engi-
neering and has 18 years experience in the aerospace
industry, mainly in aerodynamic performance and
preliminary design. He joined the MDEC Simulation
depariment one year ago, and has worked largely on the
implementation of the parallel flight model.

140.

