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ARBSTRACT

‘This paper describes techniques used to successfully link ground vehicle and aircraft simulators at widely dispersed
sites into a common network, This network enables the crews of each of the simulators 1o see and interact with
each other in a realistic battlefield environment. Fully-manned platoon-, company-, and battalion-level units may
fight force-on-force engagernents in real tirme over the network, The network design uses a distributed simulation
approach aimed at minimizing both communications processing loads and simulator complexity. This approach
involves abstracting, thereby reducing, the information that is broadcast among the simulators. It achieves an
appropriate thres-way balance among computation requirements, accuracy of vehicle state representation, and.

communication loads.

INTRODUCTION

For the past five years, BBN has been developing methods of
linking hundreds of combat vehicle simulators and their
supporting elements into a common simulated battlefield.
This work has been sponsored by the Defense Advanced
Research Projects Agency (DARPA) in partnership-with the
U.S. Army.! The resulting network, called SIMNET, has
clearly established the feasibility: of large-scale simulator
networking, paving the way for the Army's planned Close
Combat Tactical Trainer procurement. The network consists
of several local area networks at various sites, connected by
lIong-haul links operating over terrestrial lines, satellite
transceivers, or oiher transmission media.

. In effect, this real-time simmlator network provides a -
simulated world in which fully—manned platoon—, company—,

- and battalion~level units can fight force—on—force
engagements against opposing units of similar composition,
without incurring the costs of transporting large numbers of
personnel and equipment. The network can be used to support

- a joint, combined arms environment with the complete range
of command and control and combat service support elements
essential to actual military operations. All of the elements that
can affect the outcome of a battle can be represented, so that
victory on the batilefield is likely to go to whichever side is
better able to plan, orchestrate, and execute its tactical
operations. Whatever the outcome, combat units can benefit
from the opportunity to practice their warfighting skills at a

1 This work is currently being supported under contract MDA-903-86-C-0309.
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small fraction of the cost of an equivalent exercise in the field.
In fact, they can practice actions that are t00 dangerous or 100
likely to darnage expensive equipment when carried ont in a
field exercise.

The network is currently being used to connect simulators
representing M1 Abrams Main Battle Tanks, M2/M3 Bradley.
Fighting Vehicles, simulators, simple helicopter and fixed—
wing aircraft, and generic air defense artillery systems.
Additional vehicles are currently being considered for possible
inclusion on the simulated battlefield.

Combat Vehicle Simulators

Each combat vehicle simulator connected to the network
employs one or more real-time computer image generation
(CIG) systems to provide 2 multiple-window view of the
baulefield. Through these windows, the crews see a
representation of actuai terrain constructed from Defense
Mapping Agency data. This terrain is represented with
sufficient realism that the crews can navigate through it,
recognizing roads, rivers, hills, tree lines, and other distinctive
terrain features as they would on actual terrain. In addition,
they see combat vehicles, combat support vehicles, and
combat service support vehicles—tanks, helicopters, self-
propelled howitzers, fuel trucks, etc. The actions of these
vehicles reflect the control actions of other vehicle crews in
other simulators elsewhere on the network.

Other S{mulation Modules

In addition to combat vehicle simulators, several other kinds
of modules may also be connected to the network, including

= Automated combat support and combat service support
. vehicles, including howitzers, mortars, fuel and -
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amtounition supply vehicles, and maintenance vehicles.
These vehicles are controlled from consoles attached to the
SIMINET Management, Command and Control (MCC)
system. The Logistics Console is used by the bawalion 5—4

Officer to direct fue] and ammuniticn vehicles to rendezvous.
points at which the combat vehicles are resupplied. The Fire

Support Console is nsed by the battalion Fire Support
Officer to direct artillery and mortar fire. The Closs Air
Support Console is used by the Air Liaison Officer to ditect
air strikes in support of battalion operations. The Fire '

Support Console and the Close Air Support Consolé are co—

located in the battalion Tactical Operations Center (TOC).

