- e T R A

Combining Real-Time and Time-Sharing
Services on a Multiprocessor

Ziya Aral Ilya Gertner Dave Mitchell

Technology and Architecture Group

Encore Computer Corporation

257 Cedar Hill Street
Marlborough, Ma. 01752-3004 *

Abstract

Multiprocessor systems offer a unique opportunity to provide general-purpose time-
sharing services without sacrificing the deterministic behavior and minimal latencies re-
quired for real-time applications. It is possible to achieve this by partitioning the set of
processors into two parts: (1) part is dedicated to time-sharing; (2) part is dedicated to
real-fime computations and control. Many existing approaches to real-time operating sys-
tems are based on modifying the base operating systems in order to meet the real-time
constraints. The results is an environment that is both very costly to develop and main-
tain. Our approach combines the time-sharing and real-time services in z unique way;
traditional time-sharing services continue to run as part of the operating system; while
real-time services are implemented at a user-level that rup on top of the dedicated set
of processes called gangs. . The result is a system that provides all traditional operating
services (on System V)and still provides real-time services (for flight simulators).

Introduction

Overview

The growing size and complexity of real-time appli-

cations and advances in computer hardware and soft-

ware have emphasized an ever increasing grey area

between "real-time” and ”general purpose” comput-

ing. Even as many conumercial and technical appli-

cations have begun to stress real-time components,

many real-time applications have spilled into the gen-

eral purpose domain. The increasing complexity of
real time tasks has mcreased the importance of ad-

vanced software development environments and so-

phisticated text and file management utilities. The
concurrently expanding requirements for graphical dis-
play, program visualization, program monitoring, com-
munications, and post-processing of data have added
significant general purpose components to many real-

time applications.

*This research was supported in part by the Defense Ad-
vaneed Research. Projects Agency {DoD) ARPA Order No.
5875. Monitored by Space and Naval Warfare Systems Com-
mand under Contract No. N000D39-86-C-0158.

The views and conclusions contained in this document are
those of the authors and should not be interpreted as repre-
senting the official policies, either expressed or implied, of the
Defense Advanced Research Projects Agency or the U.S, Gove
ernment,

Parasight and Multimax are trademarks of Encore Computer
Corporation. UNIX is a trademark of AT&T Bell Laboratories.

The standardization of many such services and
applications in environments such as the UNIX op-
erating system has created a gap between the current
sophistication of mainstrearn scientific and technical
computing based on standards and the more austere

" and typically proprietary environments once common

to real-time computation.

Distributed architectures which combine real-tire
and general purpose components have provided only
a partial solution via very loose interaction (typically
NFS and TCP/IP) [17]. Unfortunately, the response
tirne is such systems is inadequate for many applica-
tions that require a combination of real-time and gen-
eral purpose services in a single, tighily coupled sys-
tem (typically communicating via shared-memory).

Combining real-time and general purpose, stan-
dards based, time-sharing services on a single hard-
ware platform remains an important problem. At-
tempts to extend a real-time environment to provide
time-sharing services or modify time-sharing to pro-
vide real-time response results etther in systems with
inadequate real-time performance or in prohibitively
complex and expensive systems which deviate signif-
icantly {from the standards they were intended to im-
plement [20, 13, 12]. '

With the emergence of the UNIX operating sys-
tem and the availability of several "Real-Time UNIX"’s,
standards efforts like POSIX P1003.4 appear to be
promising at the interface definition level. Unfortu-
nately, the most difficult part of the implementation
has remained unspecified and the the fundamental
problems has remain unsolved [10].

The difficulty lies in the inherently contradictory

requirements for the real-time and time-sharing sys-
tems: real-time systems need exclusive access to all
resources, while time-sharing systems need shared ac-
cess to expensive resources (in order to reduce costs);
performance is of essence to real-iime systems, while
protection and fair scheduling is important to time-
sharing, etc, The need to mediate between. these
conflicting demands often results in systems that are
either complex, expensive, and deviate significantly
from the standards, or in systems that do not meet
the real-time constraints.

