AUTOMATED TOOLS, ADA AND
CUSTOMER REVIEWS:
A CANDIDATE APPROACH

by Jerry H. Hendrix

Boeing Military Airplanes
Simulation and Training Systems
Huntsville, Alabama

Abstract

In today’s fast-track technology explosion, the production of software for real-time systems is enhanced by the availabil-
ity of technological advances such as automated tools and the Ada programming language. The use of these advances
offers increased productivity and shorter schedules when used properly. The use of automated tools is helpful but may
lead to a systems design that is decoupled from the software product. Some tools force users to use a methodology
which leads to structures which may not directly translate to 2 higher order language software siructure (for example,
open ended if statements). Not using tools in tight-scheduled programs may lead to a paper-intensive development -
increasing schedules and cost. There are many tools available today that offer design and documentation assistance in
every development phrase (Automated Requirements Analysis Tools, Graphical Object Oriented Design Tools, Boeing’s
own Automated Software Engineering). A proper Ada development methodology can offer assistance in every develop-
mental phase. The dilernma facing software developers today is how to integrate the proper toolset and Ada approach
to aliow the best product and give the customer a full understanding of the development. The customer must assure
correctness, completeness and consistency although he may not fully understand the target software and complexity of
the Ada language. It is up to the contractor to expose the customer to the development in such a way as to allow him: to
properly critique the development activities. This paper will offer a candidate approach to coupling automated tools
with Ada developments and customer reviews. It will present criteria for developmental tools selection, such as com-
monality of tools host to software development host, user interface considerations and methodology consideration. The

paper will also present how these tools are integrated in a common environment, how an Ada development is enhanced
by automated tools and how the customer can benefit from the proper mix.

There is a fundamental limit to the complexity with
which a human can cope. Technically many problems
can be solved whereas in reality the mismanagement of

-complex systems can cause software projects to fail.
Many attempts have been made to solve the mismanage-
ment of this complexity, New software and system
analysis automated tools and the introduction of more
English like languages like Ada are candidates to help
alleviate this complexity. As the complexity of systems
increase, so must the means by which this complexity is

‘handled. “Darth Vader” like helmets for weapon aiming
and voice recognition systems are examples of these com-
plex systems. The user customer has to not only under-
stand the complex systems but also the complex implem-
entation of the simulator that follows. This paper refers
to the user as those persons who are responsible, from a
-customers perspective for the technical correctness of the
simulator. Those individuals at the training systems
commands (ASD/YW, NTSC, PMTRADE and others)
should be given an approach by the simulator vendor
which exposes the implementation in the best possible
way. This paper will explain how automated tools, and
technological advances like the Ada Inaguage can assist
in solving this complexity and will offer a candidate im-
plementation approach coupling automated tools, the
Ada language and the user customers reviews.

Automated Tools
Low cost hardware engines and superior software pack-

ages for automated tools offers new opportunities for
designing and developing software. Until the present,

535.

software design and resulting documentation have been
hand produced. Automated tools give the software
developer an interactive pictorial solution to the problem
space. Software developers relate easily to pictures and
graphics. Pictures are used to present and explain all
kinds of infofmation: Charis and graphs become familiar
and help assimilate and understand the data in business
presentations, newspapers, and textbooks. George
Raeder states that it is “commonly acknowledged that
the muman mind is highly visualiy oriented and that
people acquire information at a significantly higher rate
by discovering graphical relationships in complex pic-
tures than by reading text”.

Advanfages of Graphical Representations

“Raeder describes several reasons why pictures have an

- advantage over text in providing information dearly and

quickly,

Text is a sequential mode of expression. We must read or
scan through preliminary information in order to find a
particular description or explanation. Pictures offerus
random access to data. Our eyes can rapidly move to
any area of a drawing and locate required details. Im-
portant features can be highlighted to focus our attention
quickly. :

Text is one dimensional medium consisting of words, Pic-
tures provide three dimensions for the description of infoi-
mation. Physical properties such as shape, color, texture,
and size can be used to enrich the presentation. Because

pictures can provide data with more variety, they can pres-
ent the same data more concisely and compactly than text.

Pictures generally transfer data faster than text. The data
canbeaccessed and understood quicker and with less effort
than a textual description.

