ADA AND OBJECT ORIENTED DESIGN FOR SIMULATION
IN THEQRY AND IN PRACTICE

P. Baker

Marconi Simulation
A Business Unit of Marconi Instruments Lid.
Nr. Dunfermline, Scotland

ABSTRACT

For any software development group attempting to establish its future strategy for major software

projects, there has never been a greater range of languages and techniques from which to choose. For those
with major defense industry commitments there is overwhelming pressure to conform to standards, and in

particular to standardize on the vse of Ada.

In this paper the particular experience of ene group of engineers who followed this path for the
development of an avionics sub-system Simulator and Test Rig are discussed. The objectives and key decision
points are highlighted and, aithough the project has not yet reached it’s completion, there are significant
conclusions that have been identified during the development process. -

Consideration is given to:-

- Primary Objectives

Clear representation of the Requirement and its reflection in the Design.
High level of software component re-use.

Efficient development process.
Maintainability of the product.

. Methodology

The Codes of Practice used i each phase of the software LIFECYCLE.

Development Environment
Ada products used.
Software tools.

Workstations and support equipment.

The Development Process
Reactions from the software teant.
Training needs.

The Results
Costs and Benefits.
Achievement of objectives.

I conclusion, this papetr summarizes the degree of success encountered with this approach to Ada and

reviews plans for ‘next time’.

INTROBUCTION

Early in 1987 Marconi Simulation realised that a’

change from the existing dominant language (PASCAL)
to Ada would probably become mandatory within the
foreseeable future and a specialist Ada Software
Engineering group was established to identify the
. implications of making this transition. This group
focussed on -acquiring knowledge of the Ada
compiler/APSE marketplace and on the capabilities of
the Ada langnage; scope was also extended to cover a
broad scan across the Scftware Design Tools market and
to conduct a program of product evaluations,

The group was expanded in early 1988 and tasked with
sharpening up the evaluation procsss and with identifying
a specific development environment, cotnpiler and design
philosophy for use with Ada; the projected timescale for
achieving this objective was 12 months.

During this period it became clear that there would be
increasing pressure both internally and frem the UK
Ministry of Defence (MoD) for any new work to be bid in
Ada: In the event the first project to be bid in Ada was
successful and only 6 months into the evaluation program
the prototype ‘project’ being used for technique
development was replaced with a ‘real project’ on which to

cut our teeth. This immediate ‘total immersion’ approach
to a new software development context, although in many
ways less than ideal, does concentrate the mind
wonderfully and undoubtedly caused a significant need
for pragmatic engineering decisions a.nd a cnucal
appraisal of priorities.

The decision had by this time been made by the Ada
Software Engineering group that we would use SUN
3/Series workstations as the basis of the Software
Development Facility; we were targetting onto 68020
VME systems and this choice offered a degree of
compatibility and was well supported by vendors at
competitive prices. It was realized that workstations
equipped with local hard disks would be essential to
provide the necessary level of compiler performance
required to achieve a2 high level of programmer
productivity. The planned developments would require
the assembly of a large number of workstations on a
network and previous experiences had highlighted the
likelihood of delays caused by high network traffic when
using large numbers of diskless units,

THE PROJECT (NST)

The software development project that forms the basis
for this discussion was placed in October 1988 and is fora
Software Test Rig to allow testing of major avionics
software sub-systems within the Nimrod ASW aircraft.

~This rig will be used by the Nimrod Software Maintenance

Team (NST) for checkout-and test of modifications made
to the four major sub-systems namely:--

Central Tactical System,
Electronic Surveillance Measures,
Radar,
Acoustics.
The Rig consists of five modules, each with

approximately the same general configuration - but
differing in signal stimulation capabilities.

The basic module consists of a PC(386) based Control
Workstation running Microsoft Windows software linked -
by Ethernet to two VME bus based processing umm
namely:-

1. The Master Processing Unit (MPU) which houses
the Scenario generator software and supports
special interface stimulation hardware and link
control units.

2. The Operator’s Monitor Panel (OMP) interface.
This is a replacement for an existing piece of
hardware that allows direct monitoring and
control of the CPUs within the relevant aircraft
systems.

Control over both the MPU and the OMP is via the
controlling PC unit.

All five modules are linked together on a common
Ethernet.

