RECONFIGURABILITY AS A SYSTEM DESIGN FEATURE

Sam R. Hollingsworth
Susan B. Hollingsworth
Daniel W. Miles

Hughes Simulation Systems, Inc.
Advanced Systems Faciiity
Minneapolis, Minnesota

ABSTRACT

Waeapon systems and their associated fraining devices must be reconfigured petiodically 1o meet evolving threats and take
advantage of new technologies. Changes can be expensive, and can lead to difficulties in maintaining training system and
weapon system concurrency. Such problems can be reduced if the need for reconfigurability is planned for early in system
development. This paper presents a general approach to providing user interface reconfigurability as a system design feature,
describes a specific architecture for reconfigurable Interactive systems {ARIS) that supports reconfigurability requirements, and
discusses applications and benefits of the approach. Under ARIS the appearance and behavior of a user interface are defined
in a database that can be created and modified without changing or recompiling underlying software. ARIS has been used in
the development of combat vehicle command and control simulations, an intelligence and electronic warfare consele, and an

embedded training delivery system.

INTRODUCTION

The user-system interface is one of the moest chailenging
and controversial areas in the design of modern weapon
systems. Contlicts often arise over the relative weight
that should be attached to ease of use versus ease of
developmaent.
engineers, and program managers often have
competing ideas about what constitutes an effective and
attractive user interface. User interfaces for computer
based weapon systems with complex display and
control requirements are particularly difficult to specify
completely and in enough detail to guide system
development adequately. User interface design
guidelines help designers avoid many serious problems,
but cannot provide praescriptive sclutions to specific,
detailed design problems, nor can they necessarily
resolve Issues of aesthetic taste. (4)

The MANPRINT initiative promises to improve the
- situation. (2) It emphasizes: the importance of early
design work and empirical testing and evaluation to
demonstrate that a system, including its user interface,
will meet performance requirements within the
manpower and personnel constraints of the system's
target audience description. Such precautions improve
the probability that a system wilt be fielded successfully,
without the requirement for immediate, drastic redesign
of the user interface. However, the MANPRINT process
must be continued throughout a weapon system's life
cycle because the systemn must continually evolve to
meet changing threats, doctrine, and personnel

' characteristics, and take advantage of technological -

advances.

This evolution is the stimulus for a reconfigurability
requirement. If reconfigurability can be made a system
feature, refinement of the system over time can proceed
smoothly. Unfortunately, evolution tends to be very
difficult if reconfigurability is not designed in from the
beginning, in part because of the rigid and close
coupling between software architecture and details of
the user interface. In many systems, user interface
changes, no matter how minor, require software

Software developers, human factors -

309.

changes. This leads to rigidity in the eveolutionary
process because users (or their MANPRINT
representatives) must specify the required changes and
communicate them to the software team who must .
interpret and implement them. Any changes that are
made must be documented in DOD-STD-21687A format,
potentially duplicating the initial effort by the MANPRINT
team to document the change requirements. (1) This
procaess inserts the. software team betweon the
MANPRINT team and the system configuration,
depriving the MANPRINT team of direct influence aver
the portion of the system for which they have the greatest
interest and responsibility.

Training devices and simulators suffer .an additional
problem because they cannot be fully designed until the
design of the operatioral system is complete. They alse
cannot he updatad until the features of any new system
capabilities are well defined. These time lags make
concurrancy between the training devices and actual
equipment difficult, yet training simulators must often be
available to train users beiore the first system is fielded. .

Our recent work in the development of crew display and
control testbeds, training simulators, and intelligence
and electronic warfare workstations for several Army
agencies has led us to address reconfigurability
requirements diractly. . The testbeds and simulators we
have developad have an inherent requirement to adapt
rapidly to design changes that cannot be clearly

- predicted. We needed a way to streamline the user

interface definition and implementation process
radically. The method we developed was to create a
database system in which the appearance and
dynamics of the user interface are stored in data files
that are separate from the software that interprets the
files. Most changes to the user interface are mada by
changing the database, not the software undetlying the
database.. Software extensions are necessary only
when fundamental new functional capabilities are
required. -

* Although our work was initiated in the context of

simulators and testbeds, it has become evident

that our approach to reconfigurability is equally
appropriate for operational weapon systems and for
training devices. The approach enables system
designers to separate underlying system-specific
functions (e.g., radar signal processing, fire control,
command and control) from the interface features that
give the users access to the functions. ‘Development of
the functions and the user interface can then be
performed by separate software and MANFRINT teams.
The teams may focus on separate issues and, to a large
extent, operate in parallei with one another.

