SOFTWARE ARCHITECTURES FOR ADA-BASED FLIGHT SIMULATORS
Michael E. Caffey

FlightSafety Intermational
Simulator Systems Division
Broken Arrow, Oklahoma

ABSTRACT

This paper presents information gained during the rapid proto-typing effort
for the Rotor Wing Blade Element Simulator Program being conducted by the
Simulator Systems Division of FlightSafety International. In this project,
a full-flight simelator will be developed for a Bell 212/412 helicopter.
Software for the device will be developed in Ada and hosted on a dual-
processor Harris Night Hawk Computer System. . The software is
computationzlly intensive and includes a 200 Hz finite-element rotor-blade
simulation. The goal of the project is to investigate the use of

Ada on a production simulator with stringent real-time prdcessing
requirements.

This paper will address many of the architectural issuea considered in the
rapid prototyping phase of the development effort.The discussions will
focus on the application of Object Oriented Design {0OOD) Techniques in the
design of software for critical real-time systems. The discussions will
highlight scme of the advantages afforded by Object Oriented Architectures
as well as some of the key problems encountered when using Object Oriented
Pesign in large real-time applications. In addition, the discussions will
address many of the operating system capabilities that will be required in
order to make optimum use of Ada and Object Oriented Programming in future
simulator systems.

INTRODUCTION

This paper presents information gained
through a research and development
project being conducted by the Simelator
Systems Division of FlightSafety
International (FSI). This progject,
called the Rotor ¥Wing Blade Element
Simulator Program, is being performed in
order to gain experience in the use of
Ada and Software Engineering Technigues
in the development of simalator
software. The project involves the
development -of a single Phase-II flight
simulator for the Bell 212 and the Bell
412 helicopters. All of +the host
computer software for this device will
be developed in 2da on a dual-processor
fHarris Night Hawk Computer System. Upon
completion the simulator will be
installed at Frlight Safety's Ft. Worth
Training Center where it will be used
for initial and recurrent pilot/copilot
training.

FSI is conducting the Rotor Wing Blade
Element Simulator Program in order to
develop expertige in several areas.
Though the main objective of the program
is to gain experience in the use of Ada,
FSI also hopes to develop expertise in :
1y the use of an Ada-based Program
Design Language (PDL), 2) development of
software to military standards, 3) the
application of software engineering
techniques, and 4) the use of a Unix-
based software development environment.

240.

For these reasons FS1I has elected to
develop software for this device in
accordance with DOD-STD-2167A. In
addition, an Ada-based PDL will be used
during the detailed design phase of the
project and DOpP-STD documentation will
be generated using a document generator
that ig integrated with the PDL. Also
an object-oriented design method is
being used £for the software design.
Software development is being performed
on a Harris computer system using a
Unix-based operating system.

This paper presents a number of the
technical issues considered while
developing the axchitectural model for
the simulator software. The
discussions will highlight some of the
key technical Iissues that are unique to
real-time systems and will describe how

these issues were addressed in the
degsign of the Ada goftware. In
additien, the discussions will
illustrate the way - Object Oriented

Design (00D) Techniques are used in the
system. Some of the key characteristics
of object oriented designs will be
discussed and some of the key
differences in an object oriented design
and the designs used for FORTRAN
simulators will be highlighted. Also
some of the . operating system .
features/characteristics that affected
the design will be addressed.

The soitware design presented here was
validated through a. rapid-prototyping
- effert and is being used as the basis
for the design of the Bell -212/412
aimulator software. The results of the
prototyping effort will be discussed and
a few important points about optimizing
Ada software will be highlighted.

Ada AND OBJECT ORIENTED DESIGN

The transition to the Ada programming
language is causing simulatox
manufacturers to re-think the way
simalator software should be designed.
The flexibility of the Ada language and
the software engineering concepts
supported by' Ada mean that the optimum
design of Ada software is sometimes very
different than the optimum design of a
FORTRAN system. -It is generally agreed
that Object Oriented Design Techniques
are the most suitable approaches fox
developing Ada software. - Object
COriented Design - {00D) encourages good
software design practices and in most
cases a straightforward transformation
iz possible from an object oriented
design to an implementation in Ada.
However there are some deficienciea in
agoD.