Semi-automated forces, including armor, mechanized
infantry, helicopter, and fixed wing aircraft. These forces
are under the supervisory controf of a human commander at
all times. He directs their activities, specifying routes and
objectives, fire priorities, etc., and then monitors and
controls their behavior on a plan view display. A BBN
Butterfly™ parallel processing computer is used to run
detailed simulations for every vehicle in the unit, and io
broadcast and receive state update information in exactly the
same formats that fully-crewed vehicles use. The computer
rung processes that provide route-following, obstacle
avoidance, formation-keeping, target acquisition, and similar
functions. If the commander is satisfied with the behavior
generated by these processes, he will continue providing
only high-level instructions to his unit. He can intervene at
any point, however, and redirect the activities of any
company, platoon, or sven a single vehicle,

Data collection and analysis systemns, which capture,
time-stamp, and log onto a disk file every state update
message that is broadcast on the network. These
messages can be replayed onto the network at a later time
for the purposes of analysis or after-action review.. A
simulator can be driven through, or flown over, the
battlefield, displaying on its viewports precisely what it
would have shown had it beent present when the exercise
was recorded. It cannot affect actions on the battlefield, of
course, since they are now, in effect, pre-recorded. In
addition, a powerful set of data extraction and statistical
analysis tools can be used to calculate standard measures of |
unit performance, of to calculate non-standard measures
defined for a specific exercise.

When two or more local area simulator networks are

- copnected by long-havl links, as described later in this paper,

all simulators can communicate with each other as if they
were located at a single geographical site. Multiple exercises
can be conducted on the same network; simulators will ignore

. transmissions from simulators in other-exercises. At this

point, an exercise is limited to 500 active simulators. Later,
when more intelligence is added to the long-haul link
gateways, there should be virmally no limit to the size of the
exercise that can be conducted.

Local Area Networks

The local area network (LAN) used at all sites is an Ethernet™

- operating at ten regabits per second. This choice was made
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for several reasons: Ethernet-interfaces are inexpensive,

available from multiple vendors for essentially every make of
_computer, and support both broadcast and point-to-point

message transfer with automatic error detection. Furthermore,
Ethernet efficiently handles the 1024-bit datagrams employed
for state apdate messages (which are described later in this
paper) at the data rates necessary for simulator
communication. In terms of the 1SO Basic Reference Modcl
for Open Systems Interconnection, the messages
communicated in a distributed simulation form an Application
Layer protocol. This protocol makes direct use of the
Ethernet's Network Layer service with null intermediate
layers.

Long-Haul Links

The sites are curently interconnected using terrestrial data
links, each having a capacity of 56 kilobits per second. Such

links ate relatively inexpensive and can be readily installed to
serve locations anywhere in the United States.

A small gateway computer fortus the interface between a local
area network and the long-haul links that connect it to other
sites. In its simplest form, the gateway merely copies
messages between the local area network and the long—haut
links. Any message produced by a local simulator will he
distributed to remote sites by the gateway, and any message
received from a remote site will be disteibuted tolocal
simulators via the local area network. Effectively, the
collection of local area networks and long—haul links behaves
as a single, large broadcast network. -

This simple form of gatewdy cian support about twelve ground
vehicle simulators.in a diswributed simulation spanning a 56 ~
kilobit per second link. Using more sophisticated algorithms,
these links can support up to 50 vehicles. Addidonal vehicles
can be supported by using links of higher capacity (T1 links of
1.544 megabits per second are commercially available), or by
using multiple links in paraflel to connect paixs of sites.

DISTRIBUTED SIMULATION APPROACH

The concept of distributed simulation is centtal toour =~
networking approach. There is no central computer that
directs the activities of the various simulation elements.
Instead, each simulator has its own microcomputer, which is
in continuons communication with each of the other
sirnulation elements. Each simulator is responsible for
dispatching messages to the other simulators to convey the
information they need to know about its actons. Conversely;
each simulator is responsible for receiving, interpreting, and
responding properly to messages received from other
simulators.

One significant advantage of this distributed simulation



approach is that as the simulation networlc is expanded, cach
new simulator brings with it all of the computational resources
necessary to support itself. ‘This means that adding new
simulators does not (generally) involve hardware

- modifications to simulators already on the network.

. Dead Reckoning .

Each simulator 1s, of course, responsible for maintaining 4
detailed model of its own state including, for example, engine
power, thrust, and fuel consumption; aerodynamic forces or
terrain forces; weapon system computers, etc. Each simulator
also maintains a simple dead reckoning model of the state of
every other simulator on the network that is within possible
interaction range. In essence, this involves extrapolating the
last reported position of each other vehicle, based on its last .
teported velocity vector, until such time as a new state npdate
message is received.