In the remainder of this paper we discuss the major
characteristics of a reconfigurable architecture, offering
our implementation as an example of how
reconfigurability can be achieved as a design feature.
We then discuss how this approach can speed the
development process by enabling software development
and user interface development 1o proceed in parallel.
Finailly, we . discuss the implications of such an
architecture for embedded training and configuration
management.

FEATURES OF A RECONFIGURABLE
ARCHITECTURE

General Mode! of interactive Systems

The basic input-process-output model shown in Figure 1
can be used to depict the transactions that occur in an
interactive system. The user provides input to the
system, the input is processed, and output Is generated
giving feedback to the user. The input and output blocks
in this mode! represent the user interface portion of the
system. The goal of a reconfigurable interface
architecture is to build in as much separation between
the software used by the process and the software used
to create. the user interface. |If a high degree of
separation is achieved, the system can be decomposed
into two distingt modules that can be independentiy
designed, built, tested, and documented.

' et
Cutput
Process User Interface User
(ot)
L J
Figure 1. General model of interactive Systems.

The user interface portion of a system can be further
divided into content, interaction, and execution layers
{Figure 2). The content layer includes the text, graphics,
sound, and cther forms of information presented to the
user, determining the "look” of the interface. The "feel” of
the interface is determined by the interaction layer,
which defines the behavior of the system in response to
user inputs and other events. The combination of the
"look™ and "feel" of the interface determines the "user-
friendliness” of the system.

310.

-occur at any level.

r User Interfac?

g

Content

Application User

Interaction

<

Execution .
\ A
Figure 2. General model of the user interface.

The exgcution layer includes the software to make the
interface operate in conjunction with the application
program. This layer connects specific functions in the
application program to corresponding functions in the
interface module, manipulates the components
described in the content layer, and operates on the links
defined-in the interaction layer.

With this model, reconfiguration of the user interface can
Changes at the content and
interaction levels diractly affect tha look and feel of the
interface. Changes made at the execution level affact
the performance characteristics of the interface, but may
not directly affect look and fesl.

Traditional Architectures

Jn a traditional architecture (Figure 3) the content,
interaction, and execution layers. of the intsrface are
contained (hard coded) in softwars. Often the interaction
between components of the interface is entwined with
the code used to execute the various interface
components. Changes to any. one of the layers come
with the expense of using seftware engineers to design,
-medify, debug, test, and document changss to the code.
In this situation, reconfiguring the human intetface is
driven "and limited by the feasibility and cost
effectiveness of the software engineering effort.- 1f the
originai software author, or someone who has
experience maintaining the system, is unavailable to

- support the reconfiguration effort, the costs involved may

become prohibitive.

r ™)
User Interface

—

Application User
2 . ‘_
(Exocuton]
(L —)
Figure 3. Traditional architecture: Content,

interaction, and execution layers are hard
coded.

Toolbox Architectures

Toolbox archilectures standardize the interaction of the
interface by providing pre-coded software modules that
can be used by a variety of applications. The content of
the interface is contained in a database that is accessed
by the toclbox modules (Figure 4). Properly
implemented, a toolbox architecture meets soms of the
reconfigurability requirements by allowing the content of
the interface to be changed without changing software.
However, the toolbox approach can make the process of
going beyond the bounds of the toolbox difficult.
Changes in the general appearance and behavior of
toolbox elements themselves may not be feasible
without significant software engineering support.

{ User Interface

IH s

Content

Application

i
LA

Interaction

[

Execution

Figure 4. Toolbox architecture: Content is in &
database; interaction and executicn layers are
hard coded.

Reconfigurable Architectures

In a reconfigurable architecture (Figure 5), both the
content and the interaction layers of the intarface are
contained in a database.. This method goes cne step
forther than the toolbox architecture by allowing changes
to the content and changes to the interactions between
components of the interface, both without software
maodification.. This allows the interface designer to tailor
both the look and feel of the interface to meet system
requirements, and to revise the interface as feedback is
received from system users. Software modifications are
not required unless new capabilities are needed in the
execution layer.

' Ty
User Interface

' Content
Application User
Figure 5. Reconfigurable architecture: Content

and interaction are contained in a database;-
only the execution layer is hard coded.

311,

PARALLEL SOFTWARE AND USER INTERFACE
DEVELOPMENT

One of the major advantages of a reconfigurable
architecture as described above is that it enables
separate sofiware and MANPRINT teams with separate
slgllls and objectives to wark in paratlel with cne ancther,
with minimal communication requirements between the
tearns.” The role of the software team is to provide

" underlying system capabilities, whereas the role of the

MANPRINT team is to configure the capabilities into a
specific implementation that conforms to mission

- requirements and user capabilities.