00D provides no support for the front-
end requirements analysis that must be
performed prior to software -design.
Devalopers of Ada . software mast
supplement 00D with some suitable method
of requirements . analysis such as
Structured Analysis. In addition, OQOD
does not take inte consideration certain
key implementation issues that must be
addressed during high-level design.
Thus object oriented design approaches
are fairly useful in the middle phases
of design, but at higher levels of
design other techniques may be regquired.

In developing the soitware for the Bell
2127412 flight simulator, FS5I elected to
use an ohject oriented design for the
simulator software. Since this type of
appreoach is not possible using FORTRAN
congiderable -effort was devoted to
determining how to use an object
criented design for simulator software.
In addition, a number of other real-time
issues needed to be resolved reguarding
the use of Ada 4in real-time. .- The
sections that follow describe some of
the issues that were considered during
the architectural design of the goftware
and describe the design approach that
has been adopted. The discussicns will
highlight where abject oriented
technigques have been used in the
software as well as the deviation from
00D that was reguired at high levels of
design. It i3 intended +that this
discussion will illustrate the need for
software developers to be trained in the
use .of design methods as well as
language syntax.

241.

. developing

DESIGN ISSUES

The design approach for the Bell 212/412
simelator software has been driven by
several key issues. One of the most
significant of these issues 1s the
stringent processing requirements of the
rotor-blade dynamics software. The
rotor-blade dynamics software for the
212/412 performs a finite-element
analysis of the forces acting on each
hlade of the rotor. In this model, each
blade is divided intec several segments
and the forece components acting on each
segment of each blade are calculated
independently and summed to determine
the tectal force acting on the rotor.
Due to the speed of rototaticon of the
blade this model must execute at 200 Hz.
The software is computationally
intensive and when executed at 200 Hz.
places a esignificant burden - on the
pProcessor. Thus early in the design
phase it was deemed important that a
design approach be used that would allow
the rotor blade software to be optimized
effectively. FS8I hoped to be able to
optimize the rotor blade scftware encugh
to allow &all of the high freguency (200
Hz) software to run in a single
processor leaving the othexr processor
free for the remaining £flight software
and the other. subsystems.

another factor that affected the design
of the Bell 212/412 software was the
need to split the simulation accross two
CPU's. An analysis of previous
helicopter simulations developed by
FlightSafety indicated that at least two
processoxrs would be required to host all

of the real-time software. Though the
use of multiple processors 1is not
unusual in simulation, conslderation

must be given to the best way to design
aAda scoftware to allow tasks to be moved
between CPUs. Q0D does not consider |
such issues in any way.

The availability of a freguency-hased
scheduler (FBS) on the Night Hawk
Computer .- System was another key
consideration in design. The Ifrequency-
baged gchedulex allows multiple
operating system tasks to be scheduled
at fixed freguencies elliminating the
need for a classic executive. BEarly in
the design of the prototype scoftware, it
was determined that the frequency-based
scheduler could add a goeod deal of
flexibility to the software. However the
software design needed to be thoroughly
evaluated to ensure that the software
was not sc tied to the frequency-based
scheduler that migrating +to other
hardware platforms would be difficunlt.
Thus considerable time was devoted to
determining the best way to use the FBS
with the Ada software.

One of the problems encountered " when
real-time software is
debugging the software in real-time.
Standard symbolic debuggers are not
capable o©f operating in real-time.

These debuggers are useful during the
early stages of software testing;
however, a real-tine monitor is
essential for complete testing of real-
time systems. The real-time monitor
allows the wvalues of wvariables to be
displayed while the software is running
in real-time. - The user also haa the
option of assigning wvalues to these
variables interactively.

Typically the real-time monitors used in
FORTRAN simulations have
heavily on the use of FORTRAN common
blocks. The analogous construct in the
Ada langunage . is the specification part
of the Ada package. However, due to the
compilation dependencies that exist
between an Ada package and the programs
that depend on the package, the use of
large Ada packages as common areas is
not ideal in Ada. In addition, the use
of 00D encourages engineers to restrict
the visibility of data as much as
possible. Thus an important
consideration in the software design was
structuring the software so that a real-
time monitor corld access @ sufficient
data for *testing without the use of
massive common blocks.