Pictures are often used to present abstract ideas in ways
that make them simpler for people to comprehend.
When trying to understand an abstract concept, many
people come up with a2 mental image which enables thetn
to understand the abstraction. A picture can presentan -
already prepared image to a reader and speed up under-
standing of new or complex ideas”

Many varietes of graphical oriented approaches have been
preduced into automated fools. Some automated tools
offer structured analysis approaches, others Object Ori-
ented Design, others Bulus” System Design Approaches,
but which tool is right for the software developer.

The software developer must have a tool or set of tools
which address total software development life cycle. The
tool(s) must assist in the systems engineering process to
the final system verification test. The tool(s) should:

* Tracerequirements from System Specifications tolower
level specifications

* Offer consistent verifiable approaches
* Assist document production

* Offerameans to amethodology and not amethodology

REQUIREMENT ALLOCATION

The requirement aliocation and trace automated tool
should provide the visibility to either trace a requirement
from the system specification down to the individual
system element that implements it, or to show for a
system element how a particular requirement can be
traced up the spedification tree to the system specifica-
tion. The tool should assume a specification tree that
starts from the system specification and expandes regu-
larly down to individual hardware and software end-
item specifications, and, for software end-items, on down
to top-level components within the software end-itern.

Figure 1 illustrates a typical specification tree and specifica-
tion decomposition. Note that each document has a single
parent document, and that all documents flow uliimately
from the system specification.

During system development, requirements in a specifica-
tion may be allocated to a lower-level, as-yet-written sub-
system or end-items specification.- Likewise, when a
specification is written, its requirements must be trace-
able either explicitly or as derived requirements from a
higher level specification. Various automated schemes
can be devised to simplify this bookkeeping (a large
system specification will contain thousands of require-
ments, ultimately generating tens of thousands of Jower-
ievel requirements.) The goal of these schemes should
be: -

536.

1. Toshow thatallrequirements athigher levels havebeen
successfully allocated to lower levels and ultimately to
individual hardware and software elements. In other

- words, the designed system meets all requirements.

2. To show that all requirements at a particular level do
indeed tie back to a higher-level requirement

3. To assist the design review process by showing which
lower-level specifications or end items implement
system requirements, and how lower level
requirements, particularly derived ones, relate back to
the system specification.

4. To assist in assessing system changes, by being able to
show for a system-level requirement what lower-level
specifications and end-items are affected.

The major concern in the analysis and design phases is that
all requirements are allocated to an end item and that allo-
cation can be {raced.

‘Fader TDoaurmeatslice SyImm o
- Byrm + Syawen Segmen

Oparskng - Trwddng
Suppast System Systom

Exampis Sywhor: Docornpoukion
spadtenicn
1
armesion
T ;
| i I _)
“Hurdware® SRS Wl
Spadiicaton Spmcifcasion
BASIC Epacication Tree
Figure 1
. Specification Tree

VERIFIABLE APPROACHES AND
DOCUMENTATION GENERATION

The tool(s) must offer consistent refinable approaches
regardiess of the development phases it represents.
Tools that offer particular techniques must provide
checking for consistency and completeness.

Assistance in the production of required documentation

_ isneeded to shorten the development process.- The

documentation should be exiracted from portions of the
automated analysis tools. The software developer should
be transparent to document production. The only input
needed by the software developer should be the boiler-
plate text for specifications and design documents. Boi-
lerplate fext is text that is used basicaily as is except for
replacing unit specific keywords or phrases.

AL L

ARE TOOLS METHODOLOGIES? .

“The tool(s) should offer assistance to the software develop-

ment approach butshould not be the development method-
ology. Danger exists in tools which offer methodologies.
These tools may not be tailored to the software design
needs. Many tools will bind the implementation with
structures which may not be consistent with design objec-
tives, i.e., open-ended if blocks for flow diagrams.

The use of these tools solve many laborious hours of
building documentation and doing paper analysis but
also introduce new problems. If many tools are inte-
grated into a tool kit, the transition between tools and the
data passing techniques must be 100% complete. The

software contractor should strive to identify tools which

can be hosted on a common environunent. A single user
entry point for automated requirements analysis tools
and design tools will lead to an easier transition between
requirements and design. If a tool kit is used in which
these tools are hosted on different environments, the
software developer may have many different terminal
interfaces which are often times confusing causing non-
productive.