This approach implies that each simulator is also responsible
for transmitting state update messages whenever it changes
course or speed. To do this, each simulator must maintain, in
addition to its high fidelity model, a dead reckoning model

- that corresponds to the model that other simulators are
maintaining of its state. In essence, after each update of its
high fidelity model, the simulator compares its exact siate with
that of the dead reckoning mode! and transmits a state update
message only when a significant discrepancy has accumulated.

The state update message contains the essential “externally
visible” information that the other simulators will need to
depict the broadcast vehicle accurately on their screens: the

vehicle's location and orientation, with six degrees of freedom

(or more, if it has an independently movable turret, gun tube,
or other significant features that can be seen at a distance), its
velocity vector components, and whether it is currently
producing smoke, a dust column, a muzzle blast, or other
significant visual effects.

These algorithms produce a variable update rate that will
differ from one simulator to another at any given time. Each
simulator transmits state update informatien only when

necessary. The principal motivation is, of course, to minirnize ~

network message traffic and hence the amount of incoming
information that other simulators must process. We are
currently using a maximum rate of 15 updates per second and
a minimum rate of one update every 5 seconds.

Hit and Damage Determination

Another illustration of distributed simulation occurs in the
shared responsibility for hit and damage determination for
ballistic or missile attacks. Briefly, the firing vehicle is
responsible for determining what, if anything, was hit; the
target vehicle is responsible for determining what damage, if
any, it suffared.

Consider the sequence of events that occurs when the gunner
in vehicle A fires at vehicle B. First, the simulation host
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computer orders the appropriate gunfire sound effects in
stmulator A. Xt then dispatches a message to all simulators
announcing the position of its muzzle blast. Next, the -
simulation host informs the CIG host in its own simulator of
the type of amumunition fired and its initial velocity vector.

Within the CIG computer, precomputed ballistic trajectories
have been stored in the form of chord segments, divided into
single—frame—time intervals. As the CIG systemn processes the
various polygons that make op the terrain and the fixed and
moving objects on the terrain, it determines, on a frame—by—
frame basis, whether the ballistic chord intersected any-
polygon. If so, it informs the simulation host which polygon
was hit, and displays the approriate visual effect at the point of
impact. The effect displayed depends on what kind of
polygon was hit as well as the type of munition. For example,
one effect is used for a shell exploding on armer, while
another is used for a shell exploding in dirt. '

The simulator then transmits an Impact Event message that
informs all other simulators of the type and location of the
impact, so that they can display the appropriate effect on their
screens. For all vehicles other than the one struck by the
projectile, this is the extent of the processing required. The
struck vehicle, however, is now responsible for determining
what damage, if any, it has suffered. To do so, it emponé
probabalistic damage tables that depend on additional

“variables contained in the Impact Event message, including

the type of ammunition, the range to the target, the angle of
incidence, and the precise location of the hit on the struck
vehicle. In sorme cases, the tables depend on information
known only to the struck vehicle simulator, such as (in the
case of the M1 tank) whether the ammunition ready rack blast
doors were open at the time of impact. If so, the probability of
a catastrophic Xjll is substantially increased. If the struck
vehicle catches fire, it broadcasts a state update mesgsage
announcing that fact, so that other simulators can
appropriately display it,

Self-Healing Nature of the Protocol

The state update protocol does not require the
acknowledgement of each update. To do so would
substantially increase the volume of network traffic, since —
state updates represent 95 percent of the total raffic volume in
typical exercises. Instead, the updates are designed to be self-
healing, in the sense that if a simulator somehow misses a
state update message, the worst that will happen is that it will
continue-to extrapolate the previous dead reckoning
informoation for a little while longer, As soon as the next state
update is Téceived, which could be the next frame interval for
a rapidly maneuvering vehicle, the location and orientation of
the vehicle will be corrected and a new extrapolation process
begun. Forother types of messages, multiple retries may be
required if the message s not positively acknowledged. But,
the types of messages for which this approach is required
represent a small fraction of the total maffic, so the impact of
such retransmissions is negligible. It should be noted that



. . e

these considerations are largely theoretical, since the missed
packet rate observed to date has been essentially zero.