SOFTWARE ARCHITECTURE
ac d

In orxrder to resclve as many design
issues as possible prior to the main
design team Dbeginnig work, a rapid
prototyping effort was conducted.
During this phase of the project a
design approach was developed for the
system and a portion of the simulator
‘software was developed to wvalidate the
approach and serve as example code that
cculd be used by other engineers. S8ince
the Night Hawk was not yet in full-scale
productlon at the outset of the program,
software was developed on & Harris HCX-9
and ported to a Night Hawk for
benchmarking using the frequency-based

scheduler. The benchmark results were
used to determine the final
configuration (number of praocessors,

gize of memory,...etc.) of the Night
Hawk computer that was to be used for
the simulator.

Several different design approaches were
considered during the rapid-prototyping
effort. These approaches varied in the
degree +o which they -attempted to
enforce modularity and object-oriented
design techniques. only the approach

deemed most desireable . is presented
here.

Peaign

The software = for the Bell 212/412
simulator ig divided into several

subsystems. The division used is fairly

depended.

242,

typical of the way gimulator software isg

usually organized, The subsystems
include engines, navigation, fuel,
electrics, rotor dynamics,...etc.

Though this division of systems is
fairly typical the implementation of
these systems deviates from the normal
FORTRAN implementation in several ways.
Fach of these subsystems is implemented
as a separate operating system task (ox
process in Unix terminology) that is
scheduled at a fixed frequency by the
Harris frequency-based scheduler. This
is a deviation from the most common
approach used in simnlation where there
i a gingle real-time task resident on
sach Processsor that -1is - sometimes
accompanied by several background tasks.

Communication between each of the
simulation tasks. 1s accomplished through
a shared memory region. The shared
memory region is comprised of geveral
ada packages referred to as “"gtate
packages". There ic one state package -
for each operating system task. The
task that owns the state padkage
broadeasts data that is required by
other tasks to the state package. The
other tasks import (WITH) the state
package and read the regquired data.
Bach state package contains only
information that is reguired by other
subsystems. A diagram of the software
design approach is shown in Figqure 1.
In this diagram each subsystem task is
dencted by a circle, and each subsystem
state package is denoted by a rectangle.
The arrows indicate the direction of
data flow between the subsystems and the
state packages.

Use of the multiple task approach offers
several ~advantages over the typical
single task per processor approach to
simuiation. Among these advantages
are :

Increaged modularify - The subsystems
are completely -decoupled £rom each
other.

) 3 confi tio nage - Use
of multiple tasks easily allows multiple
versions of a subsystem to be

maintained. It also makes it easier to
run test versions of one or more
sSubsystems against the confiqured

versions of the other subsystems.

te t - When a single
real-time task is used for all of the
software on a CPU, a fatal error in one
program kills all of +the real-time
software operating on that processor.
By uwsing multiple tasks, only a single
subsystem is aborted when a fatal error
occurs. This 4is extremely helpful in
the early stages of software testing.

[Eiile) i of - data -
The only data that is common to all of
the programs in the system ia the data
contained in the state packages. Since
each of these packages is owned by one
subsystem permissions can be associated
with each package -that allow oanly the
owning task to write to the package.
This prevents accidental corruption of
shared data by the subsystems that are
only supposed to read the data.

The task that is used to implement. each
subsystem is comprised of several
parts 3 a main program, a subsystem
bPackage, and numerous object 'packages.
Figure 2 illustrates the architecture of
the subsystems, In this figure, a
single rectangle denotes an Ada package
- that consists of a specification only.
A shadowed rectangle denctes a package
that is comprised of both a
specification and a body. An oval

. denotes the main program of the task.
figure -denote a
clause},

The arrows in this
dependency (ie. an Ada "WITH"
NOT the direction of data flow.

Oblect

Subsystem 1
Package q Siate Package
Subsystem 2
State Package
;Subsysuem 3
Slate Package
Subsystem 1
Maln Program

243,

'

. implement

The main - program for each subsystem
performs all of the interface to the
frequency-based scheduler. This program
makes the system calls required to
interface to the FBS and contains logic
to suspend the execution of all or part
of the subsystem when certain freeze
conditions are requested.

The actual code used to implement each
subaystem is contained ‘in the subsystem
package that is imported (WITHed] by the
main program. This package contains the
declarations of variables to be used in
the models for that subsystem and a set
of subprograms that implement +the
madels. These subprograms are called by
the main program for each subsystem each
time that the main program is triggered
by the FBS. The subprograms for each
subsystem " can read data computed by
other subsystems from the subsystem
state packages. In addition, - the
subprograms can broadcast data to the
subsystem state package for their
subsystem. Note that by encapsulating
the code used to implement the subsystem
models in a package, the machine
dependent code contained in the main
program (the interface to the FBS) is
separated from the code that is ROt
machine dependent. Thus all of the code
that implements the simulator models for
the subsystems can be easily ported to

-another hardware platform that uses a

different method of scheduling prograns.
Separating machine dependent code from
code that is not machine dependent has
been a key consideration in the software
design.

