ANALYSIS OF PATHS OF TRANSFER TO ADA
TECHNOLOGY IN TRAINING SYSTEMS

Don Law and Gary Croucher
Encore Computer Corporation
Ada Development, MS 404
6901 West Sunrise Boulevard
Fort Lauderdale, FE. 33313

ABSTRACT

The training and sirulation systems of the 1990's will be more complex as total trainers and
multiple participant systems mature. The Ada language offers the software engineering

- fundamentals needed to handle the greater complexity and the life cycle advantages to reduce

software costs. To use Ada, training system vendors must decide on a method to transfer to Ada.

There are two basic approaches for transfer to Ada technology. At one end of the spectrum is
the."generic" approach, which uses the generic, standardized Ada structures for the
implementation. This path promises the benefits of modern software engineering, easier
maintenance, and greater portability. This path also requires the cost of quality Ada training, the
risk of using a new technology, and possible performance degradation.

At the other end of the spectrum is the "proprietary” approach, which depends on other non-
Ada, more traditional support systems for the real-time implementation. This approach promises a
more appealing transition since risk of new technology is lowered, but there are tradeoffs such as
the predicted higher life cycle costs and the loss of the software engineering advantage offered by
Ada.

Neither approach is superior in all cases, but each has its advantages and disadvantages,
which are classified and weighed in this paper. Analysis is based on the application speed,
efficiency, portability, determinism, software training, and maintainability. A survey of the
philosophy of some of the real-time Ada systems currently available on the market is presented.

- Systemns are evaluated based on the cost/benefit areas established in the paper. Developers of Ada

real-time training and simulation systems can use these guidelines to plan their approach early in

the project to ensure that the requirements will be met in a cost-effective manner.

- INTRODUCTION

The Ada langurage, with its rich set of features
and well-defined structure, offers the software
engineering fundamentals needed to develop
complex real-time applications along with the life
cycle advantages needed to reduce software costs.
As the training and simulation industry chooses to
fund new projects in Ada or convert existing
projects to Ada, they must decide on the approach
that will be taken to convert existing resources to
Ada technology. There are two distinct approaches
for transfer to Ada technology: a "generic” approach
and a "proprietary” approach. The generic approach
restricts project implementation to standardized Ada
structures and semantics, while a proprietary
approach provides additional non-Ada support
typically in the form of runtime procedure calls that
support many of the features of the underlying
operating system. Neither approach can be
considered superior in all cases, so before making

167.

any purchases, buyers should carefully consider
their situations to determine which methodology is
most suited to their individual needs.

This paper analyzes and compares the generic
and proprietary approaches to Ada development. A
technical analysis is presented for each approach
that emphasizes key areas of Ada functionality, such
as tasking and interrupt handling, and how efficiently
this functionality is implemented. Finally, a
comparative analysis is performed that contrasts
these two methodologies. The comparison is based
on the attributes and measures of software
engineering that are considered important when
building large real-time systems. Application
speed, efficiency, portability, maintainability, and
development costs are among these atiributes. This
analysis 15 imtended to serve as a guideline to assist
developers of Ada real-time training arid simulation
systemos in planning an approach early in the project
to ensure that project requirements wiil be met in an
efficient and cost-effective manner,

| =

Proprietary Ada

Application

v

Ada Runtime

v

Operating System

¥ o

neri

Application

v

Adza Runtime

v

Oper. Sys. {opﬁon al)

v v

Hardware

Hardware
Figure 1. Typical Proprietary vs. Generic
implementation Heirarchy
E DA ENVI "

A generic Ada environment provides only
generie, standardized Ada support for development
of target applications. Typically, the generic Ada
runtime will directly control the target hardware.
This approach is commonly known as a bare
machine implementation of Ada, since no
underlying operating system exists. Of course, a
purely generic implementation of Ada can exist
above an underlying operating system, as long as

no underlying proprietary functionality is visible to

the application. Generally, this type of Ada
development environment provides strong
independent support for critical areas of Ada
functionality. For the purposes of this discussion,
we will assume that a generic Ada environment has
no underlying operating system, and that all
operating system functionality is performed by the
Ada runtime.

