FEASIBILITY OF A GRAPHICAL IESIGN FCR

AN ADA SOFTWAHE DEVELOPMENT

Pamela S. Woodard
Naval Training Systems Center
12350 Research Parkway
Orlando, FL. 328263224

William F, Parrish, Jr.
Naval Training Systems Center

12350

Research Parkway
Orlardo, FI. 32826-3224

. ABSTRACT

The use of Ada for twalning system sofiware requires that a greater emphasis be placed

cn the design phase of a software development.
pxnﬂdeameanstodmﬂbeavarietyofcamamtsmmhaspackagea,
the Intercamection information between all companents.
iz a pramising
1t ean be quickly and correctly understood by programners,
This paper describes the benefits of a graphical
methodologles that are begimming to be used to design training
Analysis and Design Technique (SAIT),

. gemerics,
graphical design methodology
‘document an Ada design | so that
project englneers and program
design amd presents lomr
systems software. Structured
Structured fAnalysis and Design (YLSAD),
Applications (PAMELA), -
disadvantages of the
presented. Factors such as ease of
support are glven prime consideration.

INTRODUCTION

and a means to specify

managers.

The Naval Training = Systems Center -has
recently begun to speclfy that Ada will be used
forr all training system software develcpment.
AMong with the introduction of Ada, emphasis is
veing placed an new software erngineering tools
and techmiques. Of considerable Interest are
those tools ard techmiques which make extensive
use of graphies and can be used for the total
iife cycle. Emphasis Is also being placed on
techniques which can be used to document reusable
software.

Iow cost graphics hardkare and sof tware
along with recently developed design tectmiques
affard 7new opporomnities for deslgning and,
supporting software. In the’ past - sof tware
designs have been - documented primarily using
text. This paper describes the superiority of
graphics over ftext for conveying design
Information.

. The purpose of this paper 1s fo increase
training systems software developers awareness of
these tools aml tectmiques. Greater use of these
methodologies will stimilate the development of
more and better automated tocls. Evaluations
presented should ald software developers in
selecting a methodology appropriate for thelr
particular development.

Tutorial

presentatins of the various

methodologles are not intended.” A camrehensive

deseription - of the various methodologles 1s
beyond the scope of this paper. Texthoocks: and/or
eourses are available for . all of the
methodologies deserdbed. A brief description of
each method is provided In order to make the
comparison of the tectmiques understandable.

The representation of an - Ada desdgn must

procedures, tasks and
A

techmique which may offer an effective means to

Yourdon—TDeMarco

Process Abstraction Method for FEmbedded Large

and Object - Ordented Dezign (0OD) are discussed.
various techniques with respect %o total 1llife cycle support are
learning, ease of use,
Evaluation results are presented In tabular form.

Advantages and

USE OF GRAPHICS IN SOFTWARE DESIGH

People
graphles. We use pictures to present and explaln
all kinds of information., Charts and graphs have
become famillar and help us to assimllate and
wderstand the data In business presentations,
newspapers, and textbooks. In an article which
surveyed the -~cmrent use of -graphics In

George Raeder states that 1t Is

relate easily to. pletures and

programing,
- Moommonly acknowledged that the bawen mind is

strongly visually orlented and that people
acquire . information at a significantly higher
rate by discovering graphical relationships in
complex pletures than by reading text™ (1).

Advantages of Graphical Fepresentations

Raeder describes several reasons wWhy
pichmeshavemadvmtageovertextinprovidj:g

 Information clearly and quickly.

35.

Text is a sequentlal mxde of expression. We
must read or scan through preliminary Informatlon
4n order to find a particular description or
explanation. FPictures offer us randam access to
data. Q.meyescmrapidlymvetoarwareaofa
drawing -and locate requlred detalls. Important
featames can be Thighlighted fo
attention quickly.

Text 1s a one dimensional medium consisting
of words. - Pictures provide three dimensions for
the description. of information. FPhyslcal
properties such as shape, ecolor, anmd
glze can be used to emrich the presentation.
Pecause plebures can provide data with more
variety, they can present the same- data more
concisely and compactly than text.

Pictures generally transfer data faster than -

text. The data can be sccessed and understood

focus o -

quicker and with
description.

Pictures are often used to present. abstract
ideas 1In ways that make them simpler for people
to copreherd. When trying to wderstand an
abstract concept, many people come up with a
mental image which enables them to understand the
abstraction. A plicture can present an already

Imge to a reader and speed uwp
understanding of new. or complex ldeas.