The approach described in this paper is based on
a very simple idea: instead of trying to fit real-time
into the time-sharing framework we provide an en-
vironment where both systems can coexist. This is
naturally accomplished on a multiprocessor where one
set of processors is allocated for time-sharing and an-
other one for real-time. The time-sharing system re-
mains essentially unchanged: The real-time system
requires some changes to the underlying kernel. The
essence of those changes is 1o remove ail intermedi-
ate software layers and provide direct hardware access
to the real-time system that must control devices,
memory, CPUs and own a scheduler. Communica-
tion between the real-time and time-sharing is easily
supported with the client/server model: a client on
behalf of the real-time issues a request to the time-
sharing server which yields the request and returns
results to the client.

The result is a hybrid system supporting a ”guest
operating system” running on a portion of the bare
multiprocessor-hardware, but also, because that guest

retains a UNIX identity, a logical extension to UNIX,

similar to a. language runtime or a secondary sched-
nler,

The above has been implemented on nUNIX, an
Encore enhaneemient of the UNIX System V. oper-
ating system [6]. The Appendix contains the UNIX
man pages for a few selected systern calls. The com-
munication between the real-time and time-sharing is
supported via shared-memory, a very efficient method
of communication. This paper describes the imple-
mentation of the systemn and discusses performance
results and early experience.

Background

In this paper we describe work based on a unique com-
bination of experiences: flight-simulator trainers and
general-purpose parallel processing- the result of the
recent merger of the Encore Computer Corporation
and Gould Computer Systems. -

Prior to the merger Encore has been engaged in

DARPA-funded parallel processing research in devel-
oping a Gigamax, a 1000 MIPS multiprocessor [14].
In software, the researched focused on MACH, a par-
allel operating system [16, 11] and Parasight, a par-
allel programming envirenment [1, 4, 2, 5, 3].

Parasight is a unique performance monitor and
debugger that utilizes the potential provided by the
shared- memory multiprocessors: it uses shared mem-
ory to read the program status of the application; it
uses multiple processors to run sophisticated moni-
tors that non-intrusively monitor the behavior of the
applications. It provides a natural fit for real-time
where all variables and other statistics can be flex-
ibly (with dynamic interaction with the user} and
pon-intrusively (from another processor) monitor the
application while it is running. This is & unique ca-
pability, available only on shared-memory multipro-
CesSOrs. :

Another result of our operating system research
was the development of nUNIX, which is an enhance-
ment of the standard System V UNIX kernel [6]. nUNIX
provides a extensible mechanism to support variable
weight processes. This is achieved by redefining the
process control block to be a structure of pointers to
the resources. This capability turns out to be the
crucial mechanism for implementing the environment
to support both real-time and time-sharing systems
on a single hardware platform. The following section
describes those extensions in detail.

nUNIX: a Multiprocessor UNIX

The inadeguacies of conventional UNIX kernels for
multiprocessors are well known [7]. Attempts to solve
those inadequacies have been centered around defin-
ing the notion of a light-weight thread that is a more
efficient unit of computation than a UNIX process.
There are basically two approaches for implementing
light-weight threads: (1) kernel threads and {2) user-
level threads [19].

Earlier attempts at implementing the light weight
threads have been based on the user-level packages
[9]. These packages typically support some number
of "threads of control” mapped onto one or more
UNIX processes. While quicker context switching
along with an arbitrary number of execution units
(threads in this case) can be obtained this way, thers
are some disadvantages. User-level synchronization
can become inefficient when the OS swaps out one of
the cooperating processes. It is quite difficult to have
1/O operations such as open(2), close(2) and dup(2)
made visible to all the participating processes; nor-

mally 1/O requests are queued to a single process to
avoid these complications, although other solutions
are possgible.

Additional problems with the user-level threads
point in the direction of resource sharing. The prob-
lem is in:precisely defining the semantics of the thread
creation. In particular, how are resources distributed
in a parallel program among threads? What happens
if a thread opens a file? Is it open to all threads? If
so, how does a thread cpen a private file? Resources
sharing has become the major hurdle in the user-level
implementations.

We have addressed the resource problem by mak-
ing it the central issue in defining a thread. In fact, a
thread is defined as a collection of resources that can
be shared or duplicated among other threads. This
definition is very general and already has been used
to support either conventional UNIX process {which
duplicates all resources upon the call to fork()) or
MACH light-weight threads (which share ALL re-
sources after the call to thread-fork()). In addition,
the same mechanism can be used to implement a va-
riety of flexible weight threads that meet the needs of
the given application.