The Ada context for this project includes only the

-68020 based VME units, ie the MPUs and OMPs. The

timescale for the project was nine months for the initial
phase (one unit as above for ESM only) with all remaining
units following as a phased program during the ensning 12 -
months.

The similar nature of the modules points to there being
scope for re-use of code (this was identified as an
important objective) not only across the various phases of
this project but to point the way for other subsequent
projects as a major cost reducing factor. Initial work
during the bid phase indicated that the whole project,
excluding the Man Machine Interface (MMI), would
involve approximately 20,000 lines of Ada code.

THE SOFTWARE ENGINEERING TEAM

The software team for the project was assembled from
a nucleus of very experienced software engineers with a
considerable level of prior knowledge of this type of
product. The software manager and software technical -

Interface
s . Master 386 PC
Aircraft link ; . | ———» .
1 absysem [~—— processing unit. ———— workstation
_ (MPLY
Operators
monitor panel
interface o
Adreraft bus {OMP) Local area network

Fig 1 NST Module Configuration

176.

project leader are both very experienced in the arena of
Nimrod aircraft sub-systems (5 to 10 years). Marconi
Simulation have previously designed and built a number

of successful Full Mission simulators for this airéraft, in -

which the accent was on aircrew training, subtly different
from operations as a software test rig. The remainder of
the team for the first phase consists of four software
engineers with experience ranging from 2 to 4 years in
simuiation.

Each phase of the project. required teams with
specialist skills deriving from the individual sensor
systems (ESM, CTS, Radar and Acoustics) and all
previous software work had been in PASCAL. No
software team member had any more than a few weeks
prior exposure to Ada although this did include a formal
one week Ada Training course.

The project team was reinforced by a five man Ada
Software Engineering team (the team running the Ada
evaluation program); this team varied in strength and
content over a period but generally consisted of software
engineers within 5 to 10 years experience, tasked to
contribute to the mzin project in the following key areas:-

1. The establishment of core software to handle the
PC-VME Ethernet link.

2. The establishment of basic Disk File 1/0
facilities and basic system software utilities,
including boot facilities for the targei VME sub-
systems.

3. Production of Design procedures/Codes of
Practice and -coordination of the design
methodology across all phases of the project,
including a basic level of informal tra2ining in

- design techniques.

4. Support of the ever
Development Facility.

growing Software

5. As a skills centre for- Ada techniques and as a
focal point for the control and coordination of
Ada specific problems.

6. Coordination and monitoring of the effective use
of the Software Design Tools.

7. Updating of working practices in the light of
ongoing experience.

8. Provision and enhancement of Software

Configuration Control procedures and facilities. .

9. Gathering information on actual code
generation to help ocalibrate future code
estimating activities.

Both the Project Engineering team and the Ada
Software Engineering team operated in close cooperation
under the direct control of the project manager.

177.

THE FUNDAMENTALS

During the short evaluation phase that preceded this
project a number of key observations had been made by
the ‘Ada Software Engineering group. These can be

summarized as follows:-

I. Ada on its own would not provide the answer to
the software engineer’s prayer but it could be an
important enabling factor and a necessary first
step to improving software quality and
engineering productivity. ' -

2. 'We had previously suffered from a fundamental
lack of a “design process’. Although-design was
being partitioned in accordance with the
traditional software lifecycle there was no
specific set of practices to be implemented to help
a software engineer develop an ‘effective’ design.

3. We had acknowledged the traditional lifecycle
phases for software but had addressed the
Requirements Analysis aspects in an
unstructured manner and had no natural flow
from Requirements Analysis into the Design
Process.

4. Despite ‘best intentions’, coding was in general
being started too early and the formal set of
diagrams and detail design documentation were
often being generated retrospectively - in
fairness, the high level design documentation was
generally well prepared but was seldom driven
down to a sufficiently detailed level to effectively
support the major thrust of the design activity.

5. Design Reviews and their associated Code
walkthroughs were always based either on ad-
hoc text or diagramatic representations of the
design or at a later stage on the code listings; in
conssquence these reviews were seldom complete
or effective. Something better was needed and
hopes were high that a Design Tool might meet

- this need.

6. No Software Tools were available in support of
the Requirements Analysis or Diesign phases and
this was a major contributory factor to the
perpetuation of old ‘bad habits’.