To further increase the modularity of
the subsystems, many of the components
of the software are implemented as Ada
private types. The packages used to
these . private types are
referred to as "object packages" since
each of these packages implements a
single private type which may be viewed
as an object. The object packages are
imported by the main subsystem package
and are used extensively in the software
to promote modularity and re-use of code
in other subsystems and on future
projects. To a large extent, the
programs contained in the gubsystem
packages simply put together programs

-contained in the object packages.

This use of private types. simplifies
design of each subsystem a great deal.
Much of the software used on simulators
can be divided into objects fairly
easily. By implementing each of these
objects as private types the enginesr
can focus his attention on developing a
number of small simple programs instead

of a few monolithic programs. In
addition, the scope of changes to any
part of the software is well defined
when using private types, thus
maintenance of the software is

simplified. Also through using private
types, closely related data is
encapsulated in a single data structure
improving the understandability o£f the
code, In additicn, - high-level
design/decomposition of the software is
simplified since each subsystem can be
viewed as a collection of simple well
defined "black boxes". The well defined
interfaces to these "black boxes"
simplify the development of math models
and code .for the components.

In crder to permit a real-time monitor
to be used for testing of the 212/412
gsoftware careful consideration was given
tc the location of all wvariables
declared in the software. The only
variables which are readily accessible
toc the real-time monitor are those for
which memory is statically allocated.
This consists primarily of wvariables
declared in package specifications and
package bodies. Variables declared
within subprograms exist only. for the
life of the subprogram. - In oxder to

‘protect data from inadvertent corruption

and still allow access to key data by
the real~time monitor data that must be
viewed in real-time is declared in the
bodies of the subsystem packages. This
prevents any one subsysten from
accidently corxxupting data that bkelongs
to another subsystem while still
allowing the data to be viewed in real-
time.

Compariseon with Classical QOD

The use of sghared data and multiple
operating system tasks represents a
deviation from classical 00D whére Ada
tasking is generally used for concurrent
processes. Classical 00D dees not
address operating system constraints in
any way. This is a deficiency in most
design methodologies that 18 most
clearly realized when these
methodologies are used to design a large
"real-world" system. There are certain
critical implementation issues that must
be addressed during the early phases of
design, vyet most methodologies fail
miserably in addressing these issues.
However, at lower levels of design
methodologies can be useful and 00D was
used at lower levels in the design of
the prototype software.

For example, at the subsystem level, the
Bell 212/412 = software reflects a
relatively classical approach to 0O0D.
The subsystem packages are objects that
are being implemented as state machines.
The state machine in turn contains a

‘number - of objects that are implemented

as private types. It is impofrtant to
note the differnces in this design and
the design normally used in FORTRAN
simulators.

In this design each subsystem has its
own state. The state of the subsystem
is determined by the state of the
variables declared in the body of the

244,

subsystem. packages. These variables can
only be altered by calling one of the
programs declared Iin the subsystem
package. Other subsystems. have no
access to this data thus the data cannct
be accidently corrupted by another
subsystem. o

The most common FORTRAN system that is
analogous to this design is acheived
through the use of a local common block
for a set of programs. This is
iliustrated in PFigure 3. This = is
different £from the Ada implementation
becauge the subsystem (the collection of
programs) does not have its own state.
The programs must store data in. the
common block and retrieve it in order to
function. There is not a single
compilation unit that encompasses the
entire subsystem as there is in the Ada
verslon. The common data . used in the
FORTRAN version is wvolatile. Other
programs can access the common data and
accidently {or maliciously) corrupt it.
The accidental corruption of data is one
of the main problems in most large
FORTRAN systems. Ada provides the
potential to prevent many of these kinds
of problems.

