REAL-TIME PHIGS:
APPLYING GRAPHICS STANDARDS TO SIMULATION

Brian S. Heaney
Star Technologies, Incorporated
Graphicon Products Division
Research Triangle Park, NC

ABSTRACT

The increasing cost of simulation software development and visual database generation is threatening to offset
the dramatic cost reductions of image generation hardware. Sharing software and databases between simulator pro-
grams, through the use of a standardized graphics langnage, clearly reduces program cost and develepment time.
This paper describes applying the PHIGS standardized graphics language to simulator database and software devel-
opment. PHIGS (Programmer’s Hierarchical Interactive Graphics System) is a well-architected graphics language
which provides a consistent framework for database creation, editing, and archival. Key features include database
hierarchy, model instantiation, a rich set of primitives and attributes, powerful database editing, and standardized
archival methods. PHIGS does not;, however, support some important real-time simulator features such as level
of detail, overload management, texturing, and mission functions. The Real-Time PHIGS (RTP) implementation
described in this paper supports real-time simulator applications through several extensions to the PHIGS standard.

INTRODUCTION

This paper describes an approach to reducing both
database and software development costs associated
with visual simulators through the application of the
PHIGS standardized graphics language. PHIGS (Pro-
grammer’s Hierarchical Interactive Graphics System)
is a general-purpose 3D graphics system designed for
mainstream applications (é.g., CAD/CAM). As a re-
sult, PHIGS does not have some of the important
features required for real-time simulators and train-
ers. Star Technologies” Real-Time PHIGS (RTP) im-
- plementation on the Graphicon 2000 image generator
has significant enhancernents that extend the PHIGS
framework into the simulator domain.

An overview of PHIGS is presented, after provid-
ing background information on the need for standards.
The details of the Real-Time PHIGS extensions are
then described.

BACKGROUND

In this era of tight government budgets, program
cost reduction has become a major objective of govern-
ment procurement agencies. The image-generator in-
dustry, where the price/performance ratio of IG hard-
ware has fallen dramatically in the past ten years {4],
has responded to the challenge.

But IG hardware is only one cost component in a
training simulator. Other significant cost items in-
clude:

- & crewstation and instructorfoperator console
o database development
e real-time software

+ training software

349.

e pregram management and documentation

There have not been equivalent ccst reductions for
these items. In fact, since soffware produectivity has
not kept pace with increases in the size and complex-
ity of databases and real-time software, database and
software development costs have risen in many pro-
grams.

Sharing software and databases between simulator
programs through the use of a standardized graphics
language would clearly reduce program cost and de-

‘'velopment time. Unfortunately, each image-generator

vendor has unigue software and database formats, and
most prograrms have unique database and software re-
guirements.

In an attempt to promote database sharing and
reuse, the government has recently initiated two im-
portant database projects: ’ o

Project 2851, whose mission is to develop standard
simulator doiabases (SSDB’s) that can be trans-
formed o run on many image generaiors.

Rapidly Reconfigurable Data Base, whose mission is to
provide geographically specific missionl rehearsal
" within 72 hours.

Project 2851 is developing database modeling tools
and the database transformation programs that are
to be used by future training programs. These pro-
grams, however, do not address development costs as-
sociated with the real-time sofiware that manipulates
the database and controls the IG.

The commercial computer-graphics industry, faced
with the same problems of database incompatibility
and software obsolescence, has been aggressively pur-
suing standards. X-windows is becoming the indus-
try standard for windowing and user-interface systems.

PHIGS is rapidly emerging as the 3D graphics stan-
dard of choice, having been adopied by Sun Microsys-
tems, Hewlett-Packard, Digital Equipment Corpora-

tion, Tecktronix, and Apollo. On the horizon is PEX

(PHIGS Extensions to X), which offers the promise
of network-transparent 3D graphics in an integrated
windowed environment.

PHIGS iz the only approved standard that exists
for hierarchical 3D graphics, having been approved by
ANSI (American National Standards Institute) and
ISO (International Standards Organization). Light-
ing and shading extensions to PHIGS, called PHIGS

PLUS, are currently winding its way through the stan- .

dardization process, and should be approved next year.
PHIGS is particularly well-suited for database model-
ing applications.