Ada
Ada can alse assist in alleviating these complex systems
software development. The Department of Defense
(DoD) directed the use of Ada on all weapon system
acquisitions. Ada was chosen by the DoD to address the
existing software crisis. The language improves software
consistency, reliability and maintainability, improves
productivity and reduces life cycle cost. The use of Ada
allows enforcement of sound engineering principles.
Those principles are: abstraction — extraction of essen-
tial details into an understandable unit; information hid-
ing — defails of an implementation or abstract made in-
-accessible; modularity and localization — grouping
logicaily related items and completeness where no essen-
tial details are missing,

Ada was not designed to be just another programming
language. It was designed to be a programming system
that would have features to encourage modern program-
ming practices. Ada offers features such as packages,
types, data encapsulation, and generics that enable Ada
to be a powerful tool to help in understanding problems
and expressing solutions in a manner that directly re-
flects the multidimensional real world. Coding in Ada
sshould be approached with the spirit it was designed in;
with modern programming practices in mind. Ada
offers flexibility in the implementation in that all devel-
opment phases can be supported by the usage of the Ada
language. Ada is so English-like that it can be used to
express requirements, preliminary design, detailed
design and code.

Figure 2 illustrates the reviews in a typically development.
MIL STD 1521 series contains detailed information about
reviews. This paper will only address the System Require-
ments Review (SRR}, Systems Design Review (SDR), Soft-
ware Specification Review (SSR), Preliminary Design Re-
view (PDR) and Critical Design Review (CDR).

537.

A
e L A A S
BT T B ; R
T i P
=T i oo
, S R N ; P
P H P
il oo i H i *
IR A : ! i
Satwars H H H H
Py HIE H H H
i H P
EET i P
:
[G] H : H
Dok H H :
Toring H H H
T H :
[] '
o .
Futen i
csel
Formal
!
yvam
.!':?::‘]
Tk, Civary,
] riakiake
{hel FCA, PCA
andFOR
Figura 2

Developmental Reviews and Software Life Cycle
System Reguirements Review (SRR)

The SRR shall evaluate the definition of system require-
ments, including those requirements planned for allocation
to software. ’

a. The review shall include the following:
* System concept
* Requirements to be satisfied by software
* Requirements to be satisfied by hardware
* Rationale for the concepts presented

b. Data to be reviewed shall include:
* System study reports
* Trade study reports
* System specification

System Design Review (SDR) T

The SDR shall evaluate the allocated system réquiremenbs
for completeness, iraceability, optimization, and risk as-
sessment.

a. The review shall include a presentation of the initial
allocated software functional performancerequirements
and software verification requiremenys.

b. Each software requirement shall be reviewed explicitly.

¢. Data which support the software allocations in relation
to the total system requirements should be presented for
each software requirement. .

_d. All software external interface requirements shall be re
viewed. .

e. Data to be reviewed shall include:

TERET T TN PR RN P Ny m rromnee e rroen

* Segement Specification

* Man-machine interface specification

= Trade study reporis- summary of software
recommended requirements to satisfy the accepted

system specification.

» . Draft software requirements specification ~ derived
from study and supported with rationale.

= Draft interface requirements specification -

summarize the interface requirements and potential
- problems.

Software Specification Review (SSR)

The SSRshall evaluate the software requirements, as speci-
fied in the Software Requirements Specifications (SRS},
Interface Requirements Specifications (IRS).

a. The review shall be devoted to reviewing all software
requirements.

b. Allotherorganizaticns thatimposerequirementson the
software should participate.

c. The following shall be reviewed for each functional
requirements allocated to software.

» Traceability of the requirement or derived
requirement from the system specification through
subordinate specifications.

* Rationale for derivation of derived requirements.

¢ Completenessof theimplementation algorithms and
. equations.

= Testability of the requirements as stated.

= Availability of constants and tables required for
calculations.

» Realism of computation accuracy requirements.
+ Consistency in the use of symbols and equations.
* Compatibility with external interfaces.

d. IRSs when applicable should be reviewed for
completeness. The level of detail should vary

depending on whether or not the CSCl inferfaceistoan -

existing component. [nformation from the IRSE should
allow:

+ Name

+ Type (digital, discrete, analog)
* Range

= Units

* Accuracy

* Frequency (data transfer rates)
* - Error checking requirements
* Byte number

* Data type

+

« Size
* Scaling/conventions

e. Deficiencies in review items shall be assessed for impact
on development and test schedules.

f. Thereview shallnotbe considered complete untilaplan
and schedule for correcting any deficiencies has been
established.

