APPLYING DOD-STD-2167A

James O’Day
Hughes Flight Simulation Operations
Herndon, VA

ABSTRACT

DOD-STD-2167A is rapidly becoming an international defacto standard for software development in the defense
industry. This is largely due to the size of the Department of Defense market for software intensive applications and the
lack of a readily available and more widely accepted standard for software development. At the same time DOD-5TD-
2167A is on its way to becoming one of the most widely used standards it is also one of the least understood software
development standards in history. Misconceptions and confusion about the application and tailoring of DOD-STD-2167A
are common and stem from a variety of factors. This paper will discuss some of these factors as well as issues, potential

pitfalls, and approaches to applying DOD-STD-2187A.
BACKGROUND '

DOD-STD-2167A, Defense System Software

Development, was released in February 1988 and

replaced DOD-STD-2167 as the single software

development standard for the Department of Defense for.

mission critical computer resources. DOD-STD-2167A

came about largely as a result of comments received from'

industry and the Ada community on DOD-STD-2167.
Although POD-STD-2187 was programming language

independent, many of the issues involved incompatibilities.

between ihe standard and its use with Ada. Other
problems included incompatibilities with new and evolving
software engineering - technologies. The Software
Development Standards and Ada Working Group
{SDSAWG) of the Association for Computing Machinery

Special Interest Group an Ada {SIGAda} headed by Don

Firesmith was instrumental in focusing attention on these
as well as other Issues during the revision cf the
standard. Major inadequacies identified in the June 1985
release of DOD-STD-2167 included: ¥ 19

‘Incompatibility with Ada and Ada related issues
Restrictions on development methodologies

Lack of system engineering emphasis

.Confusion regarding tailoring

Excessive "how to" imposed on contractor
Overlap with DOD-STD-2168

Confusion regarding software quality factors
Confusion concerning application to firmware
Confusion concerning application to non-
deliverables

A need to enhance readability

Confusion regarding software development files
A nead to ensure adequate support planning and
transition

Excessive requirements for "informal” testing

A need to encourage the use of reusable software
A need to emphasize traceability of requiremerits
A nesd to emphasize safety

OHOO OO0 PO E

Need 1o establish. engineering and test
environments

Confusion regarding qualification methods

New requirements needed for testing

Inadequate review of Data [tem Descriptions (DIDs)

e 6

The revisions to DOD-STD-2167 that resulted in
DOD-STD-2167A reduced the size of the standard by 40
‘pages and eliminated 8 DIDs. Even though the revisions
to DOD-STD-2167 represented a significant improvement,
there have been numercus problems and varying levels
of conifusion as projects first begin to apply DOD-STD-
2167A.

MISCONCEPTICNS ABOUT DOD-STD-2167A

In an effort to communicate several of the more
common misconceptions and clear up some of the
confusion about the application of DOD-STD-2167A, the
Joint Logistics Commanders presented a paper ['% at the
Tri-Ada’89 Conference during QOctober of 1989. Their
presentation centered on 10 major issues. The following
is a summary of their presentation.

1. DOD-STD-2167A does not impose the Waterfall

- Development Model. - It does specify a set of
activities that must take place during a software
development -project, but does not impose any
requirements that these activities be performed
sequentially or that one activity cannot begin
before another is complete.

Paragraph 4.1.1 of the standard indicates what
these activities are and that they may overlap and
be applied iteratively or recursively. Figures 1 and
2 of the standard while depicting a tradiiiohal -

sequential Waterfall approach to software
development do not necessarily. impose this
method.

2. MIL-8TD-1521B is in conflict with DOD-STD-2167A

and is in the process of being revised. MIL-STD-
1521B requires a sequential relationship between
software development activities, For example it
requires that activities such as coding not begin
until Critical Design Review (CDR} has. been
completed. It was not the intent of DOD-STD-
2167A to .impose this rigid ordering on activities.
DOD-8TD-2167A also permits multiple reviews
(PDRs and CDRs) as indicated in the standard on
Figure 1. This permits flexibility to plan and
schedule reviews in a manner that is appropriate to
the project. Guidance on tai[orin% MIL-STD-1521B
is contained in MIL-HDBK-287 9],

The Software Design Document (SDD) DID (DI-
MCCR-80012A) does not preclude the use of
iterative/recursive - design methodologies. DI
MCCR-80012A does dsscribe what sections of the
SDD are to be presented at PDR and CDR but

does not impose a limit on the number of PDRs or .