We have found this approach to be most suitable
In our environment and implemented it at a.lower-
levelin the UNIX kernel [6]. Here, creation of a UNIX
process is done with a finer control of resources by
explicitly specifying what resources are shared and
what resources are duplicated.

The kernel has less work to do when creating a
new process with shared resources, since this usually
involves only incrementing a reference count rather
than allocating and initializing new memory.- With
these resources orthogonal to the execution context,
UNIX then provides support for-a variable-weight
process which spans the range from the traditional
process with all resources private, to a light-weight
process with an entirely shared address space resem-
bling a kernel-supported thread; but without the prob-
lems typical of the user-level threads packages [10]:

o lack of external thread visibility,
» changed semantics of thread "exit”, "ork?,

e changed semantics of many system calls dealing
with I/O signals ete.

The sharing of these resources alse provides sub-
stantial power. Sharing portions or all of ‘the address
space results in inexpensive shared memory, free of
artificial limitations, free of the overhead normally as-
sociated with creating and attaching shared regions,

and useful without requiring complicated machina-
tions in the source code.

Sharing the I/O resources allows several processes
to use the I/O connections maintained by a single pro-
cess, avoiding the overhead of initializing separately
for each, and making asynchronous read-ahead and
write-behind possible using an extremely light-weight
process sharing the entire address space. The sharing

- of signal handlers, usage limits, user IDs, file descrip-

tors, and statistics info, all make it possible for one
process o manage any of those resources on behalf of
all of its cooperating brethren.

Additional processes sharing a debugger’s address
space can nonintrusively monitor the activities of the
target process; one parallel debugger, Parasight, has
already been successfully implemented using this ap-
proach.

This solution provides completely uniform and con-
sistent semaatics, along with heterogeneous resource

- sharing, which is impossible with a user-level threads

package. Lighter-weight processes allow the OS to op-
timize many operations for improved efficiency, and
to consume less memory, allowing the support of a
greatly increased number of processes.

The New Approach

This section begins with the description of the re-
quirements for combining conventional time-sharing
operating system (OS) and real-time {RT) services.
(In this Section the acronym OS refers to the con-
ventional tirne-sharing systern while RT refers to the
real-time application). Then, we proceed with the im-
plementation of the system. Finally, we discuss our
experiences in implementing and using the systerm.

Requirements

In the introduction we talked about the difficulties of
combining time-sharing and real-time services which

- frequently have contradictory requirements. The key

for RT is to achieve a complete ownership of devices;
the key for time-sharing is to achieve *fair” sharing.
This is a contradiction.

RT: 03:
sole access to devices shared access to d
(immediate, no latency) (queuned)

occasional access to
shared devices (queued)

For example, RT applications need very fast low
latency access to hardware devices; in contrast time-
sharing services attempt to provide a "fair schedul-
ing” of devices at the expense of latency.

The problems are exacerbated even further for a
RT application that needs to lower the costs of the de-
vice access for data backup. In addition, a complex
RT application may need services that are normally
offered by the conventional operating systems (like
printing a report) which have no stringent timing re-
quirements. It is the infusion of the general-purpose
O35 services into the RT environment that has greatly
contributed to the complexity and costs of today’s RT
systems. The contradictory requirements for RT and
08 at a more detailed level are:

RT: - 0s:
own devices, shared devices,
vwn CPUs, time-sliced sharing,
own scheduler, "fajir' gcheduler.

open system closed system

RT wants to own devices such as the sensor de-
vices, backup storage and CPUs in order to reduce
latency; OS wants to share devices in order to reduce
the costs. Likewise, RT wants to dictate its own rules

of scheduling computations and resources; while OS5

wants to be "fair” to all users. In other words, RT
wants to be an open system where all the resource
scheduling decisions can be made or changed at will;
while OS.wants to be a closed system that makes most
of the decisions at the initialization time and tries to
be fair to all users.

Most of the existing RT systems can be classified
as open systems where the system services and appli-
cations share the same address spaces and the same
set of devices; all accesses to memory and devices are
immediate via function calls. This is the most effi-
cient for providing system services at the expense of
protection: erronecus program may crash the entire
RT application. In contrast, UNIX is closed sysiem
where all users and the system use separate address
spaces and protection domains. Protection domain
crossing occurs in thoroughly debugged boundaries
with plenty of error checking ensuring that a user pro-
gram does not crash the OS kernel. Clearly; ensuring
protection comes at the expense of performance that
is *wasted” (from a RT point of view) on errof check-
ing.