Device

When no underlying operating system exists, ail
of the driver support for performing device 1O must
be implemented as part of the Ada runtime. This is
one of many factors that contribute to an excessively
large generic Ada runtime. This approach can actually
prove to be more efficient, however, as runtune
procedures can be specifically designed to meet the
neads of Ada I/O. Onbare machine systems, the

. additional size required is compensated by the memory

that is freed up by removing the operating system.

168.

Interrupt Handling

The generic Ada mechanism for handling
interrupts is defined in Chapter 13 of the Langnage
Reference Mamual. It is integrated with the Ada
rendezvous mechanism used for inter-task
communication. Interrupts behave like the
rendezvous, except that there is no software calling
task. The tasks that are to handle the interrupt are
abstracted from the normal flow of execution. When
the user is developing the interrupt task, he may
design it as a completely separate execution entity.
Visibility to other parts of the program is governed by
normal Ada rules, just as if the interrapt task were a
procedure in the application.

There is only one provision for connecting an
interrapt to an Ada task. The interrupt must be
connected to an entry within that task using an
interrupt entry representation specification. A mumber
in the specification of the task specifies which interrupt
in the underlying system is to be associated with that
task entry.

One drawback with the generic mechanism is that
interrupts must be processed as a "scheduling event,”

-which means that the Ada scheduling rules must be

followed when the interrupt occurs. This prevents the
“fast interrupt” concept of processing the interrupt
without entering the scheduler.

The generic mechanism offers the advantage of
simplicity in that the interrupt scheduling behaves
exactly like the inter-process scheduling. This
contributes to a more consistent system design. The
tradeoff to that is that all interrupts are subject to the

same behavior. The imposition of the Ada scheduling
rules on interrupts can make "fast interrupts” (no
scheduling evaluation) difficult to implement.

If an application requires unusual interrupt
support, such as extremely fast interrupts, then generic
Ada may not be a sufficient platform (but see the
alternatives discusses below), If the traditional
interrapt concept Is all that is required (that is, the
conmecticn of an interrupt to a particular logical
sequence of code} and the interrupt design is complex,
then the generic Ada solution is a good choice. It
provides the powerful semantics of the language to
manage a complex interrupt design.

Exception Handling

The exception mechanism in Ada is one of the
most complex parts of the language to implement. A
good generic Ada implementation wili map all error
conditions on the target into Ada exceptions.

Traditicnal operating systems have relatively
weak exception handling capabilities. Often, the task
is aborted altogether. Some systems provide an error
receiver capability, but usually the error handling code
does not have visibility to where the exception was
actually raised. The generic Ada mechanism is quite
- sophisticated by comparison. Error handling can be
done more gracefully within the language. Exception
handlers may be localized to any particular area of
code down to the individual statement level.
Exceptions are user definable, and may be propagated
up the call chain.

The generic Ada exception system opens up a
new realm of design possibilities for real-time
systems. Error conditions can be handied in the same
context that they were caused,

One difficult issue that must be addressed in real-
time systems is what to do with asynchronous error
conditions, such as a memory parity fault. At the time
that the error aceurs, any task in the system could be
- executing. Furthermore, any call chain of procedures
and functions could be in progress when the
conditions occur. If graceful recovery from such
conditions is a requirement for the application, then
adequate exception handlers must be installed in the
code. These handlers need to exist in any task that
may be in execution when the fault occurs. Since the
addition of exception handlers is likely to be extensive,
the overhead of these handlers must be examined. It is
. possible for a vendor to implement Ada exceptions
such that no additional execution overhead is required
- when an exception handler is added to a piece of code.
This should be considered when selecting an Ada
target environment,

Another complication with asynchronous error
conditions is the possibility of such a condition

169.