CDRs. -

Timing and sizing information required by the
Software Design Document DID (DI-MCCR-
80012A) at PDR is appropriate at that stage of
dsvelopment. it needs to be recognized that this
information is prelimnary and is merely a
refinement of estimates that have been made
previously when sizing and costing a system. The
purpose of this information is to help determine the
proper amount of resources have been allocated
and to uncover potential problems as early as
possible in the development pracess.

DOD-STD-2187A does not impose top-down
functional decomposition of reguirements.
Paragraph 4.2.1 of the standard requires that the
contractor use systematic and well documented
- suftware development methods that support the
formal reviews and audits required by the contract.
Figure 3 of the standard represents an example of
an organizational structure and standard set of
terms for communicating and documenting a
software design not the actual software
architecture or calling structure of a system.

DOD-STD-2167A does not impose. bottom-up
testing. Although the standard requires. CSU,
C8C, and CSCI testing no order of activities is
imposed. Testing methodologies may be mixed as
appropriate for the project.

DOD-STD-2167A is compatible with projects
organized into "builds". Proiects that are organized
into builds are required to make multiple passes
through the softwars development process. Each
pass adds increased functionality to the software
product being produced and since each build is
intended for operational use it represents a
deliverable product that must be supported as the
product evolves.

Builds may be treated as separate contracts and
DOD-STD-2167A can be. tailored o each build.
Builds may also be treated as one contract by
tailoring the Statement of Work to reflect DOD-
STD-2167A tailoring for each build. Tailoring would
eliminate or update specific data items for each
build as appropriate for that build.

DOD-STD-21687A [s compatible with prototyping.
Prototyping may be used for a variely of
applications. Two major categeries of prototypes
are deliverable and non deliverable. Deliverable
prototypes are usually associated with contracts
involving concept exploration-demonstration-
validation. Examples of possible non deliverable
prototypes would be in applications such as
requirements definition and risk abatement.

Since DOD-STD-2167A impases no required order
on activities, there is no conflict in designing,
coding, and testing software in support of
prototyping. i the prototype is to be delivered and
eventually evolve into an operational system then
DOD-STD-2167A should be tailored to ensure the
software is supportable over its lifecycle. *Throw-
away" prototypes are not intended to be supported
or delivered and DOD-STD-2167A should be
tailored to minimize costs and reflect the limited
objectives of these types of programs.

DOD-STD-2187A is compatible with Object
Oriented Design. As stated previously paragraph
42,1 of the standard only requires that the

. contractor use systematic and well documented

development methods. This does not preclude the
use of new methodologies such as Object Oriented
Design or Object Oriented Requirements Analysis,
and only requires that they be well documented.

10. DOD-STD-2167A is compatible with Ada. The

standard has been written to be language
independent. CSCls, CSCs, and CSUs are the
elements provided by the standard that are to be
used to communicate the software architecture of

a project. The constructs and capabilities of the
language being used need to be mapped to the
definitions provided in the standard.

APPLICATION PROBLEMS

Even though DOD-STD-2167A has been in use for

over two years, there are several factors which are
hampering its application to software projects. "These
include: .. :

O Vagueness in the standard and its DIDs intended
- 1o permit its use on a wide range of DOD software

- applications.makes it difficult to apply

o The need for the standard to allow for advances in
software technology limits the amount of guidance
that can be provided.

o A lack of historical basis and experience to aid
practitioners inthe decision making and application
process makes it difficult to apply.

0 A general lack of communication - between
contractor and conitracting agency leads to
different interpretations of the standard anc its
DIDs.

O A lack of an educational effort and resources
similar 1o what accompanied the intraduction of

Ada has made it difiicult to educate contractors

and contracting agencies in its use.

o The late arrival MIL-HDBK-287 and tailoring
quidelines meant that several programs began with
minimal or no tailoring being done to the standard
or its DIDs.

o Limited knowledge of the rationale behind the
document makes it difficult to apply.