Preliminary Design Review (PDR

The preliminary design review provides a positive demon-
stration that the selected design approach will result in a
CSCT that meets the requirements set forth in the SRS.
Most PDR review materia) will have been produced by
the preliminary deisgn activity, such as: software func-
tional flow, storage allocation charts, timing and se-
quencing, operating modes, program hierarchical struc-
ture, data base design and man-machine interfaces.
Designers are usually required to supplement this mate-
rial with viewfoils summarizing significant design fea-
tures and to be prepared fo answer questions brought to
the meeting by the reviewers.

Critical Desi i DR

The critical design review provides a positive demonstra-
tion that the CS5CT logic design will satisfy the requiremnents

. set forth in the SRS that coding may proceed.

Most CDR review material will have been produced by the

detailed design activity, such as: TLCSC interface block

diagrams, Program Design Lanugage (PDL) logic flows,
time lines, storage and fiming allocation charts and data
base description. The detail is such as to present the

- defailed design.

Once a proper understanding of the advantages of auto-
mated tools, Ada and customer reviews are obtained, a
candidate model approach can be hypothesized. In the
correct infegration of these cornplexity minimizing con-
tributiors the customer user gains insight into the entire
developmental process. -

. The following will present a candidate thai shows how

integrating automated tools, Ada and the customerreviews
will decrease schedule, cost, and documentation and in-
crease understanding by the procurers of the simulator.

Boeing uses a set of vendor supplied automated tools

called Boeing Automated Software Engineering (BASE).
BASE provides a tool kit which does not force a method-
ology but allows methodologies to be tatlored to specific
applications. These set of tools are integrated by Boeing.

The automated tools are provided to the developer by the
BASE project’s Software Integrated Environment (SwiE).

The need for software development tools is widely recog-
nized by aerospace firms. They realize that a methodology
promotes softwareengineering productivity improvements,
improves software quality, and decreases the uncertainties
associated with the software development schedules and
overall software reliability. Therefore, there is a thrust to
arrive at methodologies, and tools which support those
methodologies. The SwiE is the effort within the Boeing
Company to provide tools.

The SwWIE provides an integrated software development
environment which supports the tasks spedified by DOD-

- STD-2167 and 21672 and autemates the production of
software products. Standardization on the software life-
cycle framework, tasks, and product standards enables
development of a common set of tools for all software
projects.

Ge iption

The BASE Software Integrated Environment (SwiIE}
supports the life cycle phases as defined in DOD-5TD-
2167 and 2167a as illustrated previously. The capabilities
of the BASE SwiE include:

a. REQUIREMENTS, Requirements are evaluated by
diagnostic analysis. ' A prototype is built using
CADRE, Inc. teamwork tocls. Requirements are
allocated and tracked using Boeing’s Requirements
Tracking and allocation tool (RT2).

b. DESIGN. The software architecture, inferfaces, data
base, and programs are designed with Teamwork. The
designs are evaluated from diagnostics from thedesign
tools and modeling tools.

c. CONSTRUCTION. The generation, integration, and
aralysis of code and modules is supported by edifors,
compilers, linkers, and analyzers.

d.. IEST. The testing of code is supported with
- downloaders from the ASSIST package.

e. GENERAL SUPPORT. The integrated generation of
documents and graphics is supported by the
docurmentation tools DOC and PicED. The user can
plan and monitor the process and resources (e.g.,
estimate schedules, budgets, productivity, quality,

- and risk analysis) using the management and task
planning tools.

£ CONFIGURATION MANAGEMENT. The
configuration managers manage product configuration
of code, libraries, and documents, and track and report
changes.