This standardization is resulting in the following
trends in the graphics industry:

e an increase in the number of vendors supporting
the standard language

s an increase in third-party software packages sup-
porting the standard language

s increased sharing of software and databases

» the training of a pool of software developers
skilled in the language

The result is the reduction of graphics equipment
-cost and an increase in productivity as software and
databases are reused.

The government, recognizing this trend, is begin-
ning to require standards such as PHIGS for mission
planning and command-control-conmumunication-intel-
ligence (C3I) programs. To date, however, there has
not been a bridge between inexpensive PHIGS model-
ing stations and real-time simulators.

PHIGS

The Programmer’s Hierarchical Interactive Graph-
ics System provides a set of functions for:

s definition, display; and modification of 3D graph-
ical data

o definition, display, and manipulation of geometri-
cally related objects

o modification of graphics data and the relation-
ships between graphics data [2]

These functions provide a standard interface between -

.the application program and a graphics device. The
layered model shown in Figure 1 Hlustrates the role of
the PHIGS subroutine library in a graphics system [2].

In order to support a wide variety of hardware plat-
forms while providing standard features, the PHIGS
database model has two components: a device-
independent ceniralized structure store (CSS), and

350.

Application Program -~

Application Utility Layer

PHIGS
Extensions

PHIGS Layer

OPERATING SYSTEM

Other Resources Graphical Resources

Figure 1: Layer Model of PHIGS.

device-dependent workstetions. The CSS is the dis-
play program containing the 3D graphical and hier-
archical definition of the graphics database. - Work-
stations provide a display surface, a set of device-
dependent display characteristics, and a mechanism
for mapping the 3D graphical data in the CSS§ fo the
2D display. Graphical cutput on a workstation is pro-
duced by traversing and interpreting the CSS display -
program.

Centralized Structure Store

PHIGS supports the storage and manipulation of
data in a centralized: hierarchical data structure,
known as the centrulized structure store (CSS). The
fundamental entity of data is a structure element and
these are grouped together into units called sirue-
fures, Stroctures are organized as acyelic directed
graphs called structure networks. Functions are pro-
vided to support searching and inquiry of the content
and topology of structure networks and the CSS in
general. The graphical output generated by PEIGS .
is built up from two groups of basic elements called
output primitives and primitive aftributes.

The following subsections describe the details of
the PHIGS functions provided for creating and ma-
nipulating the centralized structure store, including:
structure editing, structure hierarchy, output primi-
tives, primitive attributes, modeling transformations’
and structure archival

Structure Editing. One of the most attractive and
powerful features of PHIGS is the structure edifer.
The PEIGS editing model is analogous to the familiar
text editor {e.g., EDT, VI, EMACS). In this analogy,

* a PHIGS structure is analogous to a file and PHIGS

structure elements are analogous to words. PHIGS

provides an ‘element pointer’ (cursor), where all edits

to a structure (file) are relative to the location of the
‘element pointer’ {cursor). Editing functions are avail-
able to insert new structure elements (words), replace
elements with new structure elements, delete struc-
ture elements, navigate within a structure and inguire
structure element content.

Figure 2 illustrates a simple PHIGS editing exam-
ple. The application program first changes the line
color, replacing the “RED line color” element with a
“GREEN line color” element. Then the application
inserts a transformation matrix to rotate the object
around the X-axis by 30 degrees.

Structure Hieravchy. As shown in Figure 3,
structures may contain invocations of other structures,
resulting in & directed acyclic graph. The invocation
of a structure is achieved using the “ezecufe struc-
fure” elerment, which is analogous to a subroutine call.
Structure networks can be edited, manipulated, and
deleted, providing the application prograrmn significant
flexibility in manipulating the topology of the struc-
ture network.

When a structure contains invocations of other
structures, i} a is parent of those structures. Likewise,
each of the inveked structures a child of that parent.
In Figure 3, structure 2 is the parent of structures 4,
5 and 6; structures 2 and 3 are children of structure I.
Also, structure 1 and 2 are ancesiors of structures 4, b
and 6; while structure 6 is a descendent of structures
1,2 and 3.

Qutput Primitives. PHIGS provides a set of basic
output primitives that are displayed on a workstation
during structure traversal. The PHIGS primitives in-
clude [2]:

POLYLINE: A set of connected lines defined by a
point sequence.