- oceurring while no tasks are executing, that is, while

the system is idle. In such a case, there is no scope to
deliver the exception to, so the implementation must

. perform some target-specific operation,

Concurrency

The unit of concurrency in Ada is the task, and
the only way for applications to support concurrent
code segments is to write these code segments as task
structures. All scheduling mechanics, including
scheduling called tasks to run and queueing calls to
task entry points, is handled by the rendezvous
mechanism of the Ada runtime and ase well-defined by
the language. There may easily be more logical
elements of execution than physical processors,
allowing better abstraction in the system design.

Multip .

Since the generic runtime is self-contained and
has conirol of the hardware, a distributed Ada
environment can be implemented by the vendor as an
extension to the existing runtime. All functionality
required to support additional processors will be
contained totally within the runtime, since the runtime
alone controls the hardware,

This extended or distributed nmtime will also be
responsible for determining how the Ada application
will be divided up among the participating processors. ™
It is conceivable that the nmtime could choose to
partition the executable application on any or ail Ada
constructs. Typicaily, however, designers of generic

- environments have opted to partition the application on

task boundaries. Partitioning on task boundaries tends
to produce a correspondence between Ada's unit of -
concurrency, the task, and the underlying system's
unit of concurrency, the processor.

Vendors of this type of distributed system often
introduce additional "proprietary” features that
optionally provide the user with explicit control over
how and where tasks are distributed. For example,
the Encore ARTE (Ada Real Time Executive) provides
a suntime call to anchor a task to a particular
processor, This feature is useful for tasks that may
require specific hardware found only on one particular
processor. Application developers can still develop a
truly generic, portable application by choosing not to
utilize these additional proprietary supports. If the
runtime is not supplied with any proprietary
information, the mechanics of task distribution
tranisparent to the user.

NMENT

A proprietary Ada environment uses operating
system functions for real-time support instead of the
aforementioned generic environment. Proprietary
environments usually provide extensive support of the

functionality of the underlying operating system as-
well as the required standard Ada language constructs.
Typically, support for the proprietary features of the
operating system are accessible to the application
through interface procedures provided by the Ada
runtime. These nintime interface procedures often do
Iittle more than call an underlying operating system
function to perform the required task.

Device VO

Device I/O is controlled by driver programs in the
operating system. I/O operations can be executed
either by making the appropriate Ada runtime call,
which in turn calls the operating system, or by calling
- the operating system directly, if it is directly accessible
from the application. While this approach helps to
minimize the size of the Ada runtime, it tends to
generalize the specific needs of Ada 1/0, and
consequently, may not be as efficient as it could be if it
were dedicated to Ada I/O operations.

Intermupt Handling

In real-time systems, interrupts provide the
asynchronous interface from the outside world. The
interrupt mechanism of target computers will vary
widely from vendor to vendor. A vendor will offer a
software interface that is-designed with the particular
target hardware in mind. In addition to hardware
variations, different vendors will have different market
requirements, which leads to different offerings of
functionality. The scope of this discussion will be
constrained to the ability for a section of user code to
gain control of execution when an interrupt arrives,
and then to resume execution back at the point of the
interrupt.

The user must specify, usually at run time, the

. lacation of the code that is fo do the interrupt

- processing. One possibility is to specify a procedure
or function that is to be executed when an interrupt
arrives. This can done using the Ada
procedure’address syntax, by specifying the
symbolic name of the procedure in a untime call, or
by some set of commands to the compilation system,
When the interrupt occurs, the procedure is entereg for
interrupt processing. ‘When the procedure exits, then
the interrupted task resumes.

Another possibility is for a particular process to

. be scheduled when an interrupt arrives. In this
scenario, a separate Ada program is developed for'the
purpose of receiving the interrupt. The program starts
and then notifies the underlying proprietary support
system that it is ready to take the interrupt, causing the
process to suspend. When the interrupt arrives, it is
then resumed at that point, processes the interrupt, and
schedules the interrupted process to run while it
suspends. While the second approach is still a
proprietary approach, it is more like the generic Ada

170.

philosophy of interrupts. It isolates the entity that will
handie the interrupt from the entity that is executing .
when the interript occurs.