0 Confusiont on how to map software architecture
into DOD-STD-2167A terms has the potential to
create serious cost and schedule impacts,

DOD-STD-2167A was designed to be used in a
variety of DOD applications. Because these applications
span many problem domains, each with its own unique

set of requirements, the standard and its DIDs were -

written to be flexibie and capable of being interpreted and
tailored in a varlety of ways to. accommodate varying
application domains. Software engineering technology is
also rapidly changing and evolving as the challenges and
complexiies of modern weapons system software
development increase. This in turn has required that the
standard be flexible enough to take advantage of
advances in new technologies. The need to provide this
flexibility has meant that the standard and its DIDs tend to
be vaguely worded documents open to varying
interpretations with varying cost and schedule impacts.
Vagueness and the lack of rattonale in the standard and
its DIDs have also make it difficult to defend or dispute
decisions made when applying and interpreting the
standard.

Communication is clearly the most important .

element in tailoring DOD-STD-2167A to a project. Unless
the contracting agency and contractor are both familiar
with the standard and its tailoring and are willing to
communicate with each other the costs of applying the
standard can easily consume a disproportionate share of
prclect resoyrces adversely impacting the project.
Estimates of complying with- DOD-STD-2187A
requirements vary widely- and can range from iess than
10% to as high as 40% of total software development
costs. This is clearly dependent on the number of

85 .

deliverables required and how DOD-STD-2167A is
interpreted and applied.

The issue of communication also invoives
understanding what products and levels of detail are

necessary to give the contracting agency visibility into the
software development process and what products are
necessary to maintain the system over its lifecycle. Most
of the costs associated with complying with DOD-STD-
2167A are in producing and maintaining the
documentation associated with the DIDs. .Since methods
such as technical interchange meetings and multiple
reviews can be used to provide insight into the software
development process rather than volumes of intermediate
documentation, the contracting agency and contractor

‘should consider the cost impacts and options available to .

themn as well as the potential benefits to the project when
tailoring DOD-STD-2167A.

The relatively recent arrival of DOD-STD-2167A has
meant that the experiences and results of the first few
programs using it are just now slowly starting to become
public. This provides a refatively small historical basis of
experience to draw from making it more difficult for the
average software developer to apply the standard in
his/her work for the first time. The general lack of
organized industry feedback on the standard and its

application has hampered the communication of lessons .

fearmed making it more likely the same lessons will be
leermed more than once as the defense industry
transitions to the standard.

The lack of resources associated with educating

both government and industry in the application of the
standard has also resulted in many of the same types of

‘lessons being leamed more than ofce. There exists no

communications mechanism such as a computer bulletin
beard or officially sanctioned periodic newsletter on DOD-
STD-2167A that can publicize guidance or case study
materials that would aid in the application of the standard.
This is unfortunate considering the potential cost and
schedule impacts that varying interpretations of the
standard can have on a program across its lifecycle. The
introduction of Ada has involved a vast amount of

resources and energy but it all will have been wasted if

the reduced lifecycle costs it was intended to deliver are
consumed by an over interpretation of DOD-STD-2167A
requirements.

MIlL.-HDBK-287 provides guidance on how to tailor
DOD-STD-2187A. Unfortunately it was late in arriving and
does not provide a great deal of rationale on what is

trying to be accomplished on a paragraph by paragraph

basis in the standard or its DIDs. Rationale would make
it easier to comply with the intent of the standard and
make it simpler to determine when sections of the
standard and DiDs should be tailored out of a contract.

- Anocther difficulty in applying DOD-STD-2167A is in
the area of mapping the software architecture into the

terms provided in the standard. This is an area where -

cost and schedule impacis caused by documentation are-
directly proportional to how the terms Computer Software

Configuration Hem - (CSCI), Computer Software
Component (CSC), and Computer Software Unit (CSU)
are interpreted. This is further complicated by the fact
that some software tools that could help generate major
portions of required documentation: are constrained by
assumptions made by their designers on hiow these terms
would be interpreted.