POLYMARKER: Symbols of one type centered at po-
gitions defined by a point sequence.

TEXT: A character string at a given position In mod-
eling coordinate space.

FILL AREA (polygon): A single polygonal area which
may be filled with a uniform color, pattern or
hatch style.

FILL AREA SET: A set of polygonal areas. This al-

lows for specifying areas with holes or disjoint re-
gions.

PHIGS PLUS has significantly enhanced the output
primitives supported by PHIGS, adding support for
lighting, shading, tesseHated surfaces, and parametric
surfaces [1]. The PEIGS PLUS primitives include:

FILL AREA WITH DATA: The polygon definition can
contain any combination of vertex colors, vertex
normals, a facet color and 2 facet normal.

351,

Application Program

QOpen Sirncture

Close Structure

Set Edit Mode to “REPLACE”
Set Element Pointer to “2”

Set Line Color to “GREEN"
Set Edit Mode to “INSERT”.
Set Element Pointer to “0”

Set Transformation to “X-Rotate 307

Structure before Editing

Begin Structure
“SOLID” Line Style |-
“RED” Line Color
Line Primitive
End Structure

Structure After Editing

Begin Structure

“X Rotate 307
“SOLID” Line Style
“GREEN” Line Color
Line Primitive

End Structure

Figure 2: PHIGS Editing Example.

ol

Figure 3: Hierarchical Structure Network.

TRIANGLE STRIP WITH DATA: A sequenceof N —2
triangles from a list of IV vertices. The primitive
definition can contain any combination of vertex

colors, vertex normals, facet colors and facet nor-

mals.

QUADRILATERAL MESH WITH DATA: A sequence
of (M — 1) x (N — 1) quadrilaterals from a two-
dimensional array of M x N vertices. The primi-
tive definition can contain any combination of ver-
tex colors, vertex normals, facet colors and facet
norroals.

POLYHEDRON WITE DATA: A group of facets gener-
ated from a list of indices into a single vertex list.
The primitive definition can contain any combina-
tion of vertex colors, vertex normals, facet colors
and facet normals.

NON-UNIFORM B-SPLINE SURFACE: A nop-uniform
B-spline surface of two specified orders in two in-
dependent parameters based on a list of knots for
each parameter and a grid of control points. Ei-
ther a rational or a non-rational B-spline can be
selected.

PARAMETRIC POLYNOMIAL SURFACE: A uniform

parametric polynomial surface of two specified or--

ders in two independent parameters.

Primitive Attributes. As shown in Table 1,
PHIGS provides a rich set of primitive attributes.
Each primitive attribute has an associated function
which results in a single structure element. These at-
tributes are bound to the corresponding primitives at
traversal time.

During traversal, the.current values of these at-
iributes are saved (pushed onto the stack) when a
structure is entered and are restored {popped off the
stack) when the traversal of that structure completes.
A child structure therefore inheriis attributes from its
parent, but cannot modify the attributes of the parent.

Modeling Transformations. In PEIGS, the ap-
plication programimer can compose a graphical pic-
ture from separate parts, each of which can be de-
fined within its own Modeling Coordinate (MC) sys-
tem. The relative positioning of the separate parts is
achieved by having a single World Coordinate {WC)
space onto which all the defined modeling coordinates
are mapped [2].

The composite modeling transformation is formed
during traversal from the hierarchy of the encoun-
tered transformation matrices. The composite mod-
eling transfermation is implicitly saved and restored
when a child structure is executed. As a result, the

. composite transformation is inherited by descendant
structures and child structures cannot modify the par-
ent’s composite transformation.

352.

Siructure Archival. A key feature of PHIGS is
the standardization of database archival (storage).
PHIGS provides functions for archiving from the cen-
tralized structure store to an archive file, retrieving
from an archive file to the CSS, or deleting structures
from an archive file.

| PRIMITIVES | ATTRIBUTES
Polyline: Line Type
Line Width Scale Factor
Polyline Color
Line Shading Method
Polymarker: Marker Type

Marker Size Scale Factor
Marker Color

Interior Style

Interior Color

Edge Flag

Edge Type

Edge Width Scale Factor
Edge Color

PHIGS PLUS Facets: | Interior Style

Interior Color

Interior Shading Method
Ambient Reflection Coefl
Diffuse Reflection Coeff

| Specular Reflection Coeff
Specular Color

Specular Exponent
Transparency Coefficient
Reflectance Equation
Edge Flag

Edge Type

Edge Width Scale Factor
Edge Color

Fill Area:

Table 1. Primitive Attributes.

