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ABSTRACT

The quality of large tactical team trainers, ranging from embedded trainers to classroom trainers, will be
enhanced by the inclusion of expert system tools that ease the burden on the instructors. Such tools will
increase both the quality and efficiency of training exercises by freeing up the instructor’s time previously
spentrole playing for the missing student(s). We presentan-architecture for an expert system-based tool, the
Surrogate Student, which replaces missing teams or team members. A prototype version of the Surrogate
Student has been developed to model a generic passive Towed Array Sonar(TAS) operator in a Naval Anti-
Submarine Warfare (ASW) training scenario. The system analyzes raw sensor data and emulates the action
and thinking processes of a human sonaroperator. The prototype has been interfacedtoa complex distributed

training/simulation environment by simply adding another node to the existing Ethernet network.

Introduction

The growing complexity of modern teamn trainers
has established the need for intelligent software
tools to assist instructors in providing quality
training. Such tools will assist the instructors by
easing the burden of both coordinating the exercise
as well as substituting for missing students. Expert
system-based tools, which provide missing team
member substitution and intelligently controlled
platforms, can enhance the quality of tactical
training devices. Such tools present students with
adynamic,responsive training environment while
relieving instructors from unnecessary duties,
thereby allowing them to perform their primary
function: teaching. These tools can also be applied

to embedded training applications by substituting
for entire missing operator stations. Sanders has
developed such an expert system based prototype,
the Surrogate Student, under an IR&D project.

The objectives of a generic Surrogate Student are
to provide, through Artificial Intelligence (AI)
software methods, substitutes for missing team
members in a tactical team training environment,
and missing operator stations forembedded training
applications. AsFigure 1 shows, anexpertsystem-
based Surrogate Student must be capable of
adequately performing the functions of the missing
operator so thathis (or her) absence does not affect
the exercise, nor require an instructor to play the
part of the missing student. These objectives must

Figure 1. Teamn Member Replacement




be attained while adhering to another broad set of
requirements. The completed system must be as
generic as possible to fulfill the role of any team
member in a variety of training domains (e.g.
naval, battlefield, orairtactical), The initial results
of a Surrogate Student should be capable of being

“incorporated into alarger context, thatof replacing

an entire irainee team, thus supplying the
fung:tionality of a simulated station, Finally, the
basic architecture must be easily extensible to

allow modnlardevelopment of an initial prototype.

Our goal in developing our first prototype was to
fulfill the requirements of the generic Surrogate
Student. Our first candidate for substitution was a
passive towed array sonar operator onboard a
Naval Anti-Submarine Warfare (ASW) platform.
Theknowledge applicable to this particular domain
was acyquired through a process of interviewing
experts in the field of passive sonar operation. This
knowledge was then translated into rules in an
expert system - shell. The Surrogate Student
architecture was based on a layered rule-base with
each layer attributable 1o a certain furiction, or
level of abstraction. Further, the Surrogate Student
has been designed as a state machine, with each
state representing a mode of a trainee’s operation.
Such an approach, in addition to being easy to
implement, permits modifications and
enhancements to be carried out very efficiently. It
allows complex abstractions and ideas tobe mapped
into the problem space in a structured way.

This paper provides a historical perspective of the
evolution of the Surrogate Student; It discusses the
architecture and implementation of our first
prototype system. The requirements and goals of
2 Surrcgate Student are analyzed both from a
generalized point of view and from the detailed
perspective of our specific problem. We address
the issues involved in implementing our first
prototype and discuss the steps we took tointegrate
the expert system-based Surrogate Student info a
tactical training device. The results ¢f the first
prototype are discussed and future enhancements
for the Surrogate Student are suggested.

History

The foundations of Surrogate Student concepts
are evident in the areas of autonomous control,
real-time Al/expert systems, and operator
modelling, as well as some work on intelligent

-student substitution. Autonomous control

addresses issues of creating independent agents
thatcan exist in uncertain and continually changing
environments with little or no supervision. Real-
time Al deals with the problems in interfacing AL
based software with real-time software. Operator
modelling is the process of understanding the

behavioral aspects of operator functionality and
attempting to replicate it. Surrogate Student is an
integration of these ideas resulting in a highly-

- effective training tool.

In an earlier autonomous control project Katcher!