Visual Programming

The area of wvisual has recelved
an Increasing - amount of attention frem
researchers In recent years. Visual programmirg
is the use of graphics to dlisplay and/or interact
with software and 1ts associated documentatlion.

less effort than a textual _

- funetlional

. SofTech, Inc.

Grafton and Ichikawa identify three related areas .

vhich comrise visual programming: —software
views, graphical programming and animation (2).

Graphies techniques can be used In many ways

© graphical technliques as a part of CASE (Computer

Alded Soffware Engineering) tools.
STROCTURED ANALYSIS AND DESIGN

A varlety of struchired software design
methodologies were developed in- the 1970's as
sof tware projects became increasingly complex and
new tools were needed to deal with this
complexity. Methodelogies Dbased on top—down,
decomposition are still the most
widely used teclmiques today. Two of the best
ket of these methodologles are the Structured
Analysis and Deslgn Technique (SADT) from
.(3,4) and the Yourdon—DeMarco
Structured Design methodology.

Structured Analysis and Design Technigue (SADT)

SADT is based on the premise that any amount
of complexity can be understood if it 1is

. presented as smller pieces which together make

to represent different views of software which -

can and present a software system from
different viewpolnts for the system designer,
programmer, —mEnager, user, and maintalner,
Graphics allow the system to be portrayed using
symbols, lecons, arrows, and other comectors in a
structured format. .

Graphical - programming offers a new approach
to the creatlon of programs. The notlon is that
a programmer would create a software
representation by the manipulation of symbols and
lcons, 'The symbols would then be translated into
Ada.

In the area of animation, researchers are

using graphics to offer the ability to observe
the control and data flow of an algorithm as it
execules. This gives a programmer the capabllity
to quickly and easily understand the execution of
an algoritm and clarify its performance
c¢haracteristies.

This paper will concentrate on the use of
graphical tecmiques to portray software views,
particularly for Ada software systems.

CGraphical Software Views

Graptiics have been used for years In the
caputer programuing field. One of the earliest
arxl best known graphical techniques for software
design is the [lowchart. Flowcharts were
criginally developed
p and offer a good method for the
depletion of falrly slmple control structures.

Current higher level, stmctured languages
bave developed to the polnt where flowcharts are
no Ionzer sufficient to provide a good view of a
software system. Camplicated data struetures and
data types, more complex control structures and
concepts such-as packages, ‘generic procedures,
and concurrent tasks carmot be described using
flowcharts. More
techniques have been developed - for higher level
languages - and currently the adoptlon of the Ada
language is pushing the development of automated

for - asserbly language-

. sophisticated graphies

SADT Graphle Representation

the vhole. The basic maxim of SADF 1s that
everything must be broken into 6 or fewer pieces.
The technlque requires that the user begin by
looking at the topmost level of a system.. This
level is then broken down Into two to six pleces
of = subject matter. The SAIT maxim I1s them
applied to each of these pleces of the system,
and the process contimies recursiveiy untii ail
lowest level pleces can be ocnpletely understood
wlth no further decamposition.

The oufput of SADT Is a hilerarchically
orgarntized structure of diagrams which is cailed a

Each diagram portrays a 1imited area
of the total system.

'Jile SADI‘_ D7 gt'a;ﬂ'li- cal design notation uses &

two
* hasie components — boxes and arrows. Each of the

- decamposition is expressed within a box.

: descrdibe Dboth data amd activities.

36.

pieces of ©subject matter. from the SADT
The
fourr sides of the box are always used to
represent input, coitrol, cubput, and mechanism,
The pleces of Informaticn within each box are
related and comected by arrows. The arrows
camect the output of ¢ne box to the Irput or
control of another box.

The same graphic notation is used to
‘In an

activity model, the conbtrol arrows represent the

dominant constraints on the system and determine

when activities take place. In a data model, the
input arrows represent the dominant constraints
for a data box. An abstract SADT diagram for an
actlivity model is shown in Figire 1.