By bhaving a standardized archival mechanism, data-
bases can be easily transferred from ong hardware plat-
form to the next. A PHIGS-based database model-
ing lab counld have many hardware platforms and all
would be able to access each other’s databases through

the PHIGS archive files. This would clearly promote

database sharing since databases would not have o be
painstakingly translated from one vendor’s format to
anothers,

‘Workstations o

PHIGS workstations are conceptually analogous to
an image generator’s “channel” The PEIGS work-
stations are the abstract interface through which the
application program controls physical devices. An ap-
plication may have more than one workstation {chan-
nel) open and may open more that. one workstation
type at a given time. Data in the centralized structure
store may be displayed on any open workstation. An

abstract PHIGS workstation has the following capa-
bilities:
« one rectangular display surface of fixed resolution;
e supports several line types, text fonts, character

sets, colors, etc., to allow output primitives to be
drawn with different attributes;

» has access to the centralized structure store and
can traverse and display structure networks when
directed to do so; and

e permits the definition of several transformations
which support 3D viewing operations.’ ’

The. application can determine the characteristics
and capabilities of a particular workstation and adapt

its behavior accordingly. For example, a simulator ap- -

plication running on a workstation (channel) that sup-
ports real-time display of 3000 textured polygons per
frame would load a database with textured polygons
with the appropriate scene density. That same appli-
cation running on another workstation (channel) that
supports only 1000 non-textured polygons would load
a simpler, non-textured database. This clearly illus-
trates how PHIGS (and RTP) facilitate the sharing of
code, since the same simulator application can be run
on many different workstations.

PHIGS PLUS Lighting and Shading

PHIGS PLUS adds the key features of lighting and
shading to the PHIGS rendering model. As with other
PHIGS attributes, lighting and shading are indepen-
dently selectable.

Lighting is applied on a primitive-by-primitive ba-
sls; no interactions between objects such as shadows
and reflections are defined [1]. Each workstation has
a light source table, where each entry in the table de-
fines a single light source. The “set light source state”
structure element in the CSS determines which Light
source(s). are active. The defined light sources and
their characteristics are:

AMBIENT: Color that illuminates polygons indepen-
dent of their orientation and position.

DIRECTIONAL: Color and direction that illuminate
polygons based on the primitive’s orientation, but
independent of their orientation.

POSITIONAL: Color, position and direction that illu-
minate polygons based on the primitive’s position
and orientation.

SPOT: Color, position, direction, attenuation coefii-

cient, concentration exponent and spread angle.

. A poini that lies cutside the spot light’s cone of
influence is mot iluminated by the Light souree.

353.

The shading portion of the rendering pipeline fakes
a primitive’s geometric and color information and pro-
duces interpolated geometric and color information
across the primitive. The shading method, selected
by the “set shading method” structure element, speci-

fies which aspects of a primitive are inferpolated. The

defined types of polygen shading methods are:

NONE: A lighting calculation is performed for each
facet to produce a reflected color per facet. Also
referred to as constent or flat shading.

COLOR: A lighting calculation is performed at each
vertex of a primitive, using the primitive’s color
"and vertex normals. The resulting colors are in-
terpreted across the primitive. Also referred to as
smooth or Govraud shading.

DOT: The dot product between the:vertex normal
and light source are computed at each:veriex. The
dot product and diffuse colors are interpolated
across the primitive. The lighting calculation is
performed at each pixel using the interpolated dot
product and color.

NORMAL: The vertex normal and diffuse color are
interpolated across the primitive. The lighting
‘calculation is performed at each pixel based on
the interpolated normal and. color. Also referred
to as Phong shading.