Figure 3illustrates how the SwIE capabilities apply spe-
cifically to the software development phases. Object
orientation is one of the hottest methodologies in today’s
Ada world. The object orientation organizes data into
manageable software pieces. Ada, as a softwareengi-
neering tool and object orientation, promises to incréase

539.

programmer productivity, product reliability, and soft-
ware reusability. The software development approach
consists of two distinct but integral parts, the methodol-
ogy far software development and the structural model
for software consistency. ’

Sofware Soarw Sotware Funclorm) Forosl
N EAIES
Analyiis : Dowalormaan
T B B EE Do
o T Somdo -
Readimens Deiidrls NokeTwr :mn::ﬁ
Pregesm Design L3 "
Faquimments Language Support ! Tkt Oate
Decoapeelon PO Soiteare Test Daia iy
pom Dat Didonbty goirve Caecden Toat Conked
aen Frotatrpieg Evlany Tost Report [
Pr— WodssTeatng Ganacaler Vuilficaton
Code Anolyais Teet Soanxio
Conbest Edtor Gensrater
Supoort Tools Used in al Phases »
Cacxsantaon Sunport
Confquinton: Minagomant
Piancing and Tracking -
Dusbats batagunat
Protan Raporkyg
Figure 3
Overview of BASE Support

‘The methodology must fit the problem domain. There
are many methodologies, some are consistent and some
are inconsistent with the production of real-time efficient
software. The methodology must manage the complexity
of the proboem. Application of Ada to a “textbook” type
problem is trivial, but applying Ada to a large complex
systermn requires a different mindset. The methodology
must encompass and couple the phases of the software
lifecycle.

k the method addresses each development, it can in-
crease productivity and product reliability as well as
removing the need for unwanted documentation. The
method must also provide uniformity into the software
design and provide enhanced cormnmunication. In order
to gain maintainability as a design, uniformity of the

-design enhances understandability of the system asa

whole and its associated objects. The method that en-
forces comrmunication via procedure or function calls al-
leviates the problem associated with change. The daga in
and out of an object is readily available and controlled.
The enforced communication provides ease in mainte-
nance. The understandability of an abstraction is in-
creased when there are not unwanted interfaces. Choos-’
ing a method consistent with real-time development is
also important, although the method must provide reus-
able, reliable, and maintainable software. The methodol-
ogy in itself is not-encugh, although an essential part!

The structural model enforces a consistency in the software
structure, thus enforeingan understanding. Adaisarobust
language and misuse of the language can result in frag-
mented codesuch as standalone procedures, functions, and
disconnected mini-data pool data packages. The produc-
tion of the structural model is attributable to an under-
standing of the requirernents, understanding Ada, and the
scope of tradeoffs {number of processors memory, etc.).
The structural model becomes the architecture for the de-
signers. Inessence, the structural model consists of package
stracture, contents, and interfaces.

T mmpermem

DEVELOPMENT PHASES IN ADA -

The dlassical software development phases as described

‘are: requirements, design, code, test, integration and

acceptance.

REQUIREMENTS

At System Requirements Review time, a consensus is -
supposed to be reached on the definition of requirements
for the program. In the past, these reviews have defined
spedific requirements for the program. In the past, these
reviews have defined specific requirements which may
or may not be fully met-by the contractor. Requirement
Traceability Matrices (RTM) are set up to ensure the tran-
sition or requirements to design. Ada now offers a new
means of dealing with requirements analysis and alloca-
tion. Figure 4 shows an example of reqiurements analy-
sis in Ada. Notice that the requirements correlate di-
rectly into Ada code, and thus compilable and consistent.
There are no absolutes, even with Ada. An understand-
ing of the requirements skl must be discussed and un-
known or vague requirements explicitly understood.
There is still a place for the RTM in an Ada design. The
definition of requirements in a single or multiple Ada
package makes those requirements consistent and thus
affords the allocation of those requirements using the
data flow analysis to identify or allocate subprograms or
packages.