- 7. To merely train engineers in the syntactical use of
Ada would compound an existing problem.
{(Hacking code in Ada with a large slow and.
expensive Ada Compiler is a worse sin than
hacking in most other languages.)

8. The key was to train engineers to ‘design
software’ in Ada, not simply to write code in
Ada.

Having made these observations, there came the
following more difficult questions:- -

1. Could the necessary decisions be made in time for
the NST project?

2. Could Codes of Practice be evolved and
- disseminated quickly enough to be of use to the
project software designers?

3. Would capital costs be prohibitive?
4. How would we train the engineers?
5. ‘Would the theories work in practice?

6. Would rushing this approach and possibly
achieving only a limited success cause damage to
a worthy longer-term objective?

The balance of probability indicaied that there was
little merit to avoiding any of these issues and the decision
was taken to address as many of ther as could reasonably
be handled within the project timeframe. Technical cover
would be provided by aligning the Ada Software group
directly with this project both to minimize risk and to
extract the maximum longer term benefit.

Methodology and Tools

The key to the design process for the typical
Simulator/Trainer had to involve a mechanism for
reliably tracking from Requirements Analysis through to
the design, in 2 manner that retained the shape of the
problem in a form understandable to both the customer
and the engineering team. Previously all design had been
based on the concept of functional decomposition with
top-down design and ‘information hiding’ to help
encapsulate components of the design. This approach
tended to be born of the design process and not naturally
generated from the Requirements Analysis phase. Designs
following this approach have no explicit encapsulation of
function and data, and the route to achievement of re-
useable components is not explicit.

The prime motivation to achieve a design process that
encouraged the maximum level of component re-use
coupled with the ‘real-life object” nature of simulation
encouraged the promotion of Object Oriented Design
(OOD) as the mechanism for generating the Design
process; this in turn indicated that the optimum
Requirements-Analysis process would similarly be Object
Oriented (OORA).

At this point we encountered a basic problem in that
there did not appear to be any significant source of supply
of CASE tools to support Object Oriented Design, nor
indeed any detailed and explicit mechanisms for achieving
QORA and OOD,

Initial forays into the Design tool arena highlighted
the ready availability of tools to support the functional
decomposition/data flow .philosophies, viz

178.

Yourdon/DeMarco and extensions due to Constantine
and Hatley, but little that was designed for OOD.

Evaluations were limited within the timeframe to
MASCOT 3, TEAMWORK, Software Tho’Pictures and
CARDtools - of these, CARDtools was selected as being
the most appropriate for representing OOD although not
being specifically designed to do so. On the Requirements
Analysis front we did not find a support tool but have
established Codes of Practice that owe something to both
CORE (Controlled: Requirements Expression) and
HOOD (Hierarchical Object Oriented Design); the
preparation of these Codes of Practice straddled the first
phase-of the NST project ie the Codes of Practice for
Requirements Analysis was nof available for the first
phase - (ESM), but were available for the subsequent
phases.

Compiler

The Ada compiler selection narrowed to a choice of
Alsys, Verdix or Telesoft. The Telesoft product was
perhaps the logical choice as this was also supported by
Ready Systems, the suppliers.of the CARDtools, Design
tool and performance figures were. available for
incorporation into this design tool. However, as there
appeared to be no significant performance differénces
between these products and the reviewers overwhelmingly
preferred the user interface to the Alsys product, this was
adopted. A spin off benefit of this choice was the
availability of a PC-hosted, cross-compilation facility and
a high level of engineering support in the UK.

It was felt that the specialist run-time kernel offered by
Ready Systems, although potentially attractive, did not
out-weigh the ‘ease of use’ and technical support issues.

Other Aspects

Two aspects of the targetting of Ada onto the VME
68020 CPUs posed a problem. The first was the absence of .

a target system disk file input/output facility from the
- compiler vendor (an almost universal situation it seems!).

Secondly, we reguired an Ethernet capability and the
ability to pick up an “off the peg’ standard systern would
have been attractive. Both of these issues had implications
that could potentially overpower other factors-in the
choice of a compiler vendor.

Disk File 1/0. This complication was resolved
relatively quickly by agreement with the compiler vendor
that they would accelerate an existing pragram to achieve .