REAL-TIME PHIGS EXTENSIONS

As indicated in the introductiorn, PHIGS is flex-
ible and general-purpose graphics standard oriented
towards the mainstream of 3D graphics applications.
As a result, PHIGS (with the PHIGS PLUS addi-
tions) is particularly well-suited for database model-
ing. PHIGS, however, does not provide some of the
functions required in special-purpose applications such
as real-time simulators and trainers. The PHIGS com-
mittee realized that PHIGS could not be “all things to
all people” and made provisions for extensions. Guide-
lines have been established for allowing vendors to
add non-standard features in a standardized manner.
These guidelines promote the portability of extensions
and ensure that fundamental PHIGS concepts are not
violated.)

Star Technologies, with the Real-Time Phigs (RTP)
graphics library running on the Graphicon 2000, has
developed a PEIGS implementation with several key
extensions suited for real-time simulator applications.
These real-time extensions are fully consistent with
the PHIGS framework. Therefore, databases gener-
ated on any PHIGS-based modeling station counld eas-
ily be ported to the Real-Time Phigs environment and
used for training and simulation applications. Table 2
outlines some of the attribute extensions provided by
RTP.

o

RTP takes full advantage of the hardware features

provided by the Graphicon 2000 image generator. De-~

scribed in 3], the G2000 IG is 2 modular board-set ar-
chitecture that nominally renders 3000 textured, anti-
aliased, smooth-shaded polygons at a 30Hz frame rate.

[PRIMITIVES | ATTRIBUTES l

Line Anti-Alias Method
Point Anti-Alias Method
Light Fade Method
Light Blink Rate
Texture Map
Texture-Coord. Matrix
Texture Folding Method
Texture Transparency
Edge Anti-Alias Method
Haze Method
Spot-Light Mode
Edge-On Fading Method

Table 2. RTP. Extended Primitive Attributes.

Polyline:
Light Points:

RTP Facets:

The following sections describe the key extensions
provided by the ETP language. The fuactions pro-
vided by these extensions and how they fit within the
PHIGS framework is presented in detail.

Texturin

The Graphicon 2000 IG supports photo-derived tex-
turing with up to 96 texture maps, each at multiple
levels of detail. Each texture map can contain both
color and fransparency information. RTP provides
four categories of texture functions: map loading, map
selection, textured primitives and texture-coordinate
transformation.

Texture-Map Loading, The texture map is
loaded into the workstation {channel) specified by the
application. ‘Therefore, different maps can be loaded
into different channels in a multiple-channel applica~
tion. A texture map bas attributes that include the
map identifier, the map size and a transparency flag
indicating the existence of transparency information.

Texture-Map Selection. RIP provides structure
elements for selecting a texture map and for determin-
ing whether the map should fold when the map re-
peats. The database modeler has the ability to change
texture maps at any level of granularity that best suits
the application {e.g., between each polygon, between

- each structure, etc).

 Iextured Primitives. A textured polygon is dis-
tinguished from a non-textured polygon by the exs-
tence of texture-map <u,v> coordinates at each ver-
tex. RTP provides for fat-shaded, smooth-shaded and
user-shaded textured polygons.

Texture-Coordinate Transformation. RTP

provides a 3x3 matrix used to transform a primitive’s

354,

<u,v> coordinates. This texture transformation can
be hierarchically modified with structure elerents in
the CSS (database) in a manner similar to modifying
the modeling transformation. Effects such as flowing
water, rotor wash and billowing smoke can be simu-
lated by dynamically updating this transformation.

Axnti-aliasing

The Graphicon 2000 provides anti-aliasing using 2
variable-width filter and a 4x4 subpixel mask. Both
polygon edges and vectors (for heads-up displays) can
be anti-aliased. RTP provides a structure element al-
lowing the modeler te choose the anti-alias filter ap-
propriate for the application. '

Atmospheric Haze

The G2000 performs haze calculations on a per-
vertex basis after lighting calculations have been per-
formed. This haze-attenuated color is linearly interpo-.
lated across the face. RTP provides two haze models:
one for surface-based applications and one for aithorne
applications. In either case, the haze model coefficients
are specified on a per-workstation (channel} basis, al-
lowing different haze characteristics in different chan-
nels. The surface-based haze uses a piece-wise linear
approximation of a exponential atmospheric model.
The more complex airborne haze function is based on
a multi-layer atmospheric model. The air is modeled
with variable-height density layers, where each layer
has a programmable altitude and visibility range.