“developed an antonomous simulated: hostile

submarine that modelled the decision making

- process of an enemy submarine commander, This

expert system was designed with a hierarchical
architecture. Evers, ef.al.? address some of the.
practical aspects of implementing expert systems
into real-time environments. The computation
required to manage a real-time control problem is
primarily concerned with routine calculations
which must be executed in real-time. Typical
expert systems cannof be forced to operate under
these same time constraints. The expert system
and the real-time environment must be separatéd
in order for the interface between the two to work
efficiently. Although this is highly application-
dependent, Evers defines general principles that

- provide an efficienf functional separation. Madni,

et.al.? discuss-the importance of incorporating
different” opponent behaviors for challenging
modern tactical decision-makers in a simulation
environment, They point out several drawbacks to
current software implementations of tactical
threats/targets, such as not being able to represent
decision-making behavior of enemy tacticians,
and not taking into account the training objectives
of trainees. They describe how they developed
knowledge-based techniques for modelling and
controlling  the opponent’s behavior. Zivovic*
developed a generic model to simulate the decision-

- _making process of a Tactical Action Officer (TAO)
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using an expert system. He demonstrates how a
knowledge-based approach can be used to frain
student TAOs. Recentwork instudentsubstitution, .
such as that of Pasewark® focuses on using expert
system technology to ease the workload of role
players in a simulation environment. He shows
how expert systems can be made toautomate some
low level decisions made by a role player in a
simulation.

Analysis

The goal of our Surrogate Student project is to
develop, using expert system technology, a tool
that can be used to substitute for missing human
operators in a team training device. The surrogate
operator must be capable of adequately performing
the functions of the missing operator, without
allowing the student’s absence to be felt by the rest
of the trainee team. In order to provide a complete
emulation of a human operator, the Surrogate
Student must possess a skill level commensurate

- with the entire team, and be able to communicate

with other team members in a manner similarto a



real operator. The Surrogate Student should provide
a generic template upon which an entire class of
substitute operators can be created. To achieve
these goals, the Surrogate Student design allows
the high level functionality to be logically separated
from the details of the implementation, permitting
a broad spectrum of problems to be solved using
the the same higherlevel design. The higher levels:
represent generic functions that are commeon fo a
class of problems, while the lower levels embody
the details of the particular problem. This way, the
design neatly decouples the problem-dependent
and the problem-independent parts. Such an
architecture can be extended to various operators
in different domains. by simply modifying the
lowerlevel functionality. Furthermore, acollection
of Surrogate Students can be made to replace
entire teams in embedded training applications.

For our particular implementation of the Surrogate
Student, we chose to simulate the actions and
decision-making processes of a passive sonar
operator onboard a surface ASW :platform. We
chose this particular operator because the passive
sonar operator does not have an excessive amount
of interaction with other team members, thus
limiting the voice communication interface and
permitting operation in a stand-alone mode. Note
that for the first prototype, real voice
communications using veoice recognition and
synthesis was avoided in favor of concentrating
on the core expert system. In addition, the
simulation software for this operator station was
readily available from the Sanders Device 14A12
Surface ASW Trainer program. This software
offers a very high fidelity data simulation of a
generic passive sonar. For our first prototype, we
restricted the scope of our expert system-based
operator to be able to handle just one target, or
threat platform. In this way, we were able to
thoroughly study the problem at hand in a limited
context, before proceeding to more ambitious
endeavors involving multiple platforms.

The expert system-based Surrogate Student goes
through the setup, search, detect, classify, and
track phases of a passive sonar operator’s duties,
while maintaining communication with the sonar
supervisor and other team members. Af first, the
operator must setup the passive sonar variable
parameters and then search for, or ‘listen’ to, the
simulated acoustic energy impinging on the towed
array. After the detection of initial acoustic
patterns, (i.e., frequency lines on a lofar display
format), the operator tries to classify the source of
this acoustic energy based on frequencies detected,
harmonic relationships, mechanical coupling
ratios, and relative amplitudes. After initial
classification, the operator continually {ries to
Jjustify the initial classification until directed to
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track the target by the supervisor. During the
tracking phase, the operator supports Target Motion
Analysis (TMA) on the targei in an attempt to
estimate its range, bearing, speed, and depth. This
continues until the contact is lost or the sonar
supervisor directs the operator to stop. During the
course of the exercise the operator has to interact
with the console’s peripherals, in our case, a
trackball with switches, a keypad, and a pair of
touchscreens. The operator uses the frackball to
position the frequency and bearing cursors over
desired locations on various sonardisplay formats.
Thekeypad is used to enter numbers in response to
queries made by the station software. The
touchscreens are used by the operator, in
conjunction with the passive sonar software, toset”
up parameters, choose sonar display formats, and
select display options. The passive sonar operator
also interacts with other team members and the
sonar supervisor, by reporting observations and.
receiving instructions on an ongeing basis. -~

The expert system-based Surrogate Student must

-enmulate the functionality of a passive sonaroperator

as described in the previous paragraph. The
Surrogate Student accomplishes this goal through
a process of -interacting with the simulation
software’s data structures. The Surrogate Student
must also interact with the operator’s peripheral
devices, manipulating them in such a way as fo
provide the functionality of a live operator at the
missing student’s console.