-this functionality and would work together with Marconi

Simulation to produce a fully host/target compatible file
I/0 facility. For our part we particularly wished to have
close liaison with the supplier in this context as we needed
to develop the relevant SCSI disk drivers and a simple

-protocol for achieving multi-processor boot facilities

from a shared Winchester disk drive.

Ethernet Connectivity, The initial intention here was to
adopt the TCP-IP protocol as standard and to buy-in the
necessary software components. This proved to be

problematical since there were complications with using
TCP-IP at the PC end and we had specific reasons and
strong motivation to base the PC-MMI system on a
Microsoft Windows development. We were therefore left
with two options:- - B

1. A home-brew or collaborative TCP-IP venture to
produce a Windows compatible facility.

2. A simple, low-level protocol implementation at
both VME and. PC ends.

We opted for the latter approach on the basis that we
felt the need to control and establish an efficient low-Ievel
protocol on Ethernet that was appropriate for ‘real-time’
use, and not risk being in'a single source situation with a
third-party solutien.

THE DEVELOPMENT EXPERIENCE

A synopsis of the views of each of the following major
participating groups within the NST project is bresented
below:-

Groups - Project Management
"~ - The Project Software Manager and the
Technical Project Leader
- The Software Development Team

Project Management

This has probably been the area that has seen the most
‘concern’ over moving to a new approach to software
engineering, however, faith has been retained throughout.
The primary areas of concern expressed during the
development have been:-

1. The high cost of populating a multiple
workstation networked software development
facility for use with Ada.

2. The need to quantify and fund the appropriate
number of Design tool equipped workstations
with sufficient power to effectively service an
Ada-based project development.

3.. The incremental costs for additional host and
target cross-compiler and development utilities
for large software teams.

-4. A major training program on three concurrent
fronts, namely:-

- Softwaré design
- -Design tool use
- Ada language

5. The continual need to assess and resource the
high entry costs for this development with no
guarantee of future cost savings.

179.

. Software Technical Management

At this level those involved were significantly aware of
the inadequacies of previous software development
strategies that new ideas were greeted with enthusiasm
and readily absorbed. =

Once the engineering teams wéré established, the real
problems of managing the training, analysis and design
using the design technigues and tools rather than rushing
directly to Ada coding had to be carefully managed.

The major problem was that Ada acts as a beacon for
programmers who can easily be tempted to rush past the
more important Object Orientéd Analysis and Design
activities in their enthusiasm to get into the details of the
language. This problem was made more acute by the fact
that we really did need to push rapidly through to Ada
code in some areas in ofder to establish some important
metrics that were perceived as critical to the overall system
design.

Key points have beer:-

1. Ada Tasking:- There is a great temptation for
programmers to make the maximum use of
Tasking and it rapidly became clear that
although a high level design may be constructed
that uses many tasks, in general the ‘real-time’
price paid for this can easily be excessive. This
proved to be a less serious problem in retrospect
because the design can generally be amended ata
later stage such that Tasks are grouped and, if
necessary, replaced - by simple sequentially
scheduled packages without compromising the
fundamental design concepts.

2. OOD:--The OOD concept and associated Codes
of Practice have been extremely well received as
very effective mechanisms for ‘getting to grips’
with the design in both the ‘problem® and
‘solution’ domains. Such simple requests as
“Write down what you need the system to do -
completely - on one 11" x 8" sheet of paper and
identify the nouns as the primary objects™ have
repeatedly been found to be astonishingly
illuminating and helpful.

3. The Design Process:- The OOD concept has
proved to be quite an elusive target. The tendency
" for users to slip back into old ways and
decompose ‘functions’ rather than ‘objects’ has
been noticeable, largely due to the lack of
significant literature to caver the OOD process
and the relatively late arrival of our own Codes of
Practice with their associated worked examples.

The Software Engineers

The OOD concepts were welcomed but not
immediately understood and only when worked examples
were introduced was this technique thoroughly absorbed.
It is generally hard work to get to grips with any new

Design Process, and to struggle with this at the same time
as learning a Design tool and the Ada langnage wasfound
to be a heavy load at the start of a new project.

The development of effecfive working practices was
achieved partially as a result of observing the problems of
the engineers in grasping the design task; this resulted in

.the realization that during the early stages of evolving a

design, a design tool is not necesssarily helpful unless its
MMI is at least as effective as the good old paper and
pencil. The result of pushing engineers too early onto the
CARDtools facility proved to be demotivating.