_ Implementation

This section describes the implementation of the main
RT mechanisms and communication mechanisms be-

- tween the RT and OS subsystems: The section is

organized in three paris:

(1) Gangs, the ability to allocate a set
of processors for certain tasks.

(2} Ability to communicate with the deavices
directly from the real-time programs
(i.e. user programs), without any intez
from any underlying systems software.

(3) Communications.between the real-time
and traditional 0S.

The main mechanisms to implement the above
are:

RT:
© mapped-in devices,
" gangs,
wired VM,
controlled cache.

Ovwnership of devices is achieved by mapping them
into the user address space (just likein any kernel). In _
UNIX, this is accomplished with the calls "physmap(2)”
and "intercept(2)*. The actual code is very similar
to the conventional kernel code. Following the map-
ping, the device is controlled by reading/writing to
memory with certain conventions.

The interrupt handler had to be changed substan-
tially from the conventional kernel code. In a con-
ventional 08 a hardware interrupt invokes the main
interrupt handler (with the supervisor bit enabled)
which validates the interrupt and passes i along as
a user-level interrupt. This is unacceptable for RT
applications that must handle interrupts within mi-
croseconds of its occurrence, We achieved the re-
quired response time by introducing a dual map scheme.
The two maps define the same address space running
in either the supervisor or user mode. A hardware
interrupt invokes the handler with the supervisor bit
enabled (a2 hardware requirement). Since the handler
runs in the same address space with the application, -
the results are made immediately available to an ap-
plication. In essence, the dual map is very similar
to the "ring-crossing” approach that is common in a
single-address space operating systems such as MUL-
TICS.)

Ownership of the processors is achieved with the
new “gang(2)” system call that allocates the speci-
fied processor to the given context. The process is
permanently assigned to a specific CPU within the
GANG,; once within the GANG, the value returned
from get_cpuid() should remain constant. These pro-
cesses are not subject to normal time slice interrupts
or scheduling- algorithms. Similarly, the CPUs do
not field ordinary I/O interrupts such as I/Q comple-
tion, clock, or rescheduling (i.e. time slice) interrupts.

-User level signals are delivered immediately. Further

predictability is achieved by locking the virtual mem-
ory and controlling hardware caches.

The RT multi-tasking scheduler is running as a
user program (as opposed to other systems where the
scheduler must be part of the sysiem kernel). This
allows use of several schedulers at the same time on
the same hardware platform. (For quite some time we
have been running the mix consisting of the standard
UNIX scheduler, and Parallel Ada scheduler [15]; the
RT priority-based scheduler has been the most recent
addition.)

Minimal latency is guaranteed to RT devices which

are allocated in an exclusive mode. Other devices
which do net require minimal latency are shared by
both RT and OS systems. One example is a disk drive
that can be configured either as a dedicated RT de-
vice or as a shared-device as part of the time-sharing
OS services.

For accessing shared-devices, we adopted a client-
server model frequently used in distributed systems.
The server program runs as a regular UNIX program
(OS5 server) subject to the conventional scheduling
and interrupis (though typically run at a high priority
for minimal latency); the client program is installed as
a library as part of the RT application. A library call
for system services is diverted by the client software
and queued in the shared buffer that is later accessed
by the server.. To support efficient communications
the OS server shares the entire memory with the RT
application, In addition, the OS5 server runs at a high
(UNIX) priority.

This approach significantly simplifies the RT pro-
grams which do not deal at all with the conventional
OS services. This is accomplished with a simple re-
mote procedure call interface (client library) which
marshals requests into command buffers that are passed
along to the OS server. In some cases, the overhead
for calling UNIX services can be further reduced by
temporary lending one of the ganged CPUs to run the
OS server. (A similar optimization has already been
used successfully to implement Parallel Ada run-time

[18]).

83

Preliminary Experience

In this section weevaluate the preliminary experience
in implementing and using this paradigm for cornbin-
ing RT and OS. We evaluate the results in terms of
the complexity of the implementation (approximate
aumber of lines changed or added) and in terms of
performance.