Architecture

As shown in Figure 2, the Surrogate Student
architecture is logically divided info three main
parts: the simulation module, the Decision Making
Module (DMM), and the interface between the
two, the communication module.- The DMM,
consisting of the expert system and Data
Acquisition Routines (DARSs), is the cognitive
part of Surrogate Student. The expert system’s
database contains knowledge specific to the
problem in the form of: ‘if: <conditions> then:
<actions>" type rules. The expert system gathers
information from the simulation module via the
communication module, and places that data into
its memory elements, referred to as its frames. A
part of the expert system, the inference engine,
continually attempts to satisfy these rules based on
data contained in its frames. The DARs, upon
command from the expert system, examine sensor
data present in the simulation module and pass
back filtered data to the expert system’s frames.
Thus, the DMM can be thought of as being
distributed, with the expert system working in
conjunctionwith the DARS toprovideanemulation
of how an operator extracts and processes sensor
data.



Surrogate Student uses data structures to store and
transmit massive amounts of simulation data. The
entire system depends upon information stored in
these data structures on both the expert system side
and the simulation side, as illustrated in Figure 3.
The simulation data structures contain information
on the state of the operator, what data he (or she) is
currently ‘looking’ at, as well as information that is
derived by the operator. The expert system-based
sonaroperator has tosift througha lotof unprocessed
sonar data. Therefore, these data structures were
designed to be easily accessed by DARs and to
properly represent the state of the operator’s mind.
Inaddition, ‘stuffing’ these structures forcompaction

Figure 2. Surrogate Student High Level
Software Design

and transmuttal corresponds to a human operator
reducing and manipulating this data. The algorithms
used to do this cannot be too mechanistic, or
‘computer-like’, which would make the process
seem artificial. ‘This filtering mechanism is an

extension of the operator’s level of expertise in
the sense thatdifferenfoperators extract patterns
and perceive raw sonar data in different ways.

Surrogate Smdent, at a high level of abstraction,
can be thought of as a state machine. Each state
represents a different mode of operation of the
student, as shown in Figure 4a. There are a setof
rules thatconfrol state transitions, whichrepresent
how and under whatconditions the operator may
move to another state. Superimposed on the state
‘machinerepresentationis the Surrogate Student’s

. hierarchical framework; as illustrated in Figure

4b. There are three levels of abstraction, with
each lower level representing a higher degree of
detail about the particular implementation. The
following describes the functionality withineach
hierarchical level:

LEVEL 1 describesthehighlevelstates,
and a valid set of transifions between
them. It defines the preconditions tomove
from. state tostate. This can be thoughtof
-as a high level control layer that directs -
the interaction between different states
of Surrogate Student.

LEVEL 2 "describes eachmodelled state
in detail. Each state is described in terms
of a flowchart, or map, representing the
actions and decisions an operator goes
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Figure 3. Surrogate Student Data Structures
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through in that state. Some aspects of
communication are also embodied in this
level of abstraction.

LEVEL 3 can best be described as an
“implementation” layer. This is where all
the interaction between the decision-
making rules and expert system frames
occurs. All the calls to the data acquisition
and manipulation routines are conducted
at this level.

Each state, at every level, was designed in two
steps: first, in terms of what its function is, and
then in terms of how it interacts with other states.
Such structuring was important not only from the
point of view of ease of development and

debugging, but also for expansibility. Using this

design methodology, one can place additional
states intothe implementation with ease. Additional

prlng
Within State

Figure 4b. State/Machine Hierarchial
Representation’
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states would represent new modes of operationfor

the Surrogate Student. Hierarchical design permits
us to conceal the low level details of the design
from higher level abstractions. The higher levels
represent generic functions that are common to a
‘class’ of problems, while the lowerlevels embody
the details of the particular problem. In this way,
the design neatly decouples the problem-
independent part from the problem-dependent part,
Also, additional layers can be placed atop the
existing ones torealize higher levels of abstractions,
for example, a control layer that could handle
multiple contacts.