Level-of-Detail Blending

RTP supports the use multiple levels of model detail
as its primary mechanism for maximizing scene con-
tent. It is important to transition from one level of
detail to the next in a smooth manner, avoiding any
distracting popping effect. This smooth blending dur-
ing LOD transitions is supported by the RTP through
the specification of transition-zone range rings. The
mechanism provided is the “LOD erecute siructure”
element, which is an extension of the PHIGS “execute
structure” construct.

RTP has extended the PHIGS primitive set to in-
clude point light primitives, which are reguiréed for
night-time out-the-window imagery. These point light
primitives inciude:”

» light strings, with pseudo-random geometric per-
turbations

« rotating and strobe lights, with programmable pe-
riods

e sequenced lights
o directional lights (VASTs, PAPT’s, REIL’s, -etc.)

¢ gelf-luminous polygons (windows) -

Each of these lights is accurately attenuated by the
. atmosphere using the.selected haze function.

Landing Lights and Headlights

Landing lights and headlights are implemented us-

ing the PHIGS PLUS spot light source, which is char-

. acterized by color, position, direction, attenuation co-
efficient, concentration exponent and spread angle.
Only vertices within the light’s cone of influence will
be illuminated.

This mechanism, by itself, is not sufficiently ac-
curate for realistic head light effects. Runways and
terrain faces are usually very large polygons, where
the per-vertex spot-light calculations would result in
vaguely-defined highlights. This is unacceptable in a
training environment, where the shape of the light’s
“edge” is an important visual cue and must be well
defined.

As an extension to PHIGS, the RTP provides a2

- structure element used to enable or disable the “spe-
cial spot-light processing” mode. Normally, only run-
ways or terrain polygons would be so marked. Marked

" polygons whose illumination gradient exceed a pro-
grammable threshold are recursively spiit into a set of
self-similar triangles called micropolygons. The spot-
light illumination calculation is then performed at each
created vertex, resulting in accurate landing-light vi-
sual effects.

Moving Models

PHIGS does not provide any explicit mechanism for
.moving models, which'is a serious shortcoming in sim-
ulator applications. As an extension to PHIGS, the
RTP maintains a moving-model state list (MMSL).
Each entry in the MMSL is defined by the model’s
structure id, world-space position and world-space ori-
entation. Moving models are defined as standard
PHIGS structures and structure networks, having all
the characteristics of other structures in the database.
Each workstation (channel) has a list of active moving
models. In this scheme, the application program up-
dates the position and orientation of a moving model
-once in the MMSL and all workstations (channels) will
reflect that change when the next frame is displayed.
‘Based on this low-ovezrhead approach, the G2000 can
support up to 100 moving models in real time.

Gridded Terrain

PHIGS implicitly supports terrain through the use
of fill areas or fill area sets.. This is not adequate for
training applications, where gridded terrain must be a
specialized data structure to efficiently support culling,
pricrity determination, moving model assignment, and
height-above-terrain feedback.

355.

RTP supports two specialized terrain structure ele-
ments: regularly gridded terrain and irregularly grid-
ded terrain. The “regularly gridded terrain” element
is defined by a reference point, a gnd size, a list of
elevation points and grid children. These child struc-
tures contain definitions of the culture and objects on
a given terrain face. The “irregularly gridded terrain”
element is defined by =z list of contiguous, axis-aligned
rectangles and associated child structures. -

Mission Functions

RTF has extended PHIGS inquiry functions to sup-
port a comprehensive sef of specm.llzed mission func-
tioms, including: - -

» Collision detection

o Hierarchical collision detection
s Missile impact detection

» Height above terrain

e Terrain attitude

o Laser rangefinding

¢ Line-of-sight threat occuliing
s Texture coordinate feedback

+ Annotation-data feedback (mud, snow, ice,
etc.)

The Graphicon 2000 is capable of providing this faed-
back data in real time. The simulation host com=
puter can then use the information for vehicle dynam-
ics, scoring, explosion-effect processing, or intelligent-
threat processing.