type STEADY_STATE_WIND_CONTROL IS
. ANDARD, ATMOSPHERE_WINDS_ARE_SELECTED,

DY_STATE WINC_CHANGES ARE SELECTED
STEADY_STATE_WIND_LAPSE_RATE_CHANGES_ARE_SELECTED,
FAA_WIRD_PROFILES ARE SELECTED,

GLOBAL_WIND_NORMAL},

type FAA_APPROVED_WIND SHEAR_PROFILES 15

{NEUTRAL_LOGARITHHIC,
FRONTAL_1_TOKYO_1966,
THINDERSTORM._ FAI _WATHEMATICAL,
FHONTAL_2 LOG

THUNDERSTORM ! n PHILADEI.PHIA,

THUNDERSTORM_! 5,
FRONTAL 3,
THUHJEHSTORI‘ £_3°K),

subtyps FAA_WIND_SHEAR_PROFILES_HEAD_AKD_CROSSWRNDS IS

FAA_APPROVED_WING_SHEAR_PROFILES range NEUTRAL_LOGARITHMIC, .
FRONTAL_2_LGGAN

subtypa FAA_WIND_SHEAR_PROFILES_HEAD CROSSWIND AND_VERTIGAL IS -

FAA_APPROVED_WIHD_SHEAR_PROFILES mnge
THUNDERSTORM, 2_PHILADELPHEA, . THUNDERSTORM,_6_JFK:

Figure 4
Requirements in Ada
DESIGN AND CODE

These two phases represent the most dramatic shift in the
software development phase while using the Boeing

- methodology. The software transition is no longer from

design-to-code, but from requirements-to-design/code.
In the methodology, the design is laid out in Ada PDL

540.

and compiled at each tier level. The design is code and
the code is compilable, thus making the design consis-

tent. In Ada, the interfaces can be enforced if the meth-
odology allows. The interfaces are defined in:Ada code

and compiles the design, thus making the interfaces

consistent. The interfaces are identified by using data
flow analysis for interface definition. The design contin-
ues by using control flow analysis to identify the state in
which a system may reside. Figures 5 gives an example
of a design in Ada using the results generated by the
automated tools.

ps Cunss
Ahcva_Height_Above_Temin_in Pt __ Cmdre_Aadin_ A% RADG2S
Sim Fkch Ange . " ptlots Radlo_Ax RADOZS
Alecratt_Camer_Of Gevity_Moo 7 - Cmelrs_Rod AR Power LAULES

Delta_Time. Sec - - Pllots_Rod_AR_Powsr LAULSS
Racilo_Atiiwer CB o Padic Cmidrs_Radio_Ak_Flog_LAURE?

Raclo_A%imeter_Pwe_SW “\Atimeter Phiots_Radion_ AK_Fog LAUHES
Cmdrs_Rad_AH_Test_Sw -
Pliots_Rod_AN_Test_5w

gt
Radio_Alimster_Power ; x« CB_State
(Rudio_ARImeter_CB)xEnargioed and Switch_Staius
(Rudic_Alimetar_SwitchlzLmched;
K Badio_ARimetar_Power then
radlo_altioeter power on ;.
e
cio_aRimeter_power off ;
ol T
ond racio_aktimeler;

Figure 5
Ada Design From Automated Tools

SOFTWARE INTEGRATION AND TEST

There is not a classical phase called software integration
(SWI) in Ada. SWI is nebulous in Ada because the SWI is
handled at compilation. When something is compiled in
Ada, it is integrated with that system. Once a'tier has
been designed /coded, testing of that unit is started. A
two-segment testing approach is used. White Box Test
and Black Box Test. White Box testing is used to check
outputs from a unit while simulating that unit with
known inputs. A unit is the lowest level of abstraction in
this application. After successful White Box testing, the
unit is integrated with the rest of the system and Black
Box testing begins. Black Box testing is stimulating a unit
while it is integrated by looking at inputs and how that

unit responds to thos inputs. Comparisons ate then

made between Black Box and Whit Box test results.

. The Government will gain more visibility into the soft-

ware development process than in the past. The Govern-
ment will have the capability to understand the design

-process and the software produced from this approach.
The methodology lends itself to the best solution and the
structural model forces consistency in the Ada software Sofwarn ROqUIEMents
product. The production of software in the past has
forused on the transition between an activity called
design to code. In preparation for PDR and CDR, many

hours are spent drawing block diagrams or writing Sofwara
-pseudo-code to explain a full understanding of the de- Dovslopmant
sign. Once that design is approved, coders come in and sK“‘E,‘éé“
1a)

code the software structure and the design at PDR and
CDR has been lost. There was communication, but there
was not an understanding between designers and coders.