The SADT diagramsuse a coding s-c_l'm-leto

label arrows called ICOM codes. An ICOM coxde |

begins with the letter I, ¢, 0, or M (standing
for imput, econtrol, . cutput, or mechanism)
followed by an Integer mmbered fraom left to
right or top to bottam. The extermal, boundary
arrows of a dlagram are labeled with ICOM codes
vhich will match the corresponding arrows on . the
corresponding parent box. Arrows can branch or
Join to display distribution. Subdivision Is
represcnted by arrows for bundle or spread. Two
way Interfaces are illustrated using dots abowe
or helow the arrowheads.

e [TTTEANRE DT T

R A L

—\

merm)

B4

3 aﬁ—#

M1

Figure 1. Abstract SADT Diagram

The graphic representation of SADT can be
used with any language. There are no graphic
structures which support particular features of
the Ada language. SADT Is used primarily as a
requirements definitlon methodology and is often
interfaced to otber software design methodologies
to develop the actual detalled system design. AE

present SADT Is less effectively used for actual:

detalled design of software systems. This may
change - as automated support tools are developed.
Both SofTech and Mitre are developing graphic
tools 1linking SADT with Ada packages for life
eycle software development.,

Yourdon-DeMarco Structured Analysis and Design

The basle concepts of structured design were

autlined dginally in.an artiele - by Stevens,
Myers and Constantine in 1974 for the IBM Systems
Journal. Further developments and refinements

have beenn made by a mmber. of contributors.

Including Yowdon, DeMarco and Jackson., The
following. discussion of the Yourdon—DeMarco
structured system desipn methodology is based on
material found In texts by DeMarco (5) amd
Page~Jenes (6).

The papose of strucbhured analysis and
design 1s to develop a system through
partitioning of the problem into modules which
are then organized Into hlerarchies. The
methodology conslsts of @ structhured analysis
applied during the analysis phase of a software
project and shructured design techniques used
during the detalled deslgn of a software system.

Yourdon-DeMarco Graphic Representation

The YourdorDeMarco structhured design
methodology results din two graphic

‘representations of a system — data flow diagrams

and structure charts.

During the structured analysis phase the
system is partitioned into data and processes.

The data flow dlagram, or bubble chart, 1Is an
output of this phese and 1is the graphle
representation of this partitioning. The data
flow dlagram portrays the system as a nebtwork and
Is camposed of four basic graphic elements called
the data flow, the process or transform, the data
store and . the terminator or sowreefsink. An

_abstract data flow diagram is shown In Figure 2,

- dataflow 2

data store 1
_— process

1

dataflow 4
dataflow

| SCURCE
' ataflow 3
/ process
process 3
2)

Figure 2. Abstract Data Flow Diagram

Tataflow 7

dataflow 5

- The data flow element illusfrates the flow
of - data through the system using an arrow., The
arrow 1s labeled with the name of the piece of
data being described and the directlon of the
arrow- indicates the direction of data flow. The
process lecon Indicates a transformation of

" Incoming data flow(s) into cutgoing data flow(s).

37.

Processes are represented as bubbles or circles
labeled with the process name. The data store is
a repository for information and can be thought
of as a flle, database, table ar any other
mechanism which can be used to store data. A
data store Is represented as two parallel lines
labeled with the name of the data storage area -
between the lines. Terminators, or sources and
sinks, are used to mark the boudaries of a
partlceular system model, and are represented by
rectangular boxes.

‘The structure cbart ‘is the = graphic
representation of the design and is used to
illustrate the partitioning into modules, and the
hierarchy, organization, and commmieation of the
modules. An abstract structure chart 1s shown in
Figure 3.) ; '

PREDEFINED

B MODLLE D

PREDEFINED
MODULE

Figure 3. Abstract Structure Chart

A module 1s represented as a rectangular box
and labeled with the module name. A predefined
module is a module which - already exists ina
software llbrary and 1s represented by adding a
secoryd vertleal line an each side of the module
box. Comections and commmicatlons between

© a process X2.

modules are shown using arrows. In the figure,
Module A calls Modules B, ©C, and D. Module &
sends - DATA A to Module Band Module B retums
DATA B and a {i2g o the calling module.

The graphic representations used In the
Tourdon-DeMarco methodology are not specific to a
particular comuter language. A& growing number
of CASE (Computer Aided Software Engineering)
tools are becomirg avallable which automate the
generation of data flow dlagrams and structure
charts.

PROCESS ABSTRACTION METHCD POR
EMEFIIED LARGE APPLICATIONS

The methodologles previously discussed are

applicable primarily to the: requirement analysis
and design phase of a software development.

George Cherry's PAMELA methodology more
of the software 1life cyele (7). PAMELA
encogpasses features of other well mown
- methodologles. Features of the SAIT and 00D

design are Included. A syntax directed editor

and automatic code generator called AdaGRAPH is
avallable from The Analytic Sclences Corporation.

PAMETA allows a designer to praphically
design a system by generating a set of
- hierarchical dilagrams. The diagrams econsist of
éata flow and control arrows, task 1diom symbols,
shared storage symbols, and called or calling
priocess Indicators as well as several other
infiecators. An example PAMETA dlagram is shown
in Mgure 4. Figure 4 shows a process X1 calling

- here 1s an A and the 7B means give me a B.