Implementation

The Surrogate Student prototype was implemented
across a distributed MicroVAX-II network as
shown in Figure 5. The MicroV AXes, running the
MicroVMS operating system, communicate via
an Ethernet Local Area Network (LAN). The
presentsystem containg two consoles and a total of
four computers. Each console consists of a
computer, two high-resolution color displays, and

- a set of peripherals (touchscreen, trackball with

switches, keypad). The instructor console runs the
software to coordinate the entire exercise, along
with platform validation software to verify the
behavior of each platform. From this console a
user can control the state of each platform and its
dynamics through a Tactical Sifuation Display
(TSD), and a set of interactive menus. The TSD
graphically presents information about all the

" platforms in the exercise, and permits the user to

display the detailed state of any of the platforms.
The sonar display processor (DP) console runs the

- software used to display and manipulate sonar

information in a rumber of different formats. The
auxiliary processor (AP) is responsible for the
acoustic modelling of each platform given its
current operating parameters (e.g. speed, depth,

- 1ange). The expert system computerruns Nexpert-
- Object , our expert system, along with its entire

knowledge base that comprises the cognitive part
of Surrogate Student. The expert system computer
communicates with the sonar DP computer via
utility routines. The expert system passes control
information to either emulate the use of one of its
peripheral devices (i.e. trackball, trackball switches,

" keypad, or touchscreens) or request sonar acoustic

information. The sonar DP returns data to the
expert system via utility routines that deposit data
into its frames.

The expert system, through a process of matching
the contents of its continuously updated working
memory with its rules, decides the course of action
for the student to take. The expert system can
either initiate an action or request a particular kind
of data. Actions correspond to the manipulation of



sonar operator controls such as touchscreens,
trackball, trackball switches, and keypad. Requests
for data correspond to acquisition of sensor
information viathe DARs. The following describes
scenarios of both cases. The expert system may,
for example, decide to change one of the sonar
display formats. It does this by issuing the
appropriate command through a communication

Sonalysts, Inc., a consulting firm specializing in
sonar operations, served as our domain expert and
helped us to devise a comprehensive model for the

-passive towed array sonar operator. The operator
modelincluded various aspects of communication,

behavior, and decision making. The
communication model covered the interaction
between the passive sonar operator, other operators,

INSTRUCTOR STATION BUSF:JI',\‘SA%A")TEESRTAI_P‘EQIT
w1 WEHLE TOWED ARRAY SCNAR ¢ MODELR 4
OPERATOR STATION cPEAATOR | SuPERISOR
TACTICAL REFOATE GOMMANDS
s S
K )
FONAR
. —= DISPLAYS
DRIVER
WicraVAd - MieravaX
INSTRUCTOR SONARA
R [ it
— = L

Figure 5. Surrogate Student System Configuration

task, along with the appropriate parameters. The
software onthe DP computerreceives the cornmand
and manipulates the sonar data structures in such
away as tosimulate the activation of a touchscreen
area which executes the corresponding function.
Another example would be that of the expert
systemdeciding that it wants to move the trackball
to position the frequency cursor over a particular
detection, orenter a number on the sonar console’s
keypad in response to a query. These actions are
also executed in the manner described. above.
Another class of tramsaction is that of data
transmittal from the sonar environment to the
expert system. The Surrogate Student requests
data in the same manmner as described above. Such
arequest for data triggers the appropriate DAR on
the sonar side. The selected DAR extracts. and
filters the data, then sends information back to the
expert system. This data gets examined
periodically, manipulated, and then deposited into
the expert system’s working memeory.

Theknowledge baseforthe Surrogate Student was
developed throughaknowledge engineering effort,
which can be defined as the process of gathering
information about the :problem from a domain
expert, and capturing that knowledge in the form
of expert system rules. For our first prototype,
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and the sonar supervisor, for the purpose of relaying
instructions - and reporting observations. The
operator’s behavior model was constructed via
analysis of operator guidelines for a typical passive
towed array sonar. This model defines the actions
and decisions to be taken by the operator under
various conditions and phases of the mission. The
decision-making model contains all the domain-
specific information about the sonar operator.
This information is highly dependent on the skill
level of the operator being modelled. Factors
affecting student performance in this model are:
experience, intelligence, ambition, and  attitude
{confidence).