Coloris one example of an interface attribute that can be
supported in general through software development but
selacted and integrated by MANPRINT specialists.
_Softwarg engineers generally have no professicnal
interest in the actual color of specific display objects;
their expertise is focused only on ensuring that multiple
colors are available, - MANPRINT engineers, however,
are directly concerned with selecting the proper colors.
With parallel soitware and MANPRINT teams operating
as independently as possible, it is feasible for the
MANPRINT team to explore alternative color schemes
before seitling on one, without disturbing the software
team that is working to provide the general color .
capability.

Similarly, the MANPRINT team may need a variety of
display objects such as buttons, pull-down menus, pop-
up windows, text fields, and slider bars to create a user
interface. The software team can make such objects
available without being concerned with the appearance
of the objects or the functions associated with them.

We have found the parallel approach to be effective in
the development of user-centered interface designs. We
can avoid the strictly serlal process in which the
MANPFRINT team develops a design, hands off a
specification to the software team for implementation, -
and then raviews the result before another iteration of
the process. . (nstead, the MANPRINT team can use the
rasources created by the software team to implement the
user interface directly. This reduces the serial
dependencias between the teams, and permits each
team to focus on what it does hest.

Not all serial dependencies are removed, however.
Indeed, we tave encouraged an active dialog between
the teams during system development as the MANPRINT
engineers refine functional requirements for general
capabilities that are not yet fully developed, or as
software engineers provide detailed guidance in the use
of the general capabilities to create specific effects.
Additional communication is required in the
development of the most flexible definitions possible for
system-spaecific functions such as radar imagery display
manipulation. The dialog produces synergy between
the MANPRINT and software teams that would be
difficult to achieve in a more conventional environment
in which the software team must be involved in the most
minute details of the implementation of the user
interface.

The benefits of parallel MANPRINT and software
engineering activities are significant in terms of cost and
schedule, but there are additional benefits related to
weapon system and training system evolution and

concurrency when the weapon system and the training
system both are constructed with a recontigurabie

architecture. - The shoriened, less costly changs
implementation cycle maans that user interface
enhancemsents may be defined, implemented, and
tested much mare rapidly than is usually possible, both
in the weapon system and the training system. In fact,
candidate revisions may be implemenied first on the
training system and tested under simulated conditions
before the revisions are implemented on the weapon
system—that is, the training system can lead the weapon
system instead .of lagging it, and can serve as a
developmental testbed (within the constrainis of the
training scheduls, of course). The shortened
requirements-impiementation-test schedule actually
encourages - experimentation . and incremental
improvement or tailoring of the system to changing
operational needs.

EMBERDED TRAINING APPLICATIONS

An embedded training system is a training capability that
is embedded in operational equipment. Embedded
training makes operational equipment serve as its own
training deiivery system. Using embedded training, the
student receivas training information via the equipment
displays and enters information into the training system
by directly manipulating the controls on the equipment.

Embedded training represents a unique opportunily to
apply a reconfigurable architecture. By defining
embedded training in terms of interfacs elements, the
training can be decomposed into the three layers of
content, interaction, and execution found in the general
model for a reconfigurable interface architeciure.

From a training viewpoint the embedded training system
must ba capable of presenting lessons in a vatiety of
formats such as drill and practice, tutorials, simulations,
scenarios, and testing. In addition, embedded training
lessons must make use of the input and output devices

. found within the equipment to respond to general

student inputs, such as answers 10 questions, and to
respond to stimuli coming from the squipment systems
and devices.

This generalized view means that an embedded training

- delivery system must mest the following requirements:

(1} Process user input and system output using the
displays and controls avaiiable on the equipment.; (2)
produce text, graphics, and audio outputs; {3} simulate

components found in the equipment and events
ocecurting in the operational environment; (4) interact
with equipment components and subsystems; (5)
monitor and record student performance.

Using the reconfigurable architecture and an object
otiented design approach we created a multipurpose
courseware delivery system {MCDS} module that can be
ported to a- variety of systems and equipment. The
MCDS is primarily the execution layer of ARIS. This
layer contains objects that correspond to specific
functions contained in the operational equipment which
must be custom built for each system, and reusable
training medules and low-levet device drivers.

Following the ARIS approach, external data files are
used for the content {graphics, text, audio, etc.) and the
interaction between objects contained in the content
layer. For example, a frame of training Is defined in the
database as a set of graphics, text, and data for the
system to dispiay ({the content layer). The database aiso

31z,

contains commands to invoke the appropriate training

objects that present the content, record student
responses, and branch to the next frame.