Gangs were fairly straightforward te implement:
the system calls for creating, destroying, adding to,
removing from the gang required less than ten pages
of C code. The total number of changes in the OS
scheduler and interrupt handler required only a few
lines. Mapping in devices was also straightforward:
UNIX cails physmap(2) and intercept(2) as used in
the same way as they are used out of the UNIX ker-
nel. The dual map scheme, while complex in design,
was quite straightforward to implement and it did not
impact the device specific interrupt handlers.

Wired-VM or VM with locked pages was based on
the System V version that already comes with what is
called "lazy locking” which siruply marks pages locked:-
and returns. A page faults occurs only the first time
when that page is accessed; once in memory; the page

remains in memory forever {or until it is unlocked). .

We corrected this behavior by kaving pages locked
and in-memory upon return from the new system call.

RT also conirols hardware caches. This is neces-
sary in order to check for the performance boundaries
in the application’s execution. Although it has been
demonstrated that there are cases when disabling a
cache may actual speed-up the program’s execution
[8], in our experience most of the application do rua
much faster with the cache enabled.

Complexity of the communication between the RT
and OS5 is similar to the complexity of any distributed
program running at user-level. The OS server is a
user program that reads requests from shared memory

“and converts them to UNIX system calls. It follows

the classic distributed server philosophy by waiting
in an infinite loop for work that is quened in shared
mermnory, calling UNIX services to do the work, and
returning results. The server is about a ten page C
program. Clearly, with more optimization, the size of
the program may double to twenty pages but it will
remain a small program and we do not expect that it
could ever exceed one hundred pages.

The client stub is also a classic distributed client
program that simplify marshals function call requests
in to a shared memory buffer [18). The important fact
is that normally the client never gives up control and
returns immediately to the RT scheduler. The only
exception is the optimization when the client "lends”

its processor to the server to perform a system call.

Conclusions

"This paper describes a new paradigm for combining
the services of real-time and tirme-sharing systems.
Previous approaches which have been based on mod-
ifying either the time-sharing sysiem to provide real-
time services or modifying real-time system fo pro-
vide time-sharing services have produced very com-
plex and expensive to maintain systems. In contrast,
our approach is based on the coexistence of the two
environments on the same hardware platform.

Fine control of resources is: the key mechanism for
providing real-time services that always need an ex-
clusive, minimal latency access to some devices such
as the real-time sensors and occasionally need access
to shared devices such as the printer. Exclusive access
is provided by allocating devices, memory and CPUs.
This is naturally accomplished on a multiprocessor
where a certain set of processors are "ganged” to-
gether to provide real-time services. Access to shared-
devices is provided via a distributed model: a client
on behalf of the roal-time system which is under the
control of the real-time scheduler issues a request to
the time-sharing server which is under the control of
time-sharing. This is a very simple and very powerful
mechanism that provides all UNIX services to an RT
application. ”

Preliminary experience with the dual services model
has been encouraging. The UNIX changes have been
incorporated into our standard UNIX System V dis-
tribution. Real-time system scheduler (running at a
user-level) has also been implemented and is the pro-
cess of being tested by several flight simulators.

A cknowledgments

The authors wish to acknowledge Greg Schaffer, Jeff
Russo, and others who have been implementing the
real-time system that generated the need for the changes
in UNIX deéscriibed in this paper. Dave Webber con-
tributed to the clarity of the final version of this pa-

per.

References

[1] Z. Aral and I. Gertner. High-level debugging
in Parasight. In ACM Workshop on Parallel
and Distributed Debugging. University of Wisconsin-
Madison, May 1988.

64

[2] Z.Aral and I. Gertner. Non-intrusive and interactive
profiling in Parasight. In ACM/SIGPLAN PPEALS
1988 — Symposium on Parallel Programming: Fz-
perience with Applicetions, Languages and Sysiems,
New Haven, Conrnecticut, July 1983.

[3] Z. Aral, I Gertner, J. Grier, and G. Schaffer. Perfor-
mance monitoring on shared-memory multiproces-
sors. In HICS552%, Hawait Internaiional Conference

on System Sciences, Kailua-Kona, Hawaii, January
1990.

[4] Z. Aral, I. Gertner, and G.Schaffer. Parasight: An
architecture for high-level debugging and profiling-
In ACM 1988 International Conference on Super-
computing, Saint Malo, France, July 1938.

i8] Z. Aral, I. Gertner, and G.Schaffer. Efficient
debugging primitives for multiprocessors. In
ACM/SIGPLAN ASPLOS 1989~ Third Interna-
tional Conference on Architeciural Support for
Programming Longuages and Operating Systems,
Boston, Massachusetts, May 1989.