BALANCING COMMUNICATION, COMPUTATION, PRECISION

In essence, dead reckoning achieves a trade—off among three
factors: the network communication traffic, the amount of

‘computation performed by simulators, and the precision with .

which each simulator perceives the vehicles of other
simulators. Network traffic is reduced by @ead reckoning
because fewer state updates are broadcast. Computation
demands are increased for the simulators that must, as a result,
extrapolate the appearances of vehicles in the absence of any
state updates describing them. Precision is limited by the
amount of discrepancy allowed to accumulate between a

_vehicle's high fidelity model and its dead reckoning model.

There are many parameters of the dead reckoning algorithm
that may be adjusted to estzblish the point at which these three
factors are balanced. The thresholds against which
discrepancies are gauged must be carefully chosen, because as
these thresholds are increased network traffic is reduced; but
so is precision, There are also choices to be made among dead
reckoning algorithms. Dead reckoning can be based on the
use of higher order time derivatives of vehicle motion—such
as acceleration—with the result that network waffic is reduced;
but, more computations must be performed to extrapolate a
vehicle's state using these higher order derivatives.

The optimal choice of discrepancy thresholds and dead
reckoning algorithms depends on the type-of vehicle

simulated. The choices that are appropriate for slow moving
- ground vehicles are not optimal for high—speed aircraft. For

this reason, we have been investigating how different
thresholds and algorithms perform for different fypes of

. vehicles, Qur studies are based both on empirical data—

collected from actual vehicle simulators operated by soldiers
in simulated battle conditions—and on theoretical analysis of
the rade—offs between network waffic and computaticn. In
the following paragraphs, we explain how these studies are
conducted.

We begin our study of discrepancy thresholds and dead
reckoning algorithms for a particular type of vehicle simulator
by observing the way the vehicle is used by pilots, drivers, and
crews. The distributed simmlation approach provides a
convenient method for doing this. The simulator is connected
to the network and made to send state updates at its maximum
rate (typically 15 per second). As crewmembers operaie the
simnulator in a variety of battle conditions, we record the state
updates originating from the simulator using a data collection
system attached to the network, The record of time—starmped
state update messages we thus cbtain forms a complete record
of how the simulated vehicle was operated by its crew.

We then filter this complete record of state update messages

through a program that applies any dead reckoning algorithm :

and discrepancy thresholds we wish to hypothesize. The

" output of the program is a reduced set of state update

messages, representing those less frequent updates that would
actually be sent by the simulator had it been using the
algorithm and thresholds hypothesized. We can measure this
reduced set to determine the network traffic that the algorithm
and thresholds entail. ‘We can also replay the reduced set of
messages onto the network to observe the dead reckoned
model of the originat vehicle and judge fidelity of that model.

Some of the data we derived in this way for M1 Abrams Main
Battle Tank simulators are plotted in Figore 1. The graph
shows how the network waffic produced by an M1 sirulator
during a five minute battle sequence is influenced by dead
reckoning thresholds. The vertical axis of the graph represents
the average number of state updates per second produced by
the simulator for a particular set of thresholds. The three
plotted lines correspond to thresholds on the vehicle's
orientation of 2.5, 5, and 20 degrees—the amount by which
the vehicle's acteal orientation is allowed to diverge from its
dead reckoned orientation before a state update must be sent.
The horizontal axis represents the threshold on the vehicle's
Iocation, measured as z fraction of the vehicle's own size, A

dead reckoning algorithm based on velocity was hypothesized

for the simplator. The graph confirms one's intuition that
increasing a discrepancy threshold will reduce network traffic.
(For ground vehicles such as the M1, hewever, this rcdticn'dii'
is not substantial.)
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Figire 1. The frequency with which a simnlator broadcasts state updates
depends on both the dead reckoning algorithm and the discrepancy
thresholds used. This graph shows the effect various rotation and location
thresholds have on the frequency of updates from an M1 simulator
emplaying velocity-based dead reckoning. Good performance is achieved
at thresholds of 3¢ and 10%, resulting in 2 to 3 state updates per second.

Similar graphs are produced to characterize other dead
reckoning algorithms, including those that incorporate higher—
order derivatives such as acceleration. Each algorithm is

- analyzed to determine its computational requirements, and
- those requirements are weighed against the network traffic
. produced by the algorithm. The computational requirements

st be evaluated as they affect all simulators on the network,
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since all will be required to dead reckon the vehicle under
consideraton.