Much of the téam’s early work was cast aside as they
developed the design concept; the tool being less than
optimum for this sort of fast iterative process, manual
methods proving more satisfactory until the design
stabilized. CARDtools came into its own once the design
had stabilized to allow the rigorous checking of
completeness and standardized design representation that
is essential.

SUCCESSES AND FAILVURES

Starting with the most successful and working through
to the less successful.

Object Oriented Requirements Analysis

Top of the list must be the acknowledgement and
formalizing of the Requirements Analysis phase with the
introduction of an explicit set of practices to be employed.
This ensures that the customer's needs are met and
contractual obligations fulfilled in a manner that feeds
directly through into the Design Process.

Object Oriented Design

A very close second, without which the above would
not have fitted into place so neatiy, comes the Design
methodology - the adoption of Object Oriented Design
practices. This has opened the door to explicit mechanistic
ways of thinking within both the ‘problem’ and *solution”
domains (Requirements Analysis and Design} that yield
readily checkable, complete and encapsulated designs.
This directly supports one of the major targets, that of
encapsulated and consequently re-useable code.

The Design Tool (CARDtools)

This has been successful in so far as it provides our
only mechanism for checking the completeness, if not the
correctness, of designs and has provided the third most
successful item, the standard representation for designs;
these hierarchical decompositions into-objects (packages)
and within packages a hierarchical decompaosition by
function, although not ideal, have provided the common
ground en which design ideas can be reviewed, design
assessed -and generally has served as a forum for the
establishment of ideas about what the ideal design tool
could and should offer.

The existing PDL within CARDtools is not AdaPDL,
although this is promised and should potentially

180,

transform the tool as it will then have the potential for
direct Ada code generation. I feel sure that the design tool
market is an enormous area of potential which has yet to
be successfully addressed for Ada.

CARDtools is the best option we have found so far but
there is plenty of scope for development in this area.

The Compiler

The decision to use the Alsys compiler has proved
sound - the disk file 17O facilities were integrated without
undue complication and are functioning well. Code
performance has generally been excellent with only a
limited number of minor bugs being unearthed in the
compiler. There is still a restriction to use of RS-232 for
target code download but a move to Ethernet is
anticipated in the future - this has proved a little tedious.

Absence of an APSE

Time pressures prevented any significant evaluation of
APSEs other than having very quick look at GEC-
Marconi’s GENOS; perversely this probably rates as a
success in that despite the fact that we are using an ad-hoc
collection of loosely coupled tools and utilities, this has

allowed us to learn about the pitfalls withcut being

constrained by an APSE environment, many of which are
rigid or difficult to tailor.

Development Facility

This kas been a successful choice of equipment but the
complexities and management requirements of a growing
network of SUN workstations were underestimated. It
became clear very quickly after taking ownership of the
first three workstations that the management and
configuration of the equipment to achieve optimized
configurations for each software tool being used was a
considerable discipline in its own right, and required
dedicated staff. We currently have two to three full-time
software engineers dedicated to managing and steering the
growth of this compiex and it seems unlikely that this will
decrease with time, This overhead was not fully
appreciated or budgetted at the start.

Software Configuration Control

One of our current known omissions has been the
achievement of a Software Configuration Control process
that is as automated and integrated as we would like. This
is probably related to the APSE question since an APSE

‘would almost certainly have carried provisions for

Configuration Control.

We are however making effective use of manual
methods involving a general purpose database to hold
Build Lists. all Software Configuration Lists and
references to current and historical development files. The
files themselves are held separately in simple password
protected directories with access priviledges noted in the
database. This system works, given effective policing, but
is not appropriate in the longer term and is an area

requiring priority upgrading - hence this must be rated as
at least & half failure,

Re-useable Code

The principle of achieving code re-use through OOD
and Ada has been proved. The only incomplete success
really concerns the extent to which the project code being
produced is-truly emerging in a re-useable format and in
an OOD context; this in truth has proved to be very
patchy, the reason for this probably being that Codes of
Practice arrived too late in some instances and time
pressures did not allow the necessary re-work. This
problem was anticipated and is being addressed by
specifically reviewing the project code in parallel with the
development exercise in an attempt to spot key elements
of re-useability that might fail to be achieved if not
reviewed early in the design process - the success of this
exercise remains to be proven.