1A
e JEEEE—

B

Figure 4. Example PAMELA Diagrom

Thirteen idioms are. used to represent Ada
tasks or procedures. These Iidioms consist of
such things a= cyelle activity controllers,
monitors, and state machines, Using these 1dioms
a software design can be - expressed from
specificatlons down to a primitive level.

PAMELA diagrams offer a very powerful aid in
validating a software design. Engineers and
programmers can "walk - through" the diagrams to
determine if the design aceurately models the
physical entity belng Implemented or simulated.
Once the design has been valldated the AJaGRAFH
tool can be used to generate a substantial anxamt
of Ada code. Algoritimic detalls must be added
by a programer to complete the code.

PAMELA diagrams are also very useful for
formal design reviews. Since the diagrams are
hierarchical, aly the level of detail required
needs to be viewed.

OBJECT ORIENTED DESIGN

X1 X2

A software development methodology called
Cbject Oriented Design (OOD) -has been developed
in the 1980's and implemented In Smalltalk and
Ada., This approach views a software system as a

In PAMETA terminoclogy the A means -

38.

-cammurication

- strengths and wealmesses.

set of objecta and the operations performed o
these objects, rather than a set of actions or
DProcesses.

The use of an object orlented apprcach
requires that the decamosition of a system be
based on. objects. Proponents of this method
suggest that the system to be modeled or
slmilated be "described by one paragraph. Once

written the paragraph is analyzed to determine

the objects (nouns) and operatims (verbs) of

interest. languages such as Ada are better

suited than traditlonal languages for this design |
approach, since Ada provides packages and tasks

as structured bullding blocks in addition to the

traditional bullding block of subprograms, -

Booch has developed a graphlcal notation for
an object oriented approach to sofftware
development (8) and has written a book describing
its application to software development Iin Ada
(9). Te graphical notation uses. rectangles and
pardllelograms to represent subprograms, packages
and tasks., Arrows are used :to illustrate
between units. Cbjects are
represented as amorphous shapes.: Anexanpleof‘.
this notaticn Is given in Figure 5.

Subsystam

4 Subprogram

Ganeric

ubprogram '\,Subprugram

Package
;31: jact

Entrie:

Type

Cparation;

N

_J
: Abstract ObjJect Oriented Design

Flgure 5.

.Booch's graphical notatlon for O0D maps well -
to the Ada language. Autamated support for 00D
development Is offered by Ratiomal as a
hardware/software development system. This is
not an econandcal solution for many users.

' SUPPCORT FOR REUSAELE SOFTWARE

A1l of the techniques discussed should help
to docurent reusable software.
does not happen automatieally. -
designed to be reusable. Many factors go Into
making software reusable. However, the most
Important is . probably & understandability..
Software wﬂlbereusedcnlyifitcanbeeasily
urderstood.

. SOMMARY o
As with most things, each wmethod has its
These are shown In

The first three colums represent the
use, and

Table 1.
eagse with which one can . learn,

o VR T T s eI T P ASEEE T T et T IR

ST TRRITERTE T el 35

B i LA B e o

e

L L ARl | L A

ST WETETTTIRAE R gt e e s e s Am

R ool

Easy to Easy lo Easy to Life Cycle Automated
METHOD
Learn Use _ Understand Support Support
SACT Moderata Hard Moderate Very Very
: Limited Limited
YDSAD Moderate Moderate Moderate God Cond
PAMELA Easy Easy Easy Gocd Good
(4] Moderate Moderate Easy Limited Limited

Table 1, Comparison of Graphical Methodologles

understand the methodology. Discriminators used
In these colums are easy, moderate, arnd hard.
Easy means that an enginecer with some software
experdence -should be able to readily learm and
use the methodology. Moderate means that some
computer sclence knowledge 1s required. Hard
means that substantial @ software engineering
kiiowledge and experience Is necessary. Colum
4, 1life cycle support, represents the ability of
the method to be used - for the entire software
life cycle. Colum 5, automated support, depicts
the availability of autamted - tools that
facilitate the use of

limited, limited, and good. Very limited in the
life cycle support colum means that the method
applies tfo only one phase of the software life
cycle. Limited means: that the methodology
applies to two or more phases. Good denotes that
the methodology applies fo all phases of the
software 1life cycle.