After the operator model was compiled, we
translated this knowledge into “if-then’ type rules
inthe generic syntax of atypical expertsystem. By
not translating these rules into the specific syfitax
of aparticularexpertshell, we were able.to maintain
English-like ‘pseudo-rules’, easily fransformable
into the context of a specific expert shell. Once we
selected our expert system shell, Nexpert-Cbject,
we ‘were easily able to enter these rules into its
knowledge base. Theinitial knowledge engineering
effort vielded about 120 rules. This expert shell
has a very powerful user interface, which permits
different components of the knowledge-base to be



seen and manipulated graphically. Nexpert-Object
is an object-based expert shell which provides a
rich set of primitives with which to represent the
problem space. It provides integrated backward
and forward chaining inference strategies which
can be changed from the rules themselves. It also
has a very powerful interface to external routines,
which allows interfacing the expert system to
user-developed application code, Furthermore,
the expert system can be totally controlled from
external routines, providing a framework for the
creation of powerful applications. Figure 6 shows
an example of part of the Surrogate Student rule
‘basedisplayed through the Nexpert-Object graphic
rule network interface.

.The Surrogate Student and Device 14A 12 modules
arelogically divided into distinct parts. The Device
14A12 subsystem can run in a stand-alone mode
with the Surrogate Student tasks ‘switched off’.
The GPX workstation is dedicated to the Decision
Making Module (DMM) of Surrogate Student.
Only one other computer on the LAN has the
Surrogate Student tasks and data structures resident
on it: the sonar display processor (DP). These
tasks, which are still logically separate from the
Device 14A12 system, are responsible solely for
communications to and from the expert system.
This clean division of software was important in
creating an architecture that is not dependent on
any particularimplementation, butinstead provides
a generic template for a Surrogate Student.

Evaluation

This section discusses the evaluation of the first
Surrogate Student prototype. As a typical training
exercise is run one can observe the Surrogate
Studentas it progresses through its different states
and carries out the corresponding functions in
every state, The supervisor first gives instructions
to the Surrogate Student to setup the sonar console,
at which point it initializes sonar parameters (i.e.
cable scope length, time constant). The Surrogate
Student then enters the search state in which it
monitors the Narrow Band and Broad Band display
formats. for contacts. The Surrogate Student first
observes the OwnShip signature in order to
discriminate from contact acoustics. Once a
possible contact pattern is detected, the Surrogate
Student enters the detect state in which it tries to
ascertain, based on the limited data available to it
sofar, whether the signature is being generated by
a friendly or threat platform. For this it relies on
apriori heuristic knowledge embedded in the expert
system rules. At this point the Surrogate Student
makes the appropritate screen selections and format
changes to further analyze data before proceeding
tothe classification state. In the classification state
the Surrogate Student tries to put together 4ll the
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sensorinformation ithas gathered so farand classify
the contact based on its knowledge of paltform
acoustic signatures. Once an initial classification
has been made, the Surrogate Student keeps trying
to refine it based on newly aquired sensor data.
Once the Surrogate Student reaches a certain level
of confidence about the classification it proceeds
to the tracking state in which it monitors changing
sensor parameters. [t continuously tries to correlate
these changes to platform maneuvers (e.g. speed,
depth, and range changes). If it loses track of the
contact itreinitiates the entire process, otherwise it
continuously tries to get a better picture of contact
maneuvers based on new data,

The actions and decisions of the Surrogate Student
are communicated to the supervisor through a
graphie interface, providing him with information
about the contact. The Surrogate Student
continuously explains its behavior including its
decision making process, its reason for taking a
certain action, and why it fired a given rule. On
looking at the sonar screens, one can see the
Surrogate Student going back and forth between

. different display formats, moving cursors to

position them over suspected contacts, and keying
in numbers in response to queries.

The expert system's inference engine processes
new data and fires rules at an extremely rapid rate
approaching real time (i.e. the expert systen: is
aware of and reacts to changes in the simulation
data immedeately). In fact, we had to insert time
delays io slow the process down and give the
impression of a real human operator using the
sonarconsole. Repetitive and algorithmic functions

‘that were initially implemented as rules - were

migrated to external routines in order to make the
entire process more efficient and streamlined. This,

in addition to NEXPERT's efficient pattérn-

matching vocabulary, reduced the total number of
rules from about 120 to about 90. The overall
quality of a knowledge-based system cannot be
judged alone by the number of rules present in its
knowledge base. Itis the combination of a powerful
set of rules and external routines that fogether
contribute to the effectiveness of an expert systém.