[6] Z. Aral, I. Gertper, and A. Langerman. Variable
weight processes with flexible resources. In USENIX
Conference Proceedings Winter, June 1989,

[7] J. Barton ard J. Wagner. Beyond threads: Resource
‘sharing in UNIX. In Winter 1888 Useniz Conference
Proceedings, February 1988,

[81 CACM Vol. 12,No.6. An Anomaly in Space-Time
Charaeteristics of Certain Programs, 1969.

9

T. Doeppner. Threads - a system for the support of
concurrent programming. Computer Science Techni-
-cal Report ©8-87-11, Brown University, June 1987.

{10

el

IEEE Technical Committee on Operating Systems.
. Threads Estension for Poriable Operating System,
1990.

[11] S.Loverso J.Boykin, A.Langerman. The Paral-
lelization of MACH / 4.8BSD: Design Philosophy.
USENIX Workshop on Distributed and Multiproces-
sor Systems, Fort Lauderdale, Florida, 1989.

[12] MASSCOMP, Concurrent Company. RTU: a real
time UNIX operating sysiem, 1990. ’

[13] MODCOMP, an AEG Company, Fort Landerdale,
Florida. REAL/IX- Fully Preemptive Real-Time
UNIX, 1990. :

[14] 1. Nassi. A preliminary report 6n the Ultramax:
A massively parallel shared memory multiproces-
sor. DARPA Workshop on Parallel Architectures for
Mathematical and Scientific Computing, July 1987.

AL

o

TAPIEE TR e

L

TE T TR

L Ll

TTTIA T,

[15]

[16]
f17]
18]

[19]

[20)

I. Nassi and N.Habermann. Efficient implementa-
tion of ada tasks. Technical Report CMU-C5-80-103,
Camegie Mellon University, 1980.

R. Rashid. Threads of a new system. Uniz Review,
Angust 1986.

Ready Systems Inc., Mountain View, CA. VRTX
User Manual, 1989.

Sun Microsystems Inc. Remote Procedure Call Pro-
tocol, 1986.

A, Tevanian, R. Rashid, M. Young, D. Golub,
M. Thompson, W. Bolosky, and R. Sanzi. Mach
threads and the unix kernel: The battle for control.
In USENIX Conference Proceedings Summer 1987,
June 1987.

UNIX World, Vol. 4, No. 11. UNIX Overcomes Real-
Time Limilations, 1987.

APPENDTY

ESCAPES (2)

NAME

escapes - introduction to escapes from nermal Unix conventions

DESCRIPTION

This section describes a group of Multimax extensions that address
shortcomings of standard Unix implementations. Provided are hooks fox
alternative scheduling mechanisms, aveidance of typical Unix-imposed
cverhead, sharing cf such rescurces as address space and £ile descrip-
tors, and closer agcess to and control ¢ver the hardware. These exten-—
sions allow the Multimax to support user-level threads packages,
processes which field interrupts and provide what are normally viewed as
system services, as well as real-time and diagnostic programs which need
closer control over various hardware facilities.

Unix processes provide an elegant abstraction of the underlying :
hardware, embodying a "virtwal machine." The operating system maintains
the illusion that each program has this machine all te itself, and the
emphasis has been primarily on separation, or keeping one process fxom
interfering with another. In this model of communicating sequential
processes, all interprocess communication is mediated by the operating
system, imposing substantial overhead. A better model is that of a
multi-threaded parallel machine, where various resources are arbitrarily
shared amcng the multiple threads of executicn., The res ctl{2) call
provides the ability to share certain resources {notably adcress space
and file descripters) between related processes. This makes possible
multi-threaded applications running in the same address space, as well
as efficient dlmplementations of inter-process communication buiit omn
shared memory. Routines are provided {see brk(2)) to grow shared data,
and fork set stack(2) is provided to handlie the details of process
duplication {or creation of ancthez thread) when the stack is shared.
set index(2) and get index(2) supply one long integer’s worth of truly
private storage. This allows processes with a totally shared address
space to store one item of data in a way that is less expensive to
access than a normal system call such as getpidi{2).