Methodologies noted in the automated support
colum as very limited are only supported by few

“autocmated tools. ILdmited means that sane

adequate - automated support tools are avallable.
A notation of good Indicates effectlve and
efficlent automted tools are available toc
support the methodology.

A very pramising tool 1s belng developed by
David Workman at the University of Central
Florida (10). The Workmen tool is calied
Graphical Inferactive Programming (GRIP). This
tool appears to support the entire software life
cycle. The tool is used by developing several
coordinated vlews of a software system. These
views are a structure view, a control view, a
data view, a camputation view and a runtime view.
The most significant featare of this tool 1s that

- changes made in the control view cause changes to

be made autamatically in the campubation (code)
vliew and vice versa.

Currently the tool gemerates C Code.

Consideration i= belng glven to enhancing the

tool to generate Ada ccode.
CONCLIRSION -
Graphical design techniques and support

tools . deseribed in this paper as well as others
are currently evolving. Application of any of

39.

these techniquez should Jnerease software
productivity. :

i Training system software developers should
be aware of these tools and techniques - ard

consider thelr use when developing trainer .

software. Sope methodologies are best sulted to
a limlted class of applleations while others may
be applied more broadly. For example, PAMELA is
designed to suppart real time applications and
probably would not be useful for a dJdata base
application. On the other hand, 00D is
applicable to a wide range
of applications. Careml consideration should be
glven to several methodologles prior to selecting
e for a software project. For some
applications 1t may be appropriate to use a
canbination of methodologles. For example, some
developers are using Data Flow Dlagrams. during
the a2nalysis phase " and 00D during the detailed
deslign phase.

To standardize on any ane technique at this

time would be premature.: Tools that dociment -

deslgns, genmerate code and add in software
maintenance should be given prime consideration.
Ultimately the tedmique that provides the most
camprebensive life cycle support wlil win In the
market place.

REFERENCES

1. ERaeder, Gecorg. ™A Survey of Current Graphical
ngxmm% Techniques Computer i8
(August 1985): 11—-25.

2, Grafton, Robert B. and Ichikawa, Tadao.
g e 12 Comter
5 .

3. Boss, Douglas T. "Structured Analysls (SA) A
Larguage for -~ Commmicating . Ideas." IFEE
Transactions ot Software Ekgineering T3
(Jaruary 1977): 16~34.

4, Ross D:uglas T. "ﬁpplicati:ns and Extensions
of SADT." IFFE Computer 18 (April 1985): 25-34.

5. DeMarco, Tom. Concise Notes on Software
Engineering. New York: Yourdon Press, 1979.

6. Page~Jones, ~Meilir. The Practical Guide to

Structured ' Systems Desigl New TYork: Yourdon .

Press, 19¢0..

18 (hugust

e —

;_g; ;_.zg’ Ada” Seminar, Jarmary 1

Gecrge. "Heal~Time 11cat1ms

8. Booch, Grady "Ohject-Orieated Devalommt
IEER Transactims o Software Erglneering SE-12
February 1966): 211221,

9, Booch, Crady. Software

Menlo Park, OCA: The BenJamin/Cummings Publishing
Company, Inc., 1987.

10, Worlman, Tevid A. ™A C-Hased Visual

Enviromment Supporting Multiple
Views," COriamio, Fl: GUversicy of Central
Florkda, Computer Sclence Department, 1988,
Photocopied.

ABCOT THE AUTHORS

Pamela 5. Woodard is a Computer Scientist In
the Swiface/Submsrine Warfare Software Branch at
the Naval Training Systems Canter where she is
the Software Engineer for several tralners that

with Ada.

are belng procured. She bas over 14 years of
software development experdence, ‘including T
years within the Besearch Department of the Naval
Tealning Systems Center, The software for ane of
ber btralners, the ISD-4L Propulsion Conbrol
System Trainer, Is belng wrlitten In Ada. Mrs.
Woodard holds a BS degree In Mathemetics from
George Moson Undversity, and an MS degree In

Central Florida,

- Computer Eogineering from the Undwversity of

Williem ¥. Parrish, Jr. Is a Supervisory
Electronics FErgineer In the Swface/Submarine
Varfare Software Branch at the Nawml

7 Praining
. Systews Cenbter and is currently involved In

40.

procuring tralners with Ada software. He has
over 21 years of software development experience.
Prior to his employment with the Navy, he was a
Senlor Engineer with Sperry Rand Corporation.
Mr. PFarrish holds a BSE degree In Electrical
Engineering and a MSE degree In Computer
Engineering froas the Toiversity of Alabama in
Bntsville,