MAPPING ADA TO DOD-STD-2167A

Mapping the software architecture of a system into
CSCs and CSUs is proving to be one of the more difficult
tasks in applying DOD-STD-2167A. This is because of a
variety of reasons including:

0o Any mapping will have a major influence on the
cost and schedule of producing such documents
as the SDD. There are many mappings possible
gach with advantages disadvaniages and varying
cost and schedule impacts.

O Many of the principles and constructs embodied in
modern programming languages such as Ada do
not map well to the definitions in the standard for
a CSC or a CSU.

O It is not clear in:a mapping process how many of
the elements should represent physical entities and
how many of them should represent logical
groupings or processes.

O The hest software engineering desigh may make
the documentation process oo expensive in a
competitive biding situation and the software
engineering process can become document driven
to the point that it ends up impacting other
software design activities.

As mentioned previcusly, mapping the.software
architecture into the logical structure and terms defined in
DOD-STD-2167A can be a major cost and schedule
driver. This is mainly due to the high level of detail
requited in deliverables such as the Software Design
Document. This is easily illustrated when you consider
the mapping of Ada constructs to CSCs and CSUs. If
Ada packages are used to-represent CSUs rather than
Ada subprograms the number of units to be documented
will be significantly less than for CSUs based upon a
subprogram mapping. On larger projects this difference
can easily amount to thousands of pages of
documentation and thousands of dollars. This is why the
documentstion process and software architecturg
mapping process are becoming increasing important cost
issues in programs using DOD-STD-2167A. Since the

standard provides the flexibility to accept either mapping; -

the major unknown in costing the documentation for a
system becomes the contracting agency’s acceptance of
the contractor’s mapping strategy and the contracting
agency’s willingness to tailor the levels of detail required
by the DIDs. Since this is usually first documented in the
Software Development Plan, which is not approved until

after contract award, it is often too late to correct a bid
that was based upon the wrong assumptions.

Because there are so many maore capabilities and
censtructs in medern programiming languages such as
Ada, there are many more ways to map a software
architecture into DOD-STD-2167A terms. Unfortunately it
is difficult to find one that will consistently address all the
reguirements of the SDD.DID without putting limits on or
impacting the software design. For example, the logical
concept of a C8C is more closely related to one or more
Ada packages rather than any other Ada construct, yet
because of the wording of the SDD DID it must have data .
and control flow associated with it. Since a package is a
mechanism for grouping logically related entities it hag no
data or control flow in and of itself. For this mapping to
take place, the CSC becomes a logical entity in and of
itself that is partially composed of physical entities such as
Ada packages. This results in documentation that maps
io both logical and physical terms making the job of
understanding the software architecture and doing
software maintenance more difficult. The mappings tend
to be much cleaner for languages such as Fortran which
have less capability in hiding and localizing visibility of

data. Other issues in this category include constructs and

capabilities that should be documented but do not clearly
fall under the CSC or CSU organizational structure. This
includes such things as Ada packages composed entirely
of types and constants, tasks, generics, nested packages,
and nested subprograms.

Another issue that falis out of the need to map the
software architecture into DOD-STD-2167A terms is the
issue” of a document -driven software development
approach. DOD-STD-2167A was intended oniy to give the
contracting agency visibility inta the software development
process and to produce documents that could be used in
maintaining the software thet was developed throughout
its lifecycle, not to influence or determine the scftware
design. While a software design that might make heavy
use of Ada private types to protect and control operations
on variables might be good for maintaining a system in
the long term, in the short term it would add thousands of
subprograms that, under a CSU to subprogram mapping
strategy, would each require several pages of
documentation in the SDD. This would increase the initial
development cosis in what may be a competitive fixed
price procurement. Other spinoffs from strict
interpretations of documenting every small subprogram
will be a reluctance on the part of the software developer
1o limit functionality when designing subprograms. This
will mean that software developers will try to make
subprograms do more than they should to avoid
documenting additional subprograms. In the long term
this can adversely impact the maintainability of the code.
It sometimes appears that the drive to produce more
maintainable and readable source code and the process
of software documentation are working against each other
rather than complementing each other.