Threads packages and parallel applications require different scheduling
than the pre-emptive time-slicing normally provided. The gang{2) system
call allows one or more processes to remain locked down to the CPUs they
are running on, exempt from being rescheduled. Onee locked down, these
CPUs avoid many of the normal sources of system overhead, such as the
handling of clock and I/0 completion interrupts, performance of working
set scans, -and interrupt-driven rescheduling, &A11 buf one of the CPUs
in the system may have processes latched onto them. The yield{2) and
bloek{2) calls aliow a process to voluntarily give up it's curxent time
slice, allowing another process to be run, and unblock(2) is complemen=-
tary to block. These allow user scheduling of (non~gang) processes.

Several routines provide closer access to and control over system
hardware. .cachectl (2} allows a program to disable or enable any
harxdware caching of ranges of memory. This allows a real-time program
to establish worst case memory access timings, or run with completely
deterministic- access -times. - It also allows a program to indicate it’s
intention to execute modifiable data.

Further determinism can be gained by setting a bit in the header of the
executable image (see /usr/inciude/acuthdr.h). The U_BATC bit requests

UMAX 4.3 Programmer’s Reference Manual 1 -

65

GANG (2)

NAME
gang - gang scheduling operxations

SYNOPSIS
#include <sys/types.-h>
#inelude <sys/gang.h>

int gang create (nprocs, flags)
int nprocs;
int flags:

int gang_enter {gang_id)
int gang id:

int gang_exit {)

int gang destroy (gang_id)
int gang_ id;

DESCRIPTION
A GANG is a set of processes which are scheduled as a unit to yield max-
imum performance and predictabillity for fine-grained parallel processing
algorithms., . The numbexr of processes which can enter a GANG is limited
by the number of CPUs assigned to the GANG. The processes will be per-
manently assigned te a specific CPU within the GANG; once within the
GANG, the value returned from getcpuid(3C) should remain constant. . These
processes will not be subject to normal time slice interrupts or
scheduling algorithms. Similarly, the CPUs will net have to field ordi-
nary arbitrated I/0 interrupts. User level signals will be deliversd
immediately.

The prcocess which creates the GANG must -either be super-user or super-
group {(see intro(2)). Processes which enter the GANG must have a match-
ing user ID, Super-group processes also have special permissions for
the nice(2), setprioritv(2), and plock{2) system calls {(ncte that while
executing within a GANG, the process priority is irrelevant).

ang create is used to create a new GANG, the return value is the unique
GANG identifier (gang id) to be used later in calls to gang enter and

gang destroy.

nprocs speclfies how many processcrs are to be allcocated to the new
GANG. If processers (CPUs) arze already allocated to existing GANGs
(processoxr scheduling ¢lasses), it may not be possible to ilmmediately
satisfy the request. In this case, the gang create call will return
immediately with an EAGAIN erroxr if (flags & GANG WAIT) is "false", or
ke suspended interruptikly until the rescurces are available.

£lags is used to specify options for the created GANG as follows:

GANG_WAILT rf the user is willing to wait (interruptibly) for CPU
resources to become available, GANG_WAIT should be
used.

GANG KEEP The system normally destroys a GANG when the last

member process exits (see exit(2)) from the GANG.

GANG_KEEP retains the GANG for future gang enter
requests. This option should be used sparingly 31n¢e
the processors may be unavailable for other use in the
interim.

GANG_EXITSIG. Causes the signal SIGHUP to be sent to existing GANG
megmbers when a process exits the system without having
done an explicit gang exit.

GANG_RMIDSIG Caiises the signal SIGKILL to be sent to existing GANG
members when a GRNG is explicitly removed with

gang_destroy. .

gang create will fail without creating a GANG if one or more ©f the fol-
lowing are true:

[ENOSPC] nprog is greater than the system-imposed maximum, The limit

Is Getexmined by the number of actual processors in the system

less the system configuration parameter reservecpu.

[EPERM] The requesting process does not have super-group privileges
(see intxo(2)).

[ERGAIN] The available number or the configuration of the unallocated
processors (CPUs) is not sufficient _to £ill the request.

{EINTR] A signal was received while waiting for resources to become
available.