The major advantage to the proprietary use of
interrupts is the availability of special feamres not
common to all target systems. The underlying system -
may offer particular actions on an interrupt (such as
starting the next ¥/O operation). The user may be able
write his own handler for extremely fast interrupt
processing. If the interrupt handler is developed in
assembly language, then the interrupt can be processed
without even doing a complete context switch,

Exception Handling

The needs of exception (error condition) support
vary widely depending on the application program.
Some real-time systems have very stringent exception
handling demands, while other systems may not
consider exceptions to be critical.

Error conditions peculiar to the target hardware
may have proprietary support that is very helpful to
some systems. For example, there may be an
extremely time critical period in which data is captured
from the outside world. A very small portion of that
data may be corrupted with noise, which could cause
arithmetic exceptions during the data capture. - The use
of generic Ada exception handlers may require too
much execution overhead to be ready for the next
element of data. Typically, the application will need
only to note that the exception occurred, but not take
the time to process it. Many proprietary real-time
systems offer this capability, even though this
capability is not standard Ada.

The most time-critical real-time systems often
have very stringent time requirements for exception
handling, yet very simple functionality requirements

. (as in the preceding example). Yet the generic Ada
- exception mechanism tends to be just the opposite,

even.in high-performance Ada systems on the market
today: the exception handling wsually is time
consuming, but offers extensivé capabilities for the
handling and propagating of the exception.

With proprietary error handling, the actions
available to the user for the oceurrence of an exception
are usually very limited. At best, the equivalent of an
interrupt handler can be established for the exception.
Users choosing proprietary environments need to
ensure that the target system supports the exception
handling needs of the application, particularly if Ada
design constraints are in place.

Concurrengy

Concurrency can be provided through one or
more of several different methods, depending on the
particular Ada environment that is being used. The

standard Ada unit of concurrency (the task) is
supported along with whatever means the underlying
operating system employs to activate independent units
of concurrency (normally referred to as tasks or
processes). Once.again, the runtime mechanics to
activate an Ada task may consist of little more than a
call to a process activation routine in fhe operating
system.

Multi-P .

In a proprietary environment, parallel execution
of tasks is usually done using multiple processes
executing multiple Ada programs. The application is
divided into several different functional units which
may proceed independently of each other. These units
are then assigned to a particular processor in the
system.

An advantage to this approach is that already
existing non-Ada programs can be easily incorporated
into the application. Supporting systems often provide
a shared memory facility between different processes
in the system. If an existing application is being
ported to Ada, this approach allows one functional
piece of code to be ported at a time,

Another advantage is that process scheduling
facilities may be available that are not directly offered
by the Ada language.

A disadvantage to choosing the proprietary
approach over the generic approach js that the division
of functional units among the processors is not
abstracted from the logic of the application. Moving a
component from one processor to another may prove
to be a redesign effort. ‘Another loss is the checking of
shared data by the compiler. If all tasks are in the
same program using the generic approach (distributed

- over multiple processors), then the correct-use of

shared data (data typing) is checked by the compiler.
A E L

Speed

Execution speed of the target application on
generic and proprietary environments is dependent
primatily on the areas of Ada functionality most
frequently stressed in the application. Error
(exception) handling tends to be faster and more
versatile under a proprietary environment. Using a
proprietary approach, the complicated, nested
methods of handling standard Ada exceptions can be
bypassed at the operating system level by time-critical
applications that need to process frequent error
conditions at a high rate of speed. Similarly, interrupt
handling, as discussed earlier, is also faster and more

- versatile under a proprietary implementation.

A generic approach will generally out-perform its

- proprietary counterpart for systems utilizing a large

number of concurrent tasks. Since task scheduling
mechanics for a generic system are contained entirely
in the runtime, optimizations can be made to this code
without adversely affecting other system software
(such as an operating system). In most generically
oriented systems currently on the market, the vendors
‘have implemented major optimizations. Table 1isa
comparison of two Encore Ada development
environments. The first is proprietary, executing on
top of the MPX-32 operating system. The second is
the Ada Real Time Executive (ARTE), 2 generic
environment. The compilers (and hence, the code that
is generated) for each environment is identical. The
difference in the load medules is determined by the
runtime link.