THE FUTURE

This project has been immensely valuable in
highlighting problems and pointing the way to solutions.
In Ada terms it has been instructive to tread our way
through what is still an immature market. There has been
no major problem in using Ada, but there is considerable
need to Hmit the use of Tasks and Generics to areas in
which the ‘cosis’ do not exceed the ‘benefits’, and
undoubtedly there are ‘real-time’ costs for the unwary.

We will be looking very carefully at the Design Tool
market - the ‘ideal’ AdaPDL design tool could merge
some of the Smalltalk Browser features with the ability to
define abstract data types and directly generate Ada code
from checkable AdaPDL, provided there is no undue need
for complex graphical representations.

Also at the Requirements Analysis end of the lifecycle
there is scope for a simplified tool, not dissimilar to that
required for design but without the rigour of AdaPDL,
with Traceability through to the Specification documents
achievable in:a ‘text only’ environment (Hypertext
possibly?).

With the correct tools in place to steer and control the
shape of the Apalysis and Design processes, the Ada skill
area could be focussed onto a smaller and more
specialized team to handle the effective mapping, or re-
mapping, of the AdaPDL solution onto code during the
implementation phase.

In the absence of the optimum tools, the above
philosophies can be implemented in the paper and pencil
domain but this involves an increased need for control
during the Analysis and Design processes.

if we manage to achieve any significant proportion of
our goal of producing a kernel of re-useable, well
documented and highly encapsulated code, we will need to
establish better machinery for making its existence known
across projects; the control and dissemination of this ‘high
value’ code is a problem yet to be fully addressed.

181.

The future existence of significant amounts of re-
useable code poses its own problems of security - we were
previously protected by the ‘its easier to réwrite than to re-
use’ attitude spawned by “distributed’ code. However with
re-useable ‘objects’, clearly defined and highly
encapsulated, the code suddenly has high re-use value
both internal and external to the Company - code security
now becomes doubly important.

IN CONCLUSION

1. Ada offers stability and sufficient of the good
things that it acts as a catalyst to the triggering of
more important fundamental concepts of
software design.

2. QOD is a very effective Design Mechanism for
simulation.

3. Encapsulation and defined ‘inter-object
interfaces’ is well handled by OOD and a critical
and necessary feature in the transition to re-
useable code. .

4. Code re-use is essential for survival in today’s
marketplace. S

5. Ada is complex and requires careful and
experienced use to avoid ‘real-time’ pitfalls.

6. Requirements Analyses and Design Tools using
AdaPDL should in future provide optimum
environments in which the majority of the Design

. team can work, remote from detailed Ada.

7. Semi-automatic (Steered mapping) from
AdaPDL to direct Ada code generation should
allow a small team of Ada skilled users to support
a much larger team of Ada applications
designers.

8. Entry costs are high for compilers, support tools,
workstations and training.

9. A high level of training is desireable if the
potential benefits are to be realized.

'REFERENCES AND SUGGESTED READING

[1] Pressman, “Software Engineering « A Practitioner’s
Approach™, Second Edition, McGraw Hill,

[2] Peterson, G.E., “Object Oriented Computing”,
Computer Society of the IEEE.

[3] Somerville, 1., “Software Engineering”, Third Edition,
Addison Wesley.

(4] HOOD Muanual, Issue 2.2, European Space Agency.

[5] Booch, Grady, “Object Oriented Development”,
IEEE Transactions on Software Engineering, Feb. 1986.

6] Welch, P.H., “A Structizred Technique for Concurrent
Systems Design in Ada™, Proceedings of Ada-Europe
International Conferencs, Edinburgh 1986, Cambridge
University Press.

182,

ABOUT THE AUTHOR

Peter: Baker is 2 -Consultant Engineer with Marconi
Simulation, having more than 20 years experience in the
development of software, mainly in real-time training
simulators. He is currently serving as the lead engineer on
Marconi Simulation’s drive tc enhance software
engineering techniques for military simulators and
trainers, this work building on previous experiencé in
designing and implementing sensor simulators for
Acoustics, Radar and Electronic Surveillance Measures
for a wide range of military and commercial trainers.