66

RES_CTL (2)

NAME

res_ctl - control inheritance of resources

SYNOPSIS

#include <sys/types.h>
#¥include <sys/res_ctl.h>
int res_ctl(numres, resvecptr, resop)

int numres;
res_vec t *resvecptr;
int xesop;

RES_SET(res, &rset)
RES CLR{ res, &rset}
RES_ISSET(res, &rset)
RES_ZERC(res, &xset)
int res;

res_vac_t rseb;

DESCRIPTION

res_ctl controls the inheritance of varicous resources when a process
performs a fork(Z) operation. The first pumres resources will be maxrked
as inheritable, .uninheritable or will be made private, depending on

resop.

The rescurce sets are stored as bit fields in arrays of integers. The
following macros are provided for manipulating such resource sets:

RES_CLR{res, &rset} Removed res from rsek.
RES_ISSET(res, &rset} Indicates 1f res is a member of rset.

If res is a member, RES_ISSET is
nonzero. Otherwise, RES ISSET is 0.

RES_SET (xes, &rset) Includes a particular rescurce res in rset.

RES_ZEROQ {&rset) Tnitializes a resource set rset to
" the null set.

resop may be one of the Zollowing:
RESOP_SHARE

This operation causes the resources specified to be shared rather
than copied aver fork(2), between the parent and child precesses.

This operation bhas no effect on the current state of those re3Qurces..

RESCP_NC_SHARE
This operation is the inverse of RESCP_SHARE; it causes the rescurces
specified to be copied xather than shared over fork(2)}. It alsc has
no effect on the cuxrent state of those resources. .

RESQP_PRIVATE
This operation severs any sharing of the resources specified, giving
the process its own private resource. This might be used by a parent
process to disassoclate itself from shared resources set up solely to
be passed to and shared ameng a group of recently spawned prdcesses.

Rasources are specified by setting bits in the resource sets whose
zddresses are passed in resvecptr.

RES_ STACK BIT ~ As8-supported atack area

RES _DATA BIT " _data space {.data + .bss) L
RES_TEXT BIT ingtruction space (shared by default)
RES_IQ BIT file descriptors and I/0 state
RES_SIG_BIT sigral handling

RES_PERM BIT permissions

RES_LIM BIT user limits .

RES STAT BIT per-pracess statistics {when such exist)

RETURN VALUE
res ctl replaces the given resource set with the set of resouxces
currently marked to ke shared with processes resulting £rom fork (2):
kits set to one indicate that a rescurce will be shared over foxk(2).
Zero is returned upon successful compieticn; ctherwise, it retuxns -1
and the glebal wvariable errnoe 1s set to indigate the erxrxor.

res ctl will f£ail if onecr more

[EINVAL] Invalid parameter or unimplemented operation [ENOMEM] Xnsuffi-

cient resources to complete request [EAGAIN] Insufficient
resvurces to complete reguest

67

Vb

INTERCEPT (2)

NAME
intercept - allow direct handling of haxdware traps and interrupts

SYNQOPSIS
#include <sys/types.h>
finclvde <sys/escapes.h>

int intercept(n_intrs, intrs)
int n_intrs;
struct interrupt *intxs;

DESCRIPTION
intergept is a Multimax extensicen which regquests that certain intexrupts
and traps be vectored directly to code in the calling process., n intrs
specifies the number of traps and interrupts which will be intercepted,
and what code will handle which traps i1s specified by the members of the
interrupt array: intrs[0] intes[l]l, ... fov[n_intrs-1]. .

The interrupt structure is defined as

struct interrupt {
int trap offset;
caddr t trap handler;
bi

Bach interrupt entry specifies the hardware specific byte offset of the
trap in the system vector table, and the base address of the handler in
the program’s address space. e

Traps and interrupts indicated are then handled in supervisor mode by
the calling process. .

SEE ALSC
aoutdunp{l), intro(2), escapes(2}

DIAGNCSTICS
Upon successful completion, zerc is returned. Otherwise, a -1 is
returned and errno: is set to indicate the error.

intercept fails and no traps and interrupts are intercepted if one or
more of the following are true:

[EPERM] the caller is neither a member of the supergroup nor
- superuser. .

[EINVAL] Invalid trap offsets are specified, or an address points
outside of the program's address space.

[EINVAL] The program is not memory resident and was not leoaded with
the U HOSTED attribute allowing it to provide co~resident

operating system services by keing dual-mapped into both
supervisor and user space. :

UMAX 4.3 Programmexr’s Reference Manual 1

&8