Test Task Avg. Time Avg. Time PIWG Test 9% DIFF
Description | Location . {MFX) {ARTE} Name ARTE-MPX];
One Ina
One gfrl; Procedure 2344 120.0 Ti, T2 -40.1%
One Task n
‘l‘i\g{aaEgéfcigg Main 3E86.5 277.3 T4, T8 -28.3%
Two Tasks Ina
One Entry Each | Package 232.8 145.1 T3, T5 -37.7%
One Task In
One Entry Main 157.6 89.2 T7 -43.4%
Two Tasks In
pasted iy vend, | Main 625.0 526.1 T8 -15.8%

Tablel. Standard PIWG execution results for MPX -32Ada {a proprietary
environment} and ARTE (a generic envirormment}.

171.

Notice that rendezvous times are significantly
faster on a generic, optimized implementation of task
scheduling.

I application speed is vital to project success,
then the problem domain of the target application
should be evaluated carefully before selecting a
particular approach. Applications containing a high
volume of concurrent tasks will tend to perform better
under a generic environment, while programs that rely
heavily on interrupt handling capabilities or must
handle a large number of error conditions as part of its
primary contro} flow will probably perform better
under a proprietary environment.

Efficiency

The Ada language is a more complex langnage
than most languages used in training systems. When
making a transitdon to Ada, the user must be aware that
in some cases more resources will be required in the
system. For example, more memory is typically
required for Ada. One reason is that there are
"automatic” data structures intemal to the language that
will be allocated to track the elaboration of each
package used in the system. This additional memory
is not required by Fortran or C.

There are other parts of Ada that require more
resources because of the added functionality of the
language. The runtime Iibrary will necessarily be
larger due to the fact that it must support the operating-
gystem-like features of the language. A bare machine
Ada approach helps 1o alleviate this problem by
replacing the operating system with the Ada runtime,
freeing up memory that would be required by the
operating system.

Although Ada is often seen as a language that
requires more computer resources for everything, that
is not always the case. The Ada language can be
compiled into very efficient machine code. Because of
the richness of the language, programmers have the
opportunity to give a large amount of information to

' the compiler, such as constraints of variables, whether

or not parameters and variables will be modified, and
so on. Good compilers and optimizers can use this
information to produce better quality code than can be
produced from less detailed high order languages.

If memory requirements on the target system is an
issue, then the developer should look for an Ada
compilation system which only includes routines that
are actually called in the program to be loaded. This
would allow the user to eliminate the tasking part of
the runtime from programs which do not use any Ada
tasking constructs, for example. When proprietary
alternatives are chosen rather than the generic Ada
counterparts, then it is desirable that the support for
the Ada that is not used is not loaded with the final
program.

172,

The efficiency issues of proprietary real-time
support versus Ada are difficult to quantify because
the efficiency varies so much over different vendors.
Some proprietary subsystems may be more efficient
because they do not support the complex structures of
Ada (in exception handling, for example). Yet other
proprietary subsystems may be less efficient because -

- they must support a wide variety of needs for different

languages (in I/O, for example).
P ili

Application portability is the ability to move
application source code from one Ada system to
another, recompile, relink, and execute the resulting
application with a minimumn of effort. Portability can
be achieved using either a generic or proprietary
approach simply by restricting application source code
to use only standardized Ada constracts. A generic
environment is most likely to ensure Ada portability,
since a generic environment supports only standard
Ada structures, which are standardized across different
platforms.

Portability should not be an issue when deciding
on a particular approach unless there is a possibility
that the application will one day be ported to a different
target system. If there is a reasonable certainty that the
application, throughout its life cycle, will execute on
only a single or restricted number of targets, then the
additional funciionality of a proprietary operating
system may prove to be a superior choice. However,
the portability of Ada systems is one of the most
desirable atiributes.

Determinism

The degree of deterministic behavior of a real-
time system is not easily decided by whether it uses a
generic or proprietary approach. There are many
factors to be considered that are beyond the scope of
this paper. However, there are a few items that should
be considered if the determinism of the target system is
important.