The Surrogate Student is now ready to be formally
evaluated by passive sonar experis to assess its
effectieness in modelling a human operator froma
highlevel, behavioral pointof view. The Surrogate
Student will be tested with a variety of different
scenarios that will include threat platform and
OwnShip maneuvers (e.g. speed, course, range,
and depth changes). Such maneuvers can be done
interactively by using the Insfructor station menu-
driven software. The acoustic patterns of some
threat platforms will be modelled so that certain

_ components appear and disappear at different times
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during the exercise. The Sirrogate Student's ability
to handle lost contacts, and subsequently regain

- them will also be fc)nnally tested. Again, because
“of Surrogate Student's graphic interface, this

process will be simplified.
Conclusions

The Sanders Surrogate Student provides an
inmovative approach to solving the problem of
missing team member substitution. This approach
promises to reduce demand on the instructor’s
time while providing a high quality replacement of
a frainee operator. The Surrogate Student was
designed so that enhancements and modifications
are very simple. The hierarchical approach to

knowledge base design permits the complete
design and testing of one layer, before moving on
to the next. In this way, the lower level rules that
embody the implementation details can be hidden
from higher level abstractions in the upper layers.
The state machine representation within each layer
pernuits functionality to be added to a given layer
in amodular way. One first defines anew state and
its inner functionality, and then designs the
interface to other states. The final step is defining :
how the systemn will fransition between this state
and others. Using this general methodology,
complex ideas and representations can be easily
mapped into the problem space in a structured
manner.
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The Surrogate Student is not confined to the
~ hardware used in its first prototype. Given the
hierarchical approach, the lower level routines
that communicate with the hardware can be
- replaced/modified to match the specifications of
the targeted platform. The expertsystemknowledge
base, presentin compiled ‘C’, can be easily ported
to another hardware platform/operating system.
All the routines that communicate directly with
the expert system make use of Nexpert Al-kernel
calls, which are entirely hardware/operating system
independent. Thereis a veryclean, distinctdivision
between the Surrogate Student code and the
simulation software. The simulation software can

run without the Surrogate Student modules, which

can be thought of as intelligent add-ons to the
distributed simulation environment.

LIST OF ACRONYMS

ASW  Anti-Submarine Warfare
DAR Data Acquisition Routine
DMM Decision Making Module

DP  Display Processor

ES Expert System

LAN Local Area Network

R Surrogate. Student

TAO Tactical Action Officer
"TMA. Target Motion Analysis

TSD  Tactical Situation Display

REFERENCES

'Katcher, D.I. “A Flexible Expert System Archi-
- tecture for Tactical Trainers,” Proceedings VITSC,
1988.

*Evers, D.C, Smith, D.M., Staros, C.J. “Interfac-
ing an Intelligent Decision-Maker to a Real-Time
- Control System,” SPIE Vol. 485 Applications of
Artificial Intelligence, 1984,

*Madni, A.M.,; Ahlers,R., Chu, Y. “Knowledge-
Based Simulation: An Approach to Intelligent
Opponent Modelling for Training Tactical Deci-
sionmaking,” Proceedings I/ITSC, 1987.

199,

¢ Zivovic,. S. “Can Expert Systems Help Train
Tactical Action Officers: Some Experiences From
An Early Prototype,” Thesis: Naval Postgraduate
School, 1986, . L

* Pasewark, G.J. “Application of Expert System
Technology to Aid Controller/Role Players ina
High Realism Training Environment,” Proceed-
ings I/ITSC, 1987 B

ABOUT THE AUTHOR

Adil Soofi is an Electrical Engineer for Sanders
Associates, Inc., A Lockheed Company. He ré-
ceived his MS in Electrical Engineering from
Purdue University, where he did work in Artificial
Intelligence and Expert System development, and
his BS in Electrical Engineering from the Univer-
sity of South Florida. Mr. Soofi is currently en-
rolled in an MS-Computer Science program at
Boston University. He has been involved with
IR&D work at Sanders including Surrogate Stu-
dent development and prototyping a low cost
graphics console. Mr. Soofi is a member of the
TauBeta Piand Eta Kappa Nu honor societies, and
a member of AAAL

* MicroVAX , MicroVMS , and GPX are registered
trademarks of Digital Equipment Corporation

** Nexpert-Object isa trademark of Neuron Data, Inc,