Using a reconfigurable architecture as the basis of an
embedded training delivery system has several key
advantages: (1) Lessons are contained in external data
files that can be created and maintained by training
specialists rather than by software engineers; (2)
authoring tools can be devaloped to assist training
designers in generating text, graphics, and audio for a
lesson; (3) the separation of the lesson data files from
the embedded training software allows integration of the
MCDS and the operational equipment while lessons are
being developed; (4) lessons can be changed after the
embedded training system is integrated with the
operational equipment; (5) lesson development can
use a systoms apptoach {design, implement, evaluate,
and revise) to experiment with alternate training
approaches and styles; (6) the human interface to the
embedded training system can be reconfigured to aid in
system integration and take advantage of feedback from
the system users. These features combine fo provide a
flaxible training system and efficient training
development based on sound system engineeting
principles. .

CONFIGURATION MANAGEMENT
* An additional benefit of the separation of the MANPRINT

and software engineering efforts permitted by ARIS is -

that configuration management and documentation
requirements can be streamlined. The management
and control of changes o software configuration items
during initial development and throughout the life cycle
of rapidly evolving weapon systems'is typically a major
effort. 1n a traditional softwars architecture, the user (or
MANPRINT team) requests changes to the system. The
software team transiates the requests into software
requirements and subsequently into sofiware design
and code changes. During this process, software
documentation in accordance with DOD-STD-2167A (1),
MANPRINT documentation in accordance with MIL-H-
468558 guidance (3), and other logistics suppert
documentation must be updated to reflect the new status

- of the design.

‘Much of the translation process can be eliminated with
an architecture such as ARIS. Many changes {0 the user
interface can be made diractly by MANPRINT specialists
without intervention by software engineers. By
eliminating the software translation step from the
process, the integrity of initial change recommendations
is easier to maintain. Moreover, the overall amount of
documentation required for the changes is less because
ne DOD-STD-2167A (1} revisions are needed.
Consequently, configuration managemsnt for the user
interface can be confined to MANPRINT documents, and
may be separated from sSoftware decumentation. It
should be noted that the streamlining of the
configuration management and decumentation process
pays additional benefits because it applies both to the
weapon system and to the training system,

CONCLUSION

In this paper we have argued that reconfigurability can
be specifically identified as a system attribute and
requirement. Doing so can-have the benefits of (1)
streamlining the system development and maodification
process by encouraging MANPRINT and software

- enginearing teams to work synergistically in parallel; (2)
facllttatlpg the MANPRINT process, thus improving the
gdaptqt:on of weapon systems to their users: (3)
improving the concurrency of waapon systems and their

* training system; {4) providing an avenue for the direct -

support of embedded training; (5) reducing the
configuration management burden usually assoclated
with changes.in the user interface.

ARIS is presented as an example of a system that
provides the required reconfigurability. A major
charactaristic of ARIS is that it enables system designers
to develop a database defining the appsarance and
behavior of the user interface for complex weapon
systams. The interface may be modified extensively by
changing the database but without modifying the
. underlying system sofiware. If new software capabilities
are required, their development is accelerated because
they can be implemented without attention to details of
the user interface.

ARIS is similar to toolbox systems that are becoming
available, but it retains a greater degree of flexibility in
tarms of the graphical appearance of intarface objects,
their response to user inputs, and the degree of access
that is provided to underlying system variablas and
conditions. Such flexibility is vital poth for simulating
systams that.are already fislded and for developing
advanced new concepis for which there are no
precadents.

REFERENCES

(') DOD-8TD-2167A -- Defense System Software
Development.

(2) Ketchie, Gary. J., Hollingsworth, Sam R., and Busch,
Tamara L. "MANPRINT Implementation Model."
Proceaedings of the 1989 National Aerospace -and
Electronics Conference, pp. 804-810.)

313,

: i
1986.

(3) MIL-H-46855B -- Human Engineering Requirements
for Military Systems, Equipment and Facilities.

%) S_mijh, Sidney L. and Mosier, Jane N: Guidelines for
re, MITRE Corporatior,

ABOUT THE AUTHORS

Sam Hollingsworth is the lead human factors engineer
in the Hughes Advanced Systems Facility. He has

contributed to the development of ARIS and has
championed its use in a broad range of applications.- Ha
helds a PhD in experimental psychology and an MS in
software engineering.

Susan Hollingsworth is a principal software engineer in
the Hughes Advanced Systems Facility, and the iead
architect for ARIS. She holds an MS in software
engineering and a BS in computer science.

Danisl Miles is a- systems enginear in the Hughes
Advanced Systems Facility. He has contributed to the
design and implementation of ARIS, and has led iis
application to embedded training. He halds a BS in
computer based education.