In a generic Ada environment, a priority
preemptive scheduler is usually a requirement. In
addition, features such as check suppresses,
rendezvous times (optimal and typical), maximum
intarrupt blocking times, method of exception
processing, etc. must be considered. These are some
of the critical elements needed to build a deterministic
system.

In a proprietary environment, the determinism of
the system depends on the functions supported by the
underlying systemn and how they behave in real-time.
Space does not permit their discussion here.

Software Training

When the transition is made to Ada from some
other language, training of the software staff will
normally be required. Obviously, rodimentary
tratning in the Ada langnage will be necessary. In
addition, training for the real-time aspects of the target
system is required. If the transition is being made on
the same target platform, then the software
development teamn may already be familiar with the
proprietary real-time features of the target system. If
the proprietary approach is chosen, then extensive
training on Ada real time systems is not required.

Taking advantage of the proprietary expertise
already developed will pay off in the short term, but
may not prove to be worthwhile in the long term. This
benefit must be weighed against the cost in the areas of
life cycle costs.

If the development team is not already familiar
with the target proprietary system, then the generic
Ada approach will probably require less training.
Since the real-time features are integrated into the
language, it is easier to understand how to use them
once the language is understood. Unfortunately, there
is not much training available for real-time Ada
systems today. To make matters worse, there are not
many engineers available in the industry who
understand the real-time Ada issues. As Ada vendor
products mature, more systems will be developed
using them, which will cause the experience in the
field to grow. In the 19%0's, the demand for quality
real-time: Ada training will grow and more training will
become available.

Maintainabili

The primary reason for the use of Ada in real-time
systems is the reduction in life-cycle costs.
Proprietary real-time interfaces are not standardized,
even across different target systems from the same
vendor. Neither is the interface guaranteed across
different revisions of the same system. If a target
system is upgraded or changed to be a system from a
different vendor, then all of the code that uses the old
interfaces will have to be modified. Even worse, any
subsystem in the application that depended on some
functionality of the original system that is not present
in the new system may have to be completely
redesigned. The proprietary approach to these
systems partially defeats the maintainability advantages
of Ada and can lead to very high life-cycle costs.

. 'When using the generic Ada features, the
maintenance costs are reduced in several ways. First,
if the system is upgraded, the new system, even if
from a different vendor, will have the same Ada
interface for real-time features. Note that this will not
be completely compatibility because the language
standard defers some features to be implementation

173.

dependent. Secondly, if a development staff
turnaround occurs, it is more likely that new staff
members with Ada experience will bave generic Ada
familiarity than to have familiarity with a particular
target proprietary system.

Conyvertibili

‘The term "convertibility" refers to the ease of

- which applications written in a different language can.

be converted to Ada using the given approach. This is
only a consideration for applications that are being -
converted, not for new applications being-devéloped.

At first thought, it would seem that the
proprietary approach lends iiself to greater
convertibility. Naturally, this. would only be true if the -
underlying proprietary support were available on the
new target system. This may often not be the case.
Another prerequisite is that the Ada run-time ’
environment provides adequate access to the

- proprietary interfaces. This assumption is fr'equéntly

made, but may often not be a valid assumption. Many
Ada vendors actually purchase their Ada product from
a third party, which may not have an interest in the
proprietary interfaces.’

Even if none of these considerations pose 2
problem, the user has another decision in making the -
transition to Ada. Using the proprietary approach may
lead to a much faster transition initially, but this benefit
may be Jost over time as life cycle costs remain high.
The user should consider going back to the design of
the existing application and attempting to accurately
capture the original design in Ada code, Not only
does this capture the benefits of the generic approach
already mentioned, but it also leads to a cleaner
implementation, avoiding the "Ada-tran” syndrome.