For the M1 simulator, we concluded that a velocity—based
dead reckoning algorithm was rmost appropriate for a
population of several hundred simulators éupponed by an
Ethemet local area network. We found that network traffic™ =~
was not substantially reduced when dead reckoning was
allowed to take into.account higher—order derivatives of
vehicle motion. The discrepancy thresholds that strike a good
balance between network traffic and precision of vehicle
appearance, we found, are 3 degrees of rotation and 10% of
the vehicle's dimensijon. As Figure 1 shows, this choice
Tesults in network traffic averaging 2 to 3 'state update

" messages per second per vehicle.

In studying a close—support aircraft simulator, however, we
found that significant reductions in network traffic could be
obtained by using higher—order derivatives for dead
reckoning. - If dead reckoning is based solely on the velocity of
the aircraft (updating the aircrafi's position by integrating its
velocity), then about six state update messages per second are
needed for a reasonably precise appearance. However, if rate -
of rotation and linear acceleration are taken into consideration
by the dead reckoning algorithm and the vehicle's velocity
vector is also rotated with each update of its orientation, then
only about two state update messages per second are needed.
Figure 2 shows the network traffic produced by the aircraft
simulator using the more elaborate dead reckoning algorithm.

" Our use of dead reckoning can be viewed as 2 Way of
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Figure 2. By using a more sophisticated dead reckoning algorithm, a
close-support aircraft simulator can be made to produce even fewer state’
updates than an M1 simulator. For this-graph, the aircraft simalator's dead
reckoning employed velocity, linear acceleration, and rate of rotation
information. At thresholds of 3° and 10%, only 1 to 2 state npdates are
produced per second.

One can see by comparing Figures 1 and 2 that, with the
appropriate choices of dead reckoning algorithms, the aircraf:
- simulator can be made to produce less network traffic than the
MI simulator. This may be so because the motion of the
simulated aircraft is influenced primarily by its pilot, whereas
that of the tani is influenced also by its interaction with the

ground. At the scale at which the discrepancy thresholds
apply, the tank's motion is more erratic than the aircraft's
motion because of that interaction with the ground. Thus dead
reckoning is able to predict the motion of the tank over less
extended periods of time. - T

FUTURE EXTENSIONS OF LONG-HAUL NETWORKING

We have described a trade—off involving the communications
bandwidth required to convey the state update messages
produced in a distributed simulation and the processing power
Tequired to extrapolate a vehicle's appearance in the absence of
an update describing it. For a given level of precision, an
optimal position can be found that balances the cost of local
area network bandwidth with that of simulator processing
power, A different balance is dictated, however, by the
comparative costs of long—haul link bandwidth and gateway
processing power. Because gateways are relatively few, and

- long—haul links are relatively expensive, it may make sense to

invest more processing in the gateways to reduce the need for
long—haul link bandwidth.

We are exploring two ways in which the limited bandwidth of
long—haul links can be used more efficiently, albeit at the
expense of greater gateway processing. One way is to reduce
the frequency of state update messages by employing dead
reckoning algorithms based on higher—order derivatives of
vehicle motion. The other way is to compress the information
in a state update message so that fewer bits are required per
message.

abstracting information about the appearance of a vehicle so

- that the appearance need be conveyed less often. As we

demenstrated in the previous section, it is possible in some
cases to achieve greater levels of abstraction by using higher—
order derivatives of a vehicle's motion. The costs of greater
abstraction are measured in the processing reqnired to first
construct the abstraction, and that required to later interpret it.
We are investigating ways that gateways rhay perform this
processing to reduce the number of state update messages
transmitted across long-haul links without increasing the
processing burden of individual simulators,

Data compression can also be used to increase the number of
vehicles that can be simulated within any given long—haul link
bandwidth. - Sigrificant portions of a state update message are
relatively static. Of coursé, these:are the provisions in the
protocol that allow it to be self-healing. However, given that
the communication between two gateways is more
controllable than that on the broadcast Ethernet, we can
remnove this redundant information and represent messages
with fewer bits.

CONCLUSION

For the first time, muitiple ground vehicle and ajroraft
simmlators have been joined on a common, virtual battlefield

581 .



- -—

spanning multiple physical sites. This low—cost, low—
bandwidth simulator network is now in daily use for unit
training and experimental development. The developroent and
continued refinement of algorithms for reducing effective
bandwidth requirements allow ever—greater numbers of
simulators to share the network. 'We expect that in years to
come, these techniques will become standard, and that units’
will regularly engage in combined arms training without
leaving their home posts or bases.
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