Subsystem X .
Prgram 1 __ oo Bk
common of subsystem X

Subsytam X X

Subsystem X ubsystam Y

S| L

ubsystam

Frogram 3

Elgura 3, FORTRAN lmplemeptafiop of 3 Sultsystem

Within each subsystem many of the data
structures used are implemented as Ada
private types. These data structures’
can only be manipulated using the
programs contained in the packages where
the private type is declared (ie. only
the programs in the object packages can
manipulate the data structures}). This
prevents programs from manipulating - the
data structure in an inapropriate way.
This use of private types maps directly
to object oriented design techniques in
which a system is divided into a
collection of obijects {the data
structures) and the operations ({the
functions and procedures) that must act
on the objects. FORTRAN does not
provide the rich set of data structures
that are possible with Ada, and it
provides no way of limiting the way any
of its data structures are manipulated.
Thus implementing an object oriented
design in FORTRAN is very difficult if
not impossible.

- modules ‘and the

PROTOTYFPE

In order to validate the design approach
for the software the high fregquency
portion of the rotor blade simulation
wasg developed using tnis design
approach. Due to the High frequency of
this model it was determined that this
would: be the most time critical portion
of the sgimulation. Ultimately the
intent is to optimize the high-frequency
rotor software enough to run all of it
in a single CPU leaving the second CPU
frea to host the lower frequency flight
© other simulator
subsystems,

The prototype software was benchmarked
on a. Harris Night Hawk with several
combinations of options used to optimize
the executicn speed of the system. In
the initial tests, no options . were used
to optimize the code. - Then various
compiler options were used to optimize
the speed of the software. Using an
. Object Oriented architecture tends to

produce code that performs a large
number of subprogram calls and performs
a great deal of parameter passing. For
this reason, pragma INLINE was used in
optimizing the prototype software.
Though this option is now supported by
most compilers, care should be exercised
to ensure that subprogram calls are not
used excesgsively if the compiler +to be
used does not support INLINE. For this
reagon, object-oriented = architectures
may not be appropriate for systems
inwhich the compiler does not support
INLINE. In addition, compiler writers
need to work to optimize subprogram
calls and parameter passing as much as
possible. These are c¢rucial to the
davelopment of systems using object-
oriented techniques.

Another option that was used in
optimizing the prototype software was a
compiler option that gpecified that the
- bodies of generic units were not to be
shared. Some compilers attempt to share
the bodies of iInstantiated generic
units, The sharing of generic bodias
conserves memory but it also introduces
a run~time overhead each time that the
generic unit is executed. This type of
ovarhead is not acceptable in very time—
critical situations. In addition,
pragma SUPRESS was: used to. reduce the
- ammount of run-time checking that was
being performed.

During the benchmarking it was found
that the use of these features along
with the use of an coptimizing compiler
made a considerable difference in the
execution time of the benchmark. In
total, the time required for executing
the prototype model was reduced almost
fifty percent £from the initial zrun,
which used no compiler optimization and
no Ada pragmas for coptimization, to the
final run which used the highest level
of optimization available on the Harris
compiler and used Ada pragmas

245.

" written in Ada.

. promotes a

extensively to in-line -subprogram calls

and suppress -run-time checks.. The
initial (unoptimized} wversion of the
prototype was far +too slow for our

pUrposes. ‘However, aifter optimizing,
the execution time of the prototype was
at a very acceptable level.

SUMMARY /CORCLUSIONS

Through the rapid prototyping effort for
the Rotor Wing Blade Element Simulator
Program FSI has developed a design model
that can be used for simulator software
This model differs from
the design normally used in FORTRAN
simulators by its use of multiple real-
time tasks and its use of object
oriented design techniques. These
differences improve the fault tolerance
of the . software, provide greater
flexibilty in managing and maintaining
multiple configurations of portions of
the software, and improve the level of
data protection that is enfeorced in the
software. In addition, the approach
highly modular . scftware
design and provides good support for
reusing portions of the software.

A major lesson learned in the
prototyping effort was that a clear
understanding of design methods and good
software design practices is essential
to take full advantage of the
capabilities of the Ada language.

ABOUT THE AUTHOR

Mr. Michael Caffey iz a Principal
Engineer at FlightSafety International
specializing in operating systems and
the design of Ada software. Mr. Caffey
is currently working as System Architect
on the Blade Element Simulator Program
performing research and prototyping on
software architectures that may be used
in real-time Ada systems. Through cther
research and development efforts Mr.
Caffey has gained experience in the use
of software engineering technicques and
Ada in real-time simulator systems. Mr.
Caffey holds a Bachelor of Science
Degree in Electrical Engineering from
the University of Tulsa.