A drawback to the generic approach is that it will
tend to yield an Ada program that is not easily
converted to a different language, since the Ada
constructs are generally more flexible than traditional
proprietary support systems. -) ’

TER IV LUT ,

Tt would be incomplete not to mentioh an effort
underway to alleviate some problems discussed so far.
The Ada Run-Time Environment Working Group
(ARTEWG) of the SigAda of the Association for
Computing Machinery has proposed a solution to
having to make the tradeoffs discussed in this paper.
The solution is to provide a set of interfaces to the
underlying system which are not part of the Ada
language, but implemented as procedure calis using
the standard Ada package interface. The key is to
standardize this set of interfaces to preserve some of
the advantages of the generic approach that would
otherwise be lost when using the proprietary
approach, such as portability.

The ARTEWG has published a "Cataleg of
Interface Features and Options for the Ada Runtime
Environment" (1) which contains a standardized
specification of support routines needed in a real-time
system. The purpose of the document is to provide
users with a quick way to implement portable,
maintainable, real-time Ada systems without having to
confront some . of the problems with and restrictions of
the language (mentioned above) and without having to
use an extended Ada. The specification defines
interfaces for such support as cyclic scheduling, "fast”
interrupt handlers, dynamic task priorities, and so on,
none of which'are defined by the Ada language.

Although the proposal is somewhat controversial,
it is nevertheless a good idea. The language itself
must be very well defined and regulated. As a result,
issues specific to real-time systems are not
standardized by the language, because the language
serves other realms of computing as well. A separate
standard should be adopted to standardize support
needed only in real-time Ada systems,

CONCLUSIONS

This paper is 2 guideline to the real-time training
systems developer. The paper not only answers some
questions, but also presents which questions need to
be asked by the implementor to the vendor. . These
questions are guidelines and are not a comprehensive
list of things that need to be considered by the
implementor.

- The Ada language has made great progress in the
maturing process, but maturation is not yet complete in
the industry. Tt seems that the real-time features of the
language are among the most immature, This is
probably caused by the fact that they are not required
for validation, while most other features are required
for validation. Thus the vast majority of the resonrces
of Ada vendors has been concentrated on issues other
than the real-time features. Presently, compilation
systems are maturing, which shifts more of the -
industry activity to areas such as real-tirne support and
runtime fonctionality. (Other areas of rapid growth in
the Ada industry included toel development and
refining of standards.)

When implementors of real-time systems are
‘selecting an Ada environment, they must be careful to
determine all the runtime needs for the system.
Because of the newness of Ada technology, there is
still quite a bit of confusion about the terminology,
especially in the marketing literature, A good way to
accurately determine if the support needed is available
in a particular system is to provide functional
benchmarks to the vendors.

174,

The generic approach is in general the favored
choice for real-time Ada systems in the 1990's. ' While
there are certainly tradeoffs involved, most drawbacks
mentioned in this paper will be overcome by the
continuing capacity enhancements of target systems.
Other factors such as larger memory systems, better
design and debugging tools, and better training in real-
time Ada design will help insert Ada technology into
the simulation and training industry.

In the near futare, the proprietary approach will
continue to be popular. There are certain niches,
especially in smaller systems, where the advantages of
the generic Ada approach are just not significant, while
tradeoffs may prove to be quite costly. In such cases
the proprietary approach is the best choice.

REFERENCES

¢1) Ada Runtime Environment Working Grouap, "A
Catalog of Interface Features and Options for the
Ada Runtime Environment.” Release 2.0,
December, 1987,

ABQUT THE AUTHORS

Both Don Law and Gary Croucher are senjor
members of the technical staff at Encore Computer
Corporation in Fort Lauderdale, Florida. They have
been working on the Ada Real-Time Executive project
for the past two years. Both authors hold a Bachelor
of Science in Computer Science and Mathematics from
Furman University.

Mr, Croucher is the project leader for the ARTE
project. He holds an MS in Computer and
Information Sciences from the University of Florida,
College of Engineering. He has worked at Encore for
five years and with Apple Computers for two years
prior to that.

Don Law has been working at Encore since
graduating from college five years ago. He has
worked on several Ada projects including a prototype
of the Common APSE Interface Set (CAIS). He has
been a contributing member of the BMA project team
since its onset three years ago. He is currently the
project leader of the Ada compiler and debugger group
at Encore.