Specific problems and mapping strategies for DOD-
STD-2187 and DOD-STD-2167A have been discussed in

several recently published papers and presentations P14
1 These papers point out the difficulties in developing a
mapping strategy and contain more details on pitfalls in
making these types of decisions. .The great flexibility
available in deveioping strategies for mapping software
architectures to DOD-STD-2167A points out more than
ever before the need to reexamine our traditional
approach to documentation in light of what needs to be
accomplished to provide insight into the software
development process and what is necessary for
continuing software maintenance. S

DATA ITEM-DESCRIPTIONS

One of the most frequently complained about areas
in applying DOD-STD-2167A i5 in the area of the Data
ltem Descriptions. The two DIDs that are most frequently
mentioned are those for the Software Requirements
Specification (SRS) and Software Design Document
(SDD). The most common complaints center around
excessive levels of detail.

While DOD-STD-21687A describes a preliminary and
iinal version of the SRS, neither it or the SRS DID provide
any guidance on the what level of contant is appropriate
- for a preliminary versus a final submittal, Other problems
greas mentioned with the SRS include the excessive
amount of detail required for data elements.
Requirements analysis can easily slip into a design effort
rather than a requirements effort. For example if the
contractor is modeling a real world system he must
analyze how the real world system operates and then
make decisions about how his model will cperate. Along
the way he is likely to make some assumptions and
simplifications about what data elemants will be required
from the real world system to model the system. [n doing
s0 he has changed the way data elements are generated
from the real world and created new interfaces that have
no counterpart in the real worid; in the process of doing -
so he has drifted into design and his design now begins
to influence the requirements instead of the other way
round.

This problem is not unique to SRS assaciated with
DOD-8TD-2167A but is part of the classic problem of how
to separate requirements from design or the "what" from
the "how". Unfortunately requirements analysis is different
in each application domain and excessive detail tends to
encourage the "how” rather than the "what" in an attempt
to fill in il the data on internal interfaces.

In the SDD the problem of excessive detail is
clearly a design issue. In this case the data elements are
clearly part of the design. In any major software -
development effort there are likely to be thousands or
hundreds of thousands of data elements that will have to
be documented according to instructions in the DID. This
information tends to be very volatile during software
development, expensive to update, and takes the
software developer away from other important activities,
The end product is usually more paper than there are

57

- resources to read it and so much detaii it is difficult for a

maintenance programmer to grasp the system design
because it has been obscured by the detail that
implements it. o -

Unforiunately the approach that has been taken in
the SDD DID ignores some of the very features that Ada
was intended tc address. These include more readable

-code that becomes its own documentation when

supplemented with good system and subsystem
overviews in design documentation. Most maintenance

" programmers do not trust the documentation of a system,

especially once they find even the smallest error or
inconsistency, and usually go directly to the code once
they have a sufficient understanding of the system. Many
of the paragraphs of the SDD DID deal with providing very
specific detail while at the same time place few
requirements on the very important area of a system
averview of how the system functions as a whole and
interacts with itselfl. While a maintenance programmer
can easily extract detail from source code it is much more
difficult for him to build an understanding of how the
system - functions - as a whole and understand its
interactions from detailed code listings. The maintenance

‘programmer is also faced with another major undertaking

which is to maintain the SDD that he has inherited. The
larger and more detailed the dosument the harder and
more expensive the task will be to mairtain it over the
system’s lifecycle. -

The concept of autornating documentation so that
much of the required material may be exiracted from

‘source code and made into documents such as the SDD
-only solves half the prablem. The half that is soived is the

production part, the part that is missing is a way to read
and understand wvolumes of - information that are
produced. This approach is in fact addressing the wrong
problem. Producing large volumes of documentation is
not the problem - producing good high quality
documentation that provides the right amount of
information is the problem.

TAILORING DOD-STD-2167A

There are several common misconceptions

regarding the tailoring of DOD-STD-2167A. The most .
common of these is that tailoring can only be done once

and this is at the beginning of the program. Paragraph
4.3.3 and Figure 4 of MIL-HDBK-287 show that tailoring is
an ongoing process that begins before the first draft
Request for Proposal {RFP) is issued and continues after
contract award until the project has been completed. This
points out that tailoring can take place anytime during a
program that it makes sense. This is espacially important

contractors and contracting agencies who are applying

DOD-STD-2167A and its DIDs for the first time.