Repeating Animation Sequences

RTP provides the mechanism whereby the modeler
can construct pre-programmed animation sequences
in the database. These repeating sequences provide
the mechanism for having significant on-screen activ-
ity with no host-computer overhead. With this con-
struct, the modeler can create an arbitrary number of

“frames” (child structures) that will be cycled through, .

where the cycle rate is user defined. RTP also supports
the ability to blend (in 2 manner similar to LOD blend-
ing) between frames, resulting in smooth transitions
during the animation sequence.

For example, moving water could be represented by
a repeating cycle of 20 frames spanning a 2 second
interval. Each frame (child structure) would be iden-
tical except for the values in the “ranslafe texiure”
elernent. The visual result is that the water texture
pattern would scroll across the water polygon every
one-tenth of a second.

Non-Repeating Animation Sequences

- The non-repeating anirnation sequences are similar -

to the repeating sequences except that:

s the host computer must explicitly enable the se-
quence (with a single command); and

» the sequence is not restarted once it completes.

For example, a tank explosion sequence might con-
sist of five separate versions of the tank. The mod-
eler would create the versions as five separate PHIGS
structures. ¥When the tank is hit by a missile the host
enables the animation sequence. Based upon the time
relative to the initiation of the sequence, the Graph-
icon would determine which of the five versions to
draw. RTP also supports the ability to blend between
versions, resulting in smooth transitions during the an-
imation sequence.

. Overload Management

An RTP workstation {channel) can be instructed
to run in real-time at a desired update rate. This
will cause the G2000 to perform overload manage-
ment when the actual display time approaches the
desired frame time. The G2000 overload manager

smoothly reduces. scene complexity without causing™ ™

abrupt changes to the visual scene, Specifically, the
techniques employed during overload are:

+ reduce object level of detail
s increase haze, reducing the visibility range
¢ climinate distant targets

e reduce special processing, such landing-light tes-
sellation

Objects that are near light sources (in night scenes)
and objects that have been tagged by the database
modeler as areas of interest will not have their LOD
reduced by the overload manager.

CONCLUSION

Reducing the database and software development
associated with visual simulators is an important ob-
jective of both the govermment and the simulator in-
dustry. A primary mechanism for achieving this objec-
tive would be the use of a standardized graphics sys-
tern for building and manipulating the visual database.
The PHIGS standard (Programmer’s Hierarchical In-
teractive Graphics System) is the direction being pur-
sued by the general-purpose graphics community. As
presented in this paper, PHIGS has now been extended
into the real-time simulator domain with the Real-
Time PHIGS (RTP) implementation. RTP has in-
corporated the significant simulator features required
for real-time image generation into the standardized
PHIGS framework.

356,

References

[1] American National Standards for Information
Systems. Progremmer’s Hiererchical Interaclive
Grephics Sysiem Plus Lumiere und Surfaces

(PHIGS PLUS). April, 1989.

[2]- American National Standards for Infermation
Systems. Programmer’s Hierarchical Inleractive
Graphics System (PHIGS) Funciwnal Descrip- -
tion. September, 1988.

[3] Rich, Henry H. “Tradeoffs in Creating a Low-
Cost Visual - Simulator.” .Proceedings of the
Eleventh Interservice/Tndustry Training Systems
Conference, (November, 1989).

{4] Wyckoff, Brad. “Managing Cost/Performance
- Tradeoffs for Successful Visual Training.” Pro-
- ceedings of the Eleventh Interservice/Indusiry
Treining Systems Conference, (November,

1989).

A.BOUT THE AU'I‘HOR

ME. BRIAN HEANEY is the Graphlcon 2000
Project Engineer with responsibilities for system, al-
gorithm and software development. He joined GE’s
Simulation and Control Sysiem Department in 1983 as
a software developer on the US Army Conduct-of-Fire
Trainer (COFT) tank simulator program. Brian came
to Graphicon in January 1985 as a software designer
on the Graphicon 700 and Graphicon 1700 graphics ac-
celerators. He was a key contributor to the system and
algorithm development for the Graphicon 170085 image
generator. Brian graduated Teu Beta Pi and Phi Beta
Kappa from Swarthmore College in 1983 with a BS in
Engineering and a BA in Economics. He received his
MS in Electrical Engineering from Duke University in
1986 through the General Electric Advanced Course
in Engineering Program. o