Data Flows

In today’s Ada world, the software transition is from : - Doy e
requirements analysis to design which is compilable Ada Mathodolagies

code. Now there is communication and understanding,
The software design can be separated from the physics of
a problem, allowing compilable software detafled design Cenlral Flows
documentation (SDDYD) to be presented at CDR in Ada
PDL. Upon Government design approval, the functional
unit is the only coding job left. Interfacing and localiza-
tion of errors is seen and enforced when presented at
CDR. The SDDD can be viewed as enforceable documen-
tation with specification to the unit level or a “code to”

unit requirement. The job left for coding is to insert the Chiec Menfflenton Rolonani
math models into the design. Figures 6 thru 10 iilustrate
“the concept, coupled with automated tools for the re-
quirements analysis design and code phases.

This paper has attempted to present a candidate ap-
proach coupling automated tools and Ada with customer
reviews. Not using tools in tight-scheduled programs

may lead to a paper-intensive development increasing - System Types
-schedules and cost. There are:many tools available today ,.,,u, Akt Charmconia is

that offer design and documentation assistance in every ok ‘

development phase (Automated Requirements Analysis e ot o, e b o

Tools, Graphical Object Oriented Design Tools, Boeing’s troe l:.--d-q_m_nnh.‘.

own Automated Systems Engineering). A proper Ada et b Sraactuiacr,

development methodology can offer assistance in every
developmental phase. The dilemma facing software pe—

developers today is how to integrate the proper foolset : 1 D
and Ada approach fo allow the best product and give the Tt
customer a full understanding of the development. oo . Gttt s

Goar_Hate ! Lurding Gear Staln_Type.
Primary Deslgn/ H .
Developmant wd o,
n pove)

Interiace Packzges

) Sohwars &mﬂmm ﬂd&-

Figure 7
Design and Development Methodology

Figure 6
Integration and Developmant on Common Station

541.

Pratiminary Dasign 7
Deoeign -

Dsta Fiows

g

Fercting_To_Gaar (Coar_Malwections, This_ Qeary;
oo U ; Do
[3

Indoss
ol Upnlate_ Oy Prositin;

wn: A
o AR

Program Design Language {POL)
Pickege Landing Seat i

Sondirs Uyt e Loy Slou Do D vy Sow e

ard Larchg_ Qe
FOR Dala Package
Figure 8 Figure 3
Design and Developtient Methodology Design and Development Methodology

542,

-

ode

i
!
f

Enbong, G Malincrirms * it Mckvmabion, Lanclg Gaws Makaciions,
™ + In ot Larleng G, T, Alcraf)_Corachurivics
gl

A Pt £ SRR

Figure 10
Design and Development Methodology

543.

" REFERENCES

1. The Boeing Company “Boeing Automated Software
- Engineering (BASE) Software Integrated Environment
(SWIE) Software Users Manual,” June 9, 1986, p17-18.

2.-.The Boeing Company “Boeing: Embedded Software
Standards,” January 19, 1987

3. The Boeing Company “Boeing Automated Software
Engineering (BASE) RTZ Tutorial, December 31,
1987, p7.

4. Hendrix, Jerry H. “The Next Generation of Trainers:
Lessons Learned from the Ada Simulator Validation
Program.,” Preceedings from the 9th Interservice/
Industry Training Systems Conference, November
30 - December 1987, Washington, D.C., p62-66.

5. Myren, Greco “Experience in Implementing on Ada
Real-Time Program for Flight Simulation Operation”
Preceedings from the 9th Interservice Industry
Training Systems Conference, November 30 -
December 2, 1987, Washington, D.C., pé8.

6. Parrish, William F. and Woodard, Pamela 5.
“Feasibility of a Graphical Design for an Ada Software
Development,” Preceedings from the 10th Intersérvice
Industry Training Systems Conference, November 29 -
December 1, 1988, Orlando, FL, p35-36. ~ ’

ABOUT THE AUTHOR

Jerry H. Hendrix is a systems software engineer with
Boeing Military Airplanes in the Simulation and Training -
Systems organization. He has been responsible for sys-
tems and software work on several Boeing projects in-
cluding the Ada Simulator Validation Program. Heis
currently involved in the Fiber Optic Guided Missile
Program and research and development activities on Ada

real time systems/software development. Mr. Hendrix

has been involved in Ada development for five years and
holds a Bachelor of Aerospace Engineering Degree from
the Georgia Institute of Technology.