There are several restrictions on the tailoring
process that are enumerated in paragraph 4.3.5 of MIL-
HDBK-287. These include such things as tailoring
instructions for DOD-STD-2167A are to be specified in the
Staternent of Work (SOW); tailoring instructions for the

DIDS are to bhe specified in the Contract Data
Requirements List (CDRL); requiremments can not be
added to DiDs; and requirements may not be added to.
DOD-STD-2167A but may be added to the contract using
the SOW.

MIL-HDBK-287 also stresses that tailoring is ateam
effort involving contractors as well as contracting
agencies.
contractor’s recommendations for tailoring comes in the
contractor’s Software Development Plan.. This is the
place the contractor describes his DOD-STD-2167A
compliant software development process and any tafloring
that he fesls is appropriate.

The handbook also describes the mechanics of the
tailoring preccess and provides sample checklists of
tailoring examples. Although the handbook dees provide
some insight into DOD-STD-2167A it does not provide
enough of the rationale behind the paragraphs contained
in DOD-STD-2167A and its DIDs to really understand and
interpret those vaguely worded paragraphs that are likely
to be the most difficult and costly to comply with. In the
absence of this rationale, contracting agencies and
contractors must develop a mutual understanding of the
intent of each paragraph before effective tailoring can
occur. This is difficult with limited experience with BOD-
STD-2167A and causes ineffective tailoring to occur,
resulting in higher than necessary software development
costs.

ABOUT THE AUTHOR

James O'Day is a software engineering supervisor with
the Flight Simulation Operations of Hughes Simulation
Systems Inc., Training and Control Systems Division. He
is respcnsmble for the management of the Flight Simulation
Qperations Software Support Center and has over nine
years experience in software development of _flight
simulation devices. His previous-experience includes over
1500 hours of flight experience as an Air Force helicopter
pilot in Speclal Operations and spacecraft recovery
missions. He holds a Masters Degree in Systems
Management from the University of Southern California
and a BSEE from the U.S. Air Force Academy. Mr. O’'Day

has also completed the course work requirements

. towards a Masters Degree in Computer Science at
George Washington University.

REFERENCES
[1] . Firesmith, D., Ada .and DQOD-STD-2167A4,
presentation; National Institute for Software Quality
& Productivity. Case Technology Conference April
11-12, 1988.
[2] Firesmith, D. and Gilyeat, C., Resolution of Ada -

Related Concerns in DOD-STD-2167, Revision A,
Ada Letters, Vol VI Number 5 September,October
1986, pages 29 - 33.

The primary means of communicating the.

58

(3]

4]

(5]

i6]

(7]

L]

Bl

(10]

{11]

[12]

Gray, L., viewgraphs Washington D. C. ACM
SiGAda Presentation, Sept 27, 1989.

Grau, J. K., and Gilroy, K. A., Compliant Mappings
of Ada Programs to the DOD-STD-2167 Static
Structure, Ada Letters, Vol VIl Number 2 March,
April 1987, pages 73 - 84,

Maibor, D. S., viewgraphs Washington D. C. ACM
SiGAda Presentation, Sept 27, 1989.

Meyer, C. A., Lindholm, 8, C.,, and Jensen, J.,
Experiences in Preparing a DOD-STD-2167A Software
Design Document for an Ada Project, Association of
Computing - Machinery, Inc. TRI-Ada’s9
Proceedings; pages 118 - 124.

Springman, Michael, Software Design Documentation
Approach, Association for Computing Machinery,
Inc. TRI-Ada’89 Proceedings; pages 93 - 103.

Whitney, S., viewgraphs Washington D. C. ACM
SIGAda Presentatton Sept 27, 1989.

Whitney, 8., viewgraphs; Changes from DOD-STD-
2167 to DOD-STD-21674, March 1, 1987. :

Joint Logistics Commanders, Software Development
Under DOD-STD-21674: An Examination of Ten Key
Issues, presentation - Association for Computing
Machinery, Inc. Tri-Ada’89 Conference, Oct 23-26,
1888, Pittsburgh, Pa.

DOD-STD-21674 Defense System Software
Development, Department of Defense, 29 February
1088,

MIL-HDBK-287 A Tailoring Guide for DOD-STD-
21674, Defense System Software Development, 11
August 1989.